大偏心受压和小偏心受压有什么不同
偏心受压构件承载力

一栋高层商住楼在进行结构检测时, 发现部分柱子偏心受压承载力不足, 经过加固处理后满足了安全使用要求。
工程应用中的注意事项
充分考虑偏心压力的影响
在工程设计、施工和检测中,应充分考虑偏心压力对结构的影响, 采取相应的措施来提高结构的承载能力。
重视结构细节设计
对于关键部位的构件,应注重细节设计,如合理布置钢筋、加强节 点连接等,以提高结构的整体性和稳定性。
高层建筑
高层建筑的柱子在承受竖向荷载的同 时,也受到由于楼面荷载分布不均产 生的偏心压力。
工程实例分析
某高速公路桥梁墩柱承载力不足,经 过分析发现是由于偏心压力引起的, 通过加固措施提高了墩柱的承载能力。
一家大型化工厂的厂房在运行过程中 出现柱子下沉、裂缝等现象,经过检 测发现是由于偏心压力过大所致,采 取相应措施后解决了问题。
加强构造措施
设置支撑和拉结
通过合理设置支撑和拉结, 提高构件的整体稳定性和 承载能力。
增加连接节点
在关键连接节点处增加连 接板、焊缝等,以提高连 接处的承载能力。
增加配筋
在构件的关键部位增加配 筋,以提高其抗弯和抗剪 切能力。
采用高强度材料
选择高强度钢材
采用高强度钢材,如Q345、Q420等,以提高构件的承载能力。
04 偏心受压构件的承载力提升措施
CHAPTER
优化截面设计
01
ห้องสมุดไป่ตู้
02
03
增大截面尺寸
通过增加构件的截面尺寸, 提高其抗弯和抗剪承载能 力,从而提高整体承载力。
优化截面形状
根据受力特点,选择合适 的截面形状,如工字形、 箱形等,以充分利用材料, 提高承载力。
加强边缘
在构件的边缘处增加加强 筋或板条,提高其抗弯和 抗剪切能力。
大小偏心受压的界限

大小偏心受压的界限
在结构工程中,大小偏心受压是指混凝土构件在受力时,压力作用点相对于构件截面的几何中心点的位置关系。
这种现象通常出现在承受轴向力和弯矩的混凝土构件中,如柱、梁等。
根据压力作用点相对于构件截面中心的距离,可以将偏心受压分为两类:大偏心受压和小偏心受压。
1.大偏心受压:当压力作用点距离构件截面中心的距离大于截面尺寸的1/4时,称为大偏心受压。
在这种情况下,构件的承载能力主要由混凝土的抗压强度和钢筋的抗拉强度共同决定。
大偏心受压时,混凝土和钢筋的应力均较大,因此设计时需要确保混凝土的压碎指标和钢筋的锚固、屈服和极限强度满足要求。
2.小偏心受压:当压力作用点距离构件截面中心的距离小于或等于截面尺寸的1/4时,称为小偏心受压。
在这种情况下,构件的承载能力主要由混凝土的抗压强度决定,钢筋的应力相对较小。
小偏心受压时,混凝土的应力较均匀,钢筋的应力较小,因此设计时对混凝土的压碎指标要求较高,而对钢筋的锚固、屈服和极限强度的要求相对较低。
在设计混凝土构件时,需要根据偏心受压的大小来选择合适的截面尺寸、混凝土强度等级、钢筋直径和布置方式,以确保构件的承载能力和稳定性。
同时,还需要考虑构件的耐久性、防火性和施工条件等因素。
大小偏心受压判别条件

大小偏心受压判别条件在生活中,我们经常会遇到大小偏心受压的情况。
所谓大小偏心受压,是指由于物体的大小或形状不同,在承受外力时,会产生不同程度的压力分布。
这种现象在工程设计、物理实验以及日常生活中都十分常见。
本文将从不同角度探讨大小偏心受压的判别条件。
一、力的大小与方向在判别大小偏心受压时,首先需要考虑力的大小与方向。
当物体受到的力作用点与物体的重心重合时,力的大小与方向对物体产生的压力分布没有影响。
然而,当力的作用点偏离物体的重心时,力的大小与方向会对物体的压力分布产生显著的影响。
以一个简单的实例来说明。
假设有一个长方形木板,木板的上半部分比下半部分重。
当我们将木板放在水平地面上时,木板的重心位于中点,压力分布均匀。
但是,如果我们施加一个向上的力在上半部分,使得木板发生倾斜,那么上半部分的压力就会增加,下半部分的压力就会减小。
这就是大小偏心受压的典型例子。
二、物体的形状与刚度除了力的大小与方向外,物体的形状与刚度也是判别大小偏心受压的重要条件。
物体的形状直接影响着力的传递路径和压力分布。
当物体的形状不规则或不对称时,压力分布会出现明显的偏离。
而物体的刚度则决定了物体对外力的抵抗能力,刚度越大,物体对外力的反作用越强。
以一个实际工程案例来说明。
在建筑设计中,柱子是承受垂直力的重要承载结构。
当柱子的截面形状不均匀或者材料的刚度不同,柱子在受压时就会出现大小偏心受压的情况。
这种情况下,柱子的一侧会承受更大的压力,而另一侧则承受较小的压力,从而导致柱子的变形和破坏。
三、物体的材料与强度除了力的大小与方向以及物体的形状与刚度外,物体的材料与强度也是判别大小偏心受压的重要条件。
物体的材料决定了它的力学性能和承受外力的能力。
当物体的材料强度不均匀或者存在缺陷时,物体在受压时就会出现不均匀的压力分布。
以一个例子来说明。
在汽车制造中,车身结构是承受各种外力的重要部分。
当车身的材料存在缺陷或者强度不均匀时,车身在受到碰撞力时就会产生大小偏心受压的现象。
混凝土偏心受压构件相关知识点总结

偏心受压构件一、偏心受压构件包括大偏心受压和小偏心受压两种情况,无论是大偏心受压还是小偏心受压均要考虑偏心距增大系数η。
2012.11400i l e h h ξξη⎛⎫=+ ⎪⎝⎭10.5.c f A Nξ=02 1.150.01l hξ=-此公式中要注意如下几点:①h ——截面高度。
环形截面取外直径;圆形截面取直径。
②0h ——截面有效高度。
对环形截面取02s h r r =+;对圆形截面取0s h r r =+。
r 、2r 、s r 按《混凝土结构设计规范》第7.3.7条和7.3.8条取用。
③A ——构件的截面面积。
对T 形截面和工形截面,均取()''.2.f fA b h b b h =+-④1ξ——偏心受压构件的截面曲率修正系数,当1 1.0ξ>取1 1.0ξ=; 2ξ——构件长细比对截面曲率的影响系数,当015l h<时,取2 1.0ξ=;⑤当偏心受压构件的长细比017.5l i ≤(或05l h≤)时,可直接取 1.0η=。
注意:017.5l i≤与05l h≤基本上是等价的。
准确地说是0 5.05l h≤二、两种破坏形态的含义截面进入破坏阶段时,离轴向力较远一侧的纵向钢筋受拉屈服,截面产生较大的转动,当截面受压区边缘的混凝土压应变达到其极值后,混凝土被压碎,截面破坏。
截面进入破坏阶段后,离轴向力较远一侧的纵向钢筋或者受拉或者受压但始终不屈服,截面转动较小,当截面受压区边缘的混凝土压应变达到其极限值后,混凝土被压碎,截面破坏 。
两种破坏形态的相同点:截面最终破坏都是由于受压区边缘混凝土被压碎而产生的,并且离轴向力较近一侧的钢筋(或曰受压钢筋's A )都受压屈服。
两种破坏形态的不同点:起因不同。
大偏心受压破坏的起因是离轴向力较远一侧的钢筋(或曰受拉钢筋s A )受拉屈服;而小偏心受压破坏则是由于截面受压区边缘混凝土压应变接近其极值。
所以大偏心受压破坏也被称为“受拉破坏”——延性破坏;小偏心受压破坏也被称为“受压破坏”——脆性破坏。
工程结构简答题

1.按结构材料不同,建筑结构有哪些类型?混凝土结构、砌体结构、钢结构、木结构2.框架结构的组成构件有哪些?各构件间如何连接?横梁、柱和基础。
框架横梁和框架柱刚性连接,底层柱脚与基础顶面固接。
3.多层和高层房屋通常如何区分?通常把10层及10层以上(或高度大于28m)的房屋结构称为高层房屋结构,而把9层及以下的房屋结构称为多层房屋结构。
4.什么叫作用?什么是直接作用?什么是间接作用?什么是永久作用、可变作用和偶然作用?作用指施加在结构上的集中力或分布力以及引起结构外加变形或约束变形的原因。
直接作用指施加在结构上的集中力或分布力。
间接作用指引起结构外加变形或约束变形的作用。
永久作用指在设计基准期内量值不随时间变化,或其变化与平均值相比可以忽略不计的作用。
可变作用指在设计基准期内量值随时间变化而变化,且其变化与平均值相比不可忽略的作用。
偶然作用指在设计基准期内不一定出现,而一旦出现其量值很大且持续时间短的作用。
5.什么叫作用效应、结构抗力?它们有何特点?由作用引起的结构或结构构件的反应,例如内力、变形和裂缝等,称为作用效应;荷载引起的结构的内力和变形,也称为荷载效应。
结构或结构构件承受作用效应的能力称为结构抗力。
6.何谓极限状态?极限状态如何分类?整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态为该功能的极限状态。
极限状态分为承载能力极限状态和正常使用极限状态。
7.结构或结构构件超过承载能力极限状态的标志有哪些?为什么所有结构构件都必须进行承载力计算?标志:1、整个结构或结构的一部分作为刚体失去平衡。
2、结构构件或其连接因超过材料强度而破坏(包括疲劳破坏),或因过度的变形而不适于继续承载。
3、结构转变为机动体系。
4、结构或构件丧失稳定(如压屈等)。
5、地基丧失承载能力而破坏(如失稳等)。
为了保证结构的安全性,必须进行承载力计算。
8.试根据由明显屈服点钢筋的拉伸应力-应变曲线指出受力各阶段的特点和各转折点的应力名称。
在材料破坏的前提下大偏心受压破坏和小偏心受压破坏的

一、填空题1、偏心受压构件,根据构件长细比Lo/h的不同,可能发生______________和______________两种破坏。
2、在轴心受压构件中是通过引入_______________来考虑纵向弯曲的影响,而在偏向受压构件中则是引入__________________来考虑纵向弯曲的影响。
3、在材料破坏的前提下大偏心受压破坏和小偏心受压破坏的根本区别是。
4、受压构件中的钢筋不宜强度过高,是因为______________________________。
37.控制受压构件不发生失稳破坏,可通过控制___________________________来实现。
5、在材料破坏的前提下,偏心受压构件的破坏形态主要有和。
6、非对称配筋大偏向受压截面强度计算时,若As及As’均为未知,为使______,应假设______________ .7、“长细比”大,受压构件的承载能力会降低,规范在考虑长细比对受压构件承载力的影响时,对轴心受压构件引入了系数φ,其定义为φ= ,故其值是小于1的;而对偏心受压构件则引入了系数η,其定义为η= ,故其值是大于1的。
8、偏心受压构件正截面承载力Nu与Mu系如右图,由图可知:对于大偏心受压构件在变的条件下,N越越危险;压构件,在M不变的情况下,N越越危险。
9凝土偏心受压构件,截面能承受的轴力N uM u是相关的。
对于大偏心受压破坏,M u随N u大而___________。
10、根据不同,钢筋混凝土偏心受压柱可以分为短柱、长柱和细长柱。
二、选择题1、小偏压构件要考虑附加偏心矩ea,而大偏向受压构件不需考虑,这是因为()。
A.小偏心受压柱As 不屈服; B.小偏压柱混凝土受压强度取值(fcm)偏大;C.为了计算η值,D.公式的错误;2、在钢筋混凝土轴心受压构件中,混凝土的徐变将使()。
B. A s 合力点和A s ’合力点范围以内,以满足平衡条件;C. A s 合力点和A s ’合力点范围以内,裂缝贯通整个截面;D. A s 合力点和A s ’合力点范围以外,截面上存在着受压区;7、设计不对称小偏心受压构件,若'S A 及S A 均为未知时,一般应补充一方程,从节省钢筋的角度出发应设( )A.0min bh A S ρ='B.'=s a x 2 C.y s f =σ D.0h x b ξ=8、轴心受压构件的全部纵向钢筋的最小配筋率为( )A.0.2%B.0.4%C.0.6%D.0.8% 9、钢筋混凝土大偏心受压构件的破坏特征是( )。
大偏心受压破坏

建筑结构与抗震系列微课
大偏心受压破坏
授课人 四川建筑职业技术学院
杨晓红
2015.11
目录
偏心受压构件的分类
大偏心受压构件的破坏特征
思考题
Page
2
1 、偏心受压构件破坏特征
按照轴向力的偏心距和配筋情况的不同,偏心受压构件
的破坏可分为受拉破坏和受压破坏两种情况。
(1)、受拉破坏(大偏心受压破坏)
(2)、受压破坏(小偏心受压破坏)
Page
3
2 、受拉破坏(大偏心受压破坏)的破坏特征
当轴向压力的相对偏心距较大,且受拉钢筋配置的不太 多时,在荷载作用下,靠近轴向压力的一侧受压,另一 侧受拉,随着荷载的增加,首先在受拉区产生横向裂 缝;轴向压力的相对偏心矩愈大,横向裂缝出现愈早, 裂缝的开展和延伸愈快;当荷载继续增加时,横向裂缝 不断向受压区扩展,延伸,
6
此过程和特征与适筋的双筋受弯构件相似,有明显的预 兆,为延性破坏。由于受拉破坏通常在轴向压力偏心距
e0较大发生,故习惯上也称为大偏心受压破坏。
判断条件:当§≤§b,属于大偏心受压构件;
Page
7
请思考如下问题:
(1)大偏心受压破坏e
8
谢 谢
Page
4
导致受压区混凝土压应力迅速增大,在压应力较大的混
凝土受压区边缘附近出现纵向裂缝,临近破坏时,受拉
钢筋首先达到屈服强度,受压区高度迅速减小,应变急 剧增加,最后受压区混凝土达到界限压应变而被压碎, 构件破坏(图4.3.1◆)。此时,受压区钢筋也达到屈服 强度。也称为受拉破坏。
Page
5
Page
大偏心受压和小偏心受压有什么不同

一、计算公式有不同大偏心受压:N≤α1fcbx+f'yA's-fyAsNe≤α1fcbx(h0-x/2)+f'yA's(h0-a's)小偏心受压:N≤α1fcbx+f'yA's-σsAsNe≤α1fcbx(h0-x/2)+f'yA's(h0-a's)e=ηei+h/2-as (7.3.4-3)ei=e0+ea (7.3.4-4)式中e--轴向压力作用点至纵向普通受拉钢筋和预应力受拉钢筋的合力点的距离;η--偏心受压构件考虑二阶弯矩影响的轴向压力偏心距增大系数,按本规范第7.3.10条的规定计算;σs、σp--受拉边或受压较小边的纵向普通钢筋、预应力钢筋的应力;ei--初始偏心距;a--纵向普通受拉钢筋和预应力受拉钢筋的合力点至截面近边缘的距离;e0--轴向压力对截面重心的偏心距:e0=M/N;ea--附加偏心距,按本规范第7.3.3条确定。
在按上述规定计算时,尚应符合下列要求:1钢筋的应力σs、σp可按下列情况计算:1)当ξ≤ξb时为大偏心受压构件,取σs=fy及σp=fpy,此处,ξ为相对受压区高度,ξ=x/h0;2)当ξ>ξb时为小偏心受压构件,σs、σp按本规范第7.1.5条的规定进行计算。
二、两种破坏特点不同:大偏心受压:随荷载不断增加,受拉区的裂缝开展明显,该区的纵向钢筋首先屈服。
破坏前有预兆,是塑性破坏。
小偏心受压:靠近纵向力一侧的钢筋先屈服,该侧混凝土也达到极限应变;另一侧的钢筋和混凝土应力均较小,可能受拉也可能受压。
破坏时无明显预兆,混凝土强度越高,破坏越突然,属于脆性破坏。
混凝土名词解释材料

一材料1.混凝土立方体抗压强度的定义是什么?我国《混凝土结构设计规范》规定以边长为1 50mm的立方体为标准试件,标准立方体试件在( 20+3)。
C的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为" N2"。
2.混凝土的轴心抗压强度的定义是什么?《混凝土结构设计规范》规定以1 50mmx 150mmx 300mm的棱柱体按照标准试验方法测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值。
5.线性徐变和非线性徐变分别是什么? 当混凝土应力较小时(例如小于0.5fc),徐变与应力成正比,曲线接近等间距分布,这种情况称为线性徐变。
当混凝土应力较大时,(例如大于0.5fc),徐变变形与应力不成正比,徐变比应力增长要快,称为非线性徐变。
3.混凝土双向应力状态下的强度特点是什么1 )混凝土受双向压应力时,一向的强度随另一向压力的增加而增加,受压强度比单向受压强度高,最多可提高27%。
2)混凝士受拉-压应力状态时,混凝土的强度均低于单向抗拉伸或者单向抗压时的强度。
3)混凝土受双向拉应力状态时,双向受拉强度均接近于单向受拉强度。
4.徐变的定义是什么?混凝土在荷载长期作用下保持应力不变其塑性变形随着荷载作用时间延长而不断增加的现象。
6.混凝土收缩是什么?混凝土凝结硬化时,在空气中体积缩小的现象成为收缩。
7.国产普通钢筋强度等级分为哪几种?国产普通钢筋按其屈服强度标准值的高低,分为4个强度等级: 300MPa、335MPa、400 MPa、500 MPa,现有8个牌号: HPB300、HRB335、HRBF335、HRB400、HRBF400、RRB400、HRB500、HRBF5008.什么是有明显流幅钢筋的屈服强度?有明显流幅的热轧钢筋屈服强度是按其应力-应变曲线中的屈服下限确定的。
9.什么是无明显流幅钢筋的屈服强度?对没有明显流幅或屈服点的预应力钢筋,一般取残余应变0.2%所对应的应力op0.2作为其条件屈服强度标准值fpyk。
混凝土基本原理简答题

.钢筋和混凝土是两种物理、力学性能很不同的材料,它们为什么能结合在一起共同工作?答:(1)混凝土结硬后,能与钢筋牢固地粘结在一起,互相传递内力。
粘结力是这两种性质不同的材料能够共同工作的基础。
(2)钢筋的线膨胀系数1.2×10^(-5) ℃-1,混凝土的线膨胀系数为1.0×10^(-5)~1.5×10^(-5) ℃-1,二者数值相近。
因此,当温度变化时,钢筋与混凝土之间不会存在较大的相对变形和温度应力而发生粘结破坏。
1-2.钢筋冷拉和冷拔的抗拉、抗压强度都能提高吗?为什么?答:冷拉能提高抗拉强度。
冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形达到提高钢筋屈服点强度和节约钢材的目的。
冷拔能提高抗拉、抗压强度。
冷拔是指钢筋同时经受张拉和挤压而发生塑性变形,截面变小而长度增加,从而同时提高抗拉、抗压强度。
1-7.简述混凝土在三向受压情况下强度和变形的特点。
答:在三向受压状态中,由于侧向压应力的存在,混凝土受压后的侧向变受到了约束,延迟和限制了沿轴线方向的内部微裂缝的发生和发展,因而极限抗压强度和极限压缩应变均有显著提高,并显示了较大的塑性。
1-8.影响混凝土的收缩和徐变的因素有哪些?答:(1)影响徐变的因素:混凝土的组成和配合比;养护及使用条件下的温湿度;混凝土的应力条件。
(2)影响收缩的因素:养护条件;使用环境的温湿度;水灰比;水泥用量;骨料的配级;弹性模量;构件的体积与表面积比值。
1-13.伸入支座的锚固长度越长,粘结强度是否越高?为什么?答:不是锚固长度越大,粘结力越大,粘结强度是和混凝土级配以及钢筋面有关系。
2-2.荷载按随时间的变异分为几类?荷载有哪些代表值?在结构设计中,如何应用荷载代表值?答:荷载按随时间的变异分为三类:永久作用;可变作用;偶然作用。
永久作用的代表值采用标准值;可变作用的代表值有标准值、准永久值和频遇值,其中标准值为基本代表值;偶然作用的代表值采用标准值。
大偏压小偏压辨析

Байду номын сангаас
破坏特点:1 近侧混凝土被压坏。2 远侧混凝土被压坏(反向破坏,近侧钢筋比远侧足够多)
情况2:轴向力N的相对偏心距较大,远侧受拉钢筋足够多,始终不屈服,则近侧混凝土被压坏。
结论:以轴向力N的位置判断大小偏心是不正确的,不管哪个位置,都有可能。
问题:在受压破坏中,情况1里可能存在受拉破坏?
受拉破坏形态:
又称大偏心受压破坏,延性破坏。
条件:轴向压力N相对偏心距较大,且受拉钢筋配置得不太多。
特点:受拉钢筋先达到屈服强度,最终导致受压区边缘混凝土压碎截面破坏。
受压破坏形态:
又称小偏心受压破坏,脆性破坏。
情况1:轴向力N的相对偏心距较小,截面全部受压或大部分受压。远侧钢筋可能受压或受拉。
结构设计原理偏心受压构件

本章主题
• 偏心受压构件的破坏形态及其特征 • 大偏心受压破坏(受拉破坏) • 小偏心受压破坏(受压破坏) • 界限破坏
• 偏心弯曲的影响 • 当长细比较大时,破坏时会产生较大的纵向弯曲,使构件偏心距增大,变形增大,承载力下降,还可
能出现失稳破坏。
• 矩形截面偏心受压构件正截面承载力计算 • 基本公式的引出及其应用条件 • 配筋设计 • 承载力验算
2、大、小偏心受压正截面承载力计算图式
esη e0 e's
γ0Nd
a's
x
fcd
A's
fs'dA's
x
fcdbx
h/ 2
ho
h0
h
as
σAs
As b
as
esη e0 e's
3、计算公式 纵轴方向力的平衡 :
A s 合力点取矩:
A
' s
合力点取矩:
N 0 d 作用点取矩 :
γ0Nd
h/ 2
a's
★两个基本方程中有三个未知数,
取补充条件
b ,即 x bh0
As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积 (As+As')最小?可取x=ξbh0
令 N0Nd、 Mu Nes
As' Nes
fcdbh02b(10.5b)
fs'd(h0as' )
≥
m' inbh
取 s fsd
As
4 10
应变图
160 剖面 A-A
P=97KN 195KN
265KN
应力图
大偏心受压和小偏心受压的破坏特征

1. 导言作为结构工程师或研究人员,对于不同受压情况下的结构破坏特征的研究是至关重要的。
其中,大偏心受压和小偏心受压是两种常见的受压情况,它们在结构承载能力、形成机制以及破坏特征上都有着明显的不同。
本文将从深度和广度两个方面对大偏心受压和小偏心受压的破坏特征进行全面评估,并结合个人观点进行分析。
2. 大偏心受压的形成和特征大偏心受压是指受压构件受力点偏离截面重心较远的一种受压状态。
在大偏心受压的情况下,受压构件内部产生较大的压力偏心,导致构件出现较大的弯曲变形。
受压构件容易产生局部屈曲,从而引发整体的破坏。
大偏心受压的结构在受压承载能力方面相对较弱,并且其破坏特征主要表现为弯曲变形和局部屈曲破坏。
3. 小偏心受压的形成和特征与大偏心受压相对应的是小偏心受压,它是指受压构件受力点相对于截面重心较近的一种受压状态。
在小偏心受压的情况下,受压构件内部产生较小的压力偏心,相比大偏心受压,小偏心受压的弯曲变形相对较小。
小偏心受压的结构在受压承载能力方面相对较强,能够承受更大的压力。
其破坏特征主要表现为整体挤压破坏和轴心受压破坏。
4. 个人观点和理解从工程实践的角度来看,大偏心受压和小偏心受压的破坏特征对于结构设计和分析具有重要的指导意义。
在实际工程中,我们需要根据具体的受压情况来选择合适的受压构件形式,并针对其破坏特征进行合理的设计和加固。
对于大偏心受压和小偏心受压的破坏机制和特征的深入理解,也为结构的安全可靠性评估提供了重要依据。
5. 结论与总结通过对大偏心受压和小偏心受压的形成机制和破坏特征进行深入分析,我们可以看到两者在受压承载能力和破坏表现上存在显著的差异。
结合个人观点,我们也意识到对这一问题的研究和理解对于结构工程领域具有重要的意义。
在未来的工程实践和研究中,我们需要进一步深入探讨大偏心受压和小偏心受压的相关问题,以促进结构工程技术的持续发展和创新。
通过对大偏心受压和小偏心受压的破坏特征进行全面评估,本文不仅从理论层面进行了深度探讨,同时也结合了个人观点,从而使得文章在深度和广度上都具有一定的价值。
(整理)大偏压与小偏压解决方案比较.

(整理)⼤偏压与⼩偏压解决⽅案⽐较.⼤偏压与⼩偏压解决⽅案⽐较偏⼼受压构件正截⾯承载⼒计算⼀、偏⼼受压构件正截⾯的破坏特征(⼀)破坏类型1、受拉破坏:当偏⼼距较⼤,且受拉钢筋配置得不太多时,发⽣的破坏属⼤偏压破坏。
这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝⼟也能达到极限压应变,如图7—2a 所⽰。
2、受压破坏:当偏⼼距较⼩或很⼩时,或者虽然相对偏⼼距较⼤,但此时配置了很多的受拉钢筋时,发⽣的破坏属⼩偏压破坏。
这种破坏特点是,靠近纵向⼒那⼀端的钢筋能达到屈服,混凝⼟被压碎,⽽远离纵向⼒那⼀端的钢筋不管是受拉还是受压,⼀般情况下达不到屈服。
(⼆)界限破坏及⼤⼩偏⼼受压的分界1、界限破坏在⼤偏⼼受压破坏和⼩偏⼼受压破坏之间,从理论上考虑存在⼀种“界限破坏”状态;当受拉区的受拉钢筋达到屈服时,受压区边缘混凝⼟的压应变刚好达到极限压应变值。
这种特殊状态可作为区分⼤⼩偏压的界限。
⼆者本质区别在于受拉区的钢筋是否屈服。
2、⼤⼩偏⼼受压的分界由于⼤偏⼼受压与受弯构件的适筋梁破坏特征类同,因此,也可⽤相对受压区⾼度⽐值⼤⼩来判别。
当时,截⾯属于⼤偏压;当时,截⾯属于⼩偏压;当时,截⾯处于界限状态。
⼆、偏⼼受压构件正截⾯承载⼒计算(⼀)矩形截⾯⾮对称配筋构件正截⾯承载⼒1、基本计算公式及适⽤条件:(1)⼤偏压():,(7-3),(7-4)(7-5)注意式中各符号的含义。
公式的适⽤条件:(7-6)(7-7)界限情况下的:(7-8)当截⾯尺⼨、配筋⾯积和材料强度为已知时,为定值,按式(7-8)确定。
(2)⼩偏压():(7-9)(7-10)式中根据实测结果可近似按下式计算:(7-11)注意:﹡基本公式中条件满⾜时,才能保证受压钢筋达到屈服。
当时,受压钢筋达不到屈服,其正截⾯的承载⼒按下式计算。
(7-12)为轴向压⼒作⽤点到受压纵向钢筋合⼒点的距离,计算中应计⼊偏⼼距增⼤系数。
﹡﹡矩形截⾯⾮对称配筋的⼩偏⼼受压构件,当N >f c bh时,尚应按下列公式验算:(7-13)(7-14)式中,——轴向压⼒作⽤点到受压区纵向钢筋合⼒点的距离;——纵向受压钢筋合⼒点到截⾯远边的距离;2、垂直于弯矩作⽤平⾯的受压承载⼒验算当轴向压⼒设计值N较⼤且弯矩作⽤平⾯内的偏⼼距较⼩时,若垂直于弯矩作⽤平⾯的长细⽐较⼤或边长较⼩时,则有可能由垂直于弯矩作⽤平⾯的轴⼼受压承载⼒起控制作⽤。
偏心受压

N
M
N
Mu
Mu
8.4 矩形截面正截面承载力计算
第八章 受压构件
1、给定轴力设计值N,求弯矩作用平面的弯矩设计值 、给定轴力设计值 ,求弯矩作用平面的弯矩设计值M 由于给定截面尺寸、配筋和材料强度均已知,未知数? 由于给定截面尺寸、配筋和材料强度均已知,未知数? 只有x和 两个 两个。 只有 和M两个。
Ne′ ′ As = As = f y′ (h0 − a′)
e' = ηei - 0.5h + a'
fyAs
σ'sA's
8.4 矩形截面正截面承载力计算
第八章 受压构件
2、当ηei≤eib.min=0.3h0,为小偏心受压 、 或ηei>eib.min=0.3h0,但N > Nb时,为小偏心受压 由第一式解得
第八章 受压构件
若ηei<e0b,为小偏心受压 为小偏心受压
◆ 联立求解得 和N 联立求解得x和
′ N = N u = αf c bx + f y′ As − f y ⋅
ξ −β As ξb − β
x ′ N ⋅ e ≤ αf c bx(h0 − ) + f y′ As (h0 − a′) 2 尚应考虑A ◆ 尚应考虑 s一侧混凝土可能先压坏的情况 e'
Nu Nu
N
M
N
Mu
Mu
8.4 矩形截面正截面承载力计算
第八章 受压构件
二、不对称配筋截面复核
在截面尺寸(b× 、截面配筋A 在截面尺寸 ×h)、截面配筋 s和As'、材料强度 c、fy,f y')、 、材料强度(f 、 以及构件长细比(l 均为已知时, 以及构件长细比 0/h)均为已知时,根据构件轴力和弯矩作用方 均为已知时 截面承载力复核分为两种情况: 式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值 、给定轴力设计值 ,求弯矩作用平面的弯矩设计值M 2、给定轴力作用的偏心距 0,求轴力设计值 、给定轴力作用的偏心距e 求轴力设计值N
对称配筋的大偏心受压构件与小偏心受压构件的计算

对称配筋的大偏心受压构件与小偏心受压构件的计算我们平时在讲结构设计的时候,常听到“对称配筋的大偏心受压构件”和“小偏心受压构件”,说实话,这听上去有点复杂,但一旦搞明白了,你就会发现其实也没那么难。
其实就是讲一个结构在受力时,钢筋怎么安排,以及它受力的状态是什么样的。
大家可以想象一下,你平时坐在椅子上,如果椅子的腿不均匀,或者一侧的腿偏短,你坐上去肯定不稳吧?这其实和我们设计结构时考虑的“偏心”是类似的。
大偏心受压就是钢筋没在柱子的中间,而是在一边,受力就像椅子不平稳一样,压力集中,容易发生倾斜、破坏。
小偏心受压嘛,钢筋虽然不在正中间,但差距不大,影响就小多了。
咱们得聊聊这“大偏心”和“小偏心”到底是啥意思。
你可以把“大偏心”想象成一个人踩在不平的地面上,感觉全身都在晃动,左右不稳,受力点偏移很多,根本没法保证力均匀分布;而“小偏心”就好比踩在稍微不平的地上,虽然也有点倾斜,但比起大偏心,那简直是“小巫见大巫”了,受力分布还是能保持一定的均衡。
所以,大偏心受压构件的计算要考虑的因素更多,稍微马虎就会出现危险;而小偏心的情况,设计时稍微一调整,基本能保持稳定。
说到这里,咱们再聊聊这“对称配筋”是怎么回事。
其实就是指钢筋布置要对称,像你买衣服一样,左边右边得一样,穿着才不丑。
这个对称,能帮助结构更好地分担负荷,像你抬个重东西,左右手得均衡,才不会单侧负担太重,导致受伤。
同样的道理,如果钢筋布置不对称,受力点偏了,整个结构的稳定性就成了问题。
特别是对于大偏心受压构件,如果钢筋配得不对称,问题就会更加突出,甚至会导致整个构件崩溃。
想象一下,你拿着一个碗,一边放得不稳,结果一碰就翻了,摔得稀巴烂。
但是,咱们也不能光说问题,咱们得知道怎么解决。
说白了,结构设计就是要在考虑负荷、尺寸、材质等各种条件下,找到一个最佳的解决方案。
对于大偏心受压构件,我们得特别注意钢筋的分布和数量,不能随便糊弄。
比如,钢筋的位置就得更加靠近受压侧,要确保在结构受压时,力能够顺畅传递,防止钢筋因为受力过大而发生断裂。
钢筋混凝土受压柱大小偏心判断方法的讨论

钢筋混凝土受压柱大小偏心判断方法的讨论王中发【摘要】本文就钢筋混凝土受压柱的受力特点进行探讨,以探寻更有效的大小偏心判断方法。
%This paper discusses the mechanical characteristics of reinforced concrete compression column to explore more effective method to determine the size of the eccentric.【期刊名称】《价值工程》【年(卷),期】2015(000)003【总页数】2页(P128-129)【关键词】钢筋混凝土;偏心受压柱;承载力计算;判断【作者】王中发【作者单位】湖北水利水电职业技术学院水利建筑工程系,武汉430070【正文语种】中文【中图分类】U441钢筋混凝土偏心受压柱根据破坏时的特征分为大偏心受压和小偏心受压,其区别在于远离偏心压力一侧的纵向受力钢筋在柱发生破坏时是否达到屈服强度(即该侧纵筋的应力σx=fy)。
《混凝土结构设计规范》(GB50010-2011)给出的判断条件为:当满足x≤h0ξb或ξ≤ξb的条件时,受压柱为大偏心受压,反之为小偏心受压。
但在进行柱的设计时,通常柱两侧的纵向受力钢筋是未知的,也就无法直接计算x或ξ,也就无法直接判断要设计的柱是大偏心还是小偏心,因大小偏心的承载力计算公式不同,导致设计计算无法进行。
钢筋混凝土受压柱大小偏心判断方法如下:《混凝土结构设计规范》给出的偏心受压柱正截面承载力计算公式如下:①对于对称配筋,比较好判断。
先假定为大偏心受压(σx=fy),根据公式(1)取极限状态,公式按等号计算,计算出,然后根据x和ξbh0的大小关系判断。
若x≤h0ξb则表明假设正确,确为大偏心受压,反之为小偏心受压。
②对于非对称配筋,由于无法直接计算出受压区计算高度x,上述方法就不再适用了,需要另外的方法,本文重点讨论这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、计算公式有不同
大偏心受压:
N≤α1fcbx+f'yA's-fyAs
Ne≤α1fcbx(h0-x/2)+f'yA's(h0-a's)
小偏心受压:
N≤α1fcbx+f'yA's-σsAs
Ne≤α1fcbx(h0-x/2)+f'yA's(h0-a's)
e=ηei+h/2-as (7.3.4-3)
ei=e0+ea (7.3.4-4)
式中
e--轴向压力作用点至纵向普通受拉钢筋和预应力受拉钢筋的合力点的距离;η--偏心受压构件考虑二阶弯矩影响的轴向压力偏心距增大系数,按本规范第7.3.10条的规定计算;
σs、σp--受拉边或受压较小边的纵向普通钢筋、预应力钢筋的应力;
ei--初始偏心距;
a--纵向普通受拉钢筋和预应力受拉钢筋的合力点至截面近边缘的距离;
e0--轴向压力对截面重心的偏心距:e0=M/N;
ea--附加偏心距,按本规范第7.3.3条确定。
在按上述规定计算时,尚应符合下列要求:
1钢筋的应力σs、σp可按下列情况计算:
1)当ξ≤ξb时为大偏心受压构件,取σs=fy及σp=fpy,此处,ξ为相对受压区高度,ξ=x/h0;
2)当ξ>ξb时为小偏心受压构件,σs、σp按本规范第7.1.5条的规定进行计算。
二、两种破坏特点不同:
大偏心受压:随荷载不断增加,受拉区的裂缝开展明显,该区的纵向钢筋首先屈服。
破坏前有预兆,是塑性破坏。
小偏心受压:靠近纵向力一侧的钢筋先屈服,该侧混凝土也达到极限应变;另一侧的钢筋和混凝土应力均较小,可能受拉也可能受压。
破坏时无明显预兆,混凝土强度越高,破坏越突然,属于脆性破坏。