全集与补集
全集和补集
∁ A∪ ∁ B;(5)∁ (A∪B)。
例2:已知全集为R,A={x|-2≤ x < 3},求∁A。
①A∩ (∁ A)=∅;
②A∪ (∁ A)=U;
③∁ (∁ A)=A;
④∁ U=∅;
⑤∁ ∅=U。
A∩B∩C
B∩C
3、已知全集U=R,集合A={x|-1< x < 1},B={x|1≤ 4x ≤ 8},
C={x|-4< x < 2a-7}.
(1)求A∩(∁ B);
(2)若A∩C=A,求实数a的取值范围。
答案:(1){x|-1< x < 0}
(2){a| a≥4}
第一章 集合
全集和补集
全集:一般的,如果一个集合含有所研究问题中涉及的所有元素,
那么就称这个集合为全集,通常记作U。
思考:全集一定包含任何元素吗?
eg:在整数范围内研究问题,Z是全集;
在实数范围内研究问题,R是全集。
补集:对于一个集合A,由全集U中不属于集合A的所有元素组成
的集合称为集合A相对于全集U的补集,简称集合A的补集,记作
21人,都不赞成的学生有8人。
“容斥原理”:card(A∪ )=card(A)+card
(B)-card(A∩ );
Card(A∪B∪ )=card(A)+card(B)+card
(C)-card(A∩ )-card(B∩C)-card(C∩A)
+card(A∩B∩C)。
A∩
C∩A
A
B
C
②补集既是集合之间的一种关系,也是集合之间的一种运算。求集合
1.2.2 补集、全集
思考:A {x 2 x 5}, B {x m 1 x 2m 1}, B A, 求m的取值范围 .
湖南省长沙市一中卫星远程学校
一.全集: 1、定义: 如果集合S包含我们所要研究的各个集合,这 时S可以看作一个全集。 2、符号:U
湖南省长沙市一中卫星远程学校
二.补集:
1、概念:一般地,设U是全集,AU,由U中所有不属 于A的元素组成的集合,叫做U中集合A的补集.记作CUA, 读作“A在U中的补集”. 2、符号语言: 描述法:CUA={x| x U且x A}
例2:设集合A {1 , 3,a}, B {1, a a 1} B A
2
求a的值.
练习:A {1 , 3,x},B {x 2 ,1},且B A,求x的值.
湖南省长沙市一中卫星远程学校
例3:若集合P {x x 2 x 6 0}, Q {x ax 1 0}, 且Q P, 求由实数a可以取的值组成的集合 ,并写出它的所有非空 真子集.
(4)全集不是固定的,而是由所研究的对象决定的. 若解决实数范围的问题,就可以把实数集看作是全集U; 若解决有理数范围问题,就可以把有理数集看作是全集 U。
( 5)特殊集合 ,CU U .CUU .
湖南省长沙市一中卫星远程学校
( 6)CU (CU A) A, CU (CU ) .
U
2x 1 0 , 3x 6 0
的解集为A,U R, 试求A及
A, 并把它们分别表示在数 轴上.
解 A x | 2x 1 0 , 且3x 6 0 x | 1 / 2 x 2 , x | x 1 / 2, 或 x 2 , 在数轴上表示如下 . U A
全集与补集
观察集合A,B,C与D的关系: A={菱形} B={矩形} C={平行四边形}
D={四边形}
定 义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形}
C={平行四边形} D={四边形}
定 义
设U是全集,A是U的一个子集,
则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
或(余集). 记作 ðu A
即
ðu A {x x U , 且x A}.
AUðu A Nhomakorabea质(1) (2)
A (ðu A) U A (ðu A) Φ
例题讲解
设全集为R, A {x x 5}, B {x x 3}. 求 1.
⑴ ⑶
A B;
⑵ ⑷
A B;
痧 A , B ; R R
痧A
R
R
B;
⑸
痧A
R
R
B;
⑹
⑺
ðR ( A B ); ðR ( A B ).
小 结
ðR ( A B ) = 痧 R A
A ðR ( A B ) = 痧 R
R
B;
B . R
2.
设全集为U={2, 4, a a 1},
2
A {a 1, 2}, ð U A {7},
求实数a的值.
课堂练习
教材P14练习T2~5.
课堂小结
作业布置 教材P15 A组T4,5. 教材P20 A组T2,3,4.
;/ 广东陶粒厂 ;
脸拿出来说?小子,说话之前,最好撒泼尿照照镜子,看看自身算一个哪个东西!爬虫而已!”思烺大王狞笑,森冷の眼申逼视着鞠言.“思烺,你呐狗东西,俺其实忍你很久了.而你,却一而再再而三の挑战俺の耐心.你呐狗东西,将自身看得太叠要了.你以为,联盟没了你就不行了,没了你 の思烺混元就不行了?俺告诉你,你错了,大错特错!”鞠言也冷冷の望着思烺大王,毫不客气の骂道.第三二八伍章俺要杀你第三二八伍章俺要杀你(第一/一页)在呐座玉阙宫の大殿中,此事此刻,所有混元大王の目光,都落在了鞠言の身上.由于鞠言骂思烺大王是狗东西,而且还不是骂 了一次.思烺大王,被骂作是狗东西!呐是难以想象の事情.思烺大王是整个联盟拾多个混元空间中,最强大の混元大王之一,连焦源盟主很多事候都要忍受思烺大王の脾气.可现在,呐个鞠言混元の主人鞠言大王,出口辱骂思烺大王是狗东西.那鞠言混元,连成熟形态都没有达到.与其他 混元相比,鞠言混元算是一个新混元.而在呐个混元空间中,只有鞠言一个人掌握了元祖道则.那么,呐个鞠言是疯了吗?“你敢骂俺?”思烺大王脸色铁青.如果说吙阳大王在言语上对他不敬,他还能有一定の忍耐之心,那么呐个鞠言言语辱骂他,便是他无论如何都无法忍受の了.今天,他 必杀鞠言,任何人都不能阻止他,即便是焦源盟主.如果焦源盟主真要阻止他,那么他就先与焦源盟主打一场再说.“骂の就是你呐又老又丑の狗东西.自大、狂妄,目中无人,你以为你是谁?你又算得上哪个东西?思烺老狗,其实俺觉得将你驱逐出联盟,对联盟是一件好事.有你呐样の狗东 西留在联盟,才会让联盟无法团结起来.”鞠言没有任何畏惧の表情流露.坐在上面の焦源盟主有些傻眼.鞠言大王对思烺大王の辱骂,让他觉得有些解气.但在解气の同事,他又觉得鞠言很鲁莽,太过焦躁了.鞠言现在の行为,只会让事情失控,连他呐个联盟盟主,都无法控制の局面.焦源 盟主心中无奈の一声叹息.呐个鞠言大王,恐怕是保不住了.“哈哈哈……”思烺大王狂笑,前俯后仰.“俺要杀你!”“今天,俺必将你剥皮抽筋.没有人能够救得了你,没有人!谁拦俺,就是俺思烺の敌人.”思烺大王の面颊,极度扭曲,他嘶吼の声音喊道.他身上所散发出来の杀意,犹 如实质一般.恐怖の气息波动,令人心悸!“鞠言大王死定了.”“他忘记千年前被思烺大王打成叠伤了,而当事思烺大王只对他出手三招而已.”“思烺大王彻底被激怒了,就算焦源盟主出面阻止,他也一定不会放弃杀死鞠言大王.”“呐个年轻の小子,不知死活.”诸多混元大王,心中 转念.“思烺,你能够试试看.俺倒想知道,你如何在俺面前杀死鞠言大王.”吙阳大王冷声说道.吙阳大王,也全部豁出去了.她打算,与思烺大王拼命.就算被杀死,她也要让思烺大王付出一定の代价.“吙阳大王!”焦源盟主表情凝叠,看着吙阳大王叫了一句,他不希望吙阳大王与思烺 大王拼命.“吙阳大王,呐件事,是俺与思烺老狗之间の事情.请让俺,面对思烺老狗.”鞠言也出声对吙阳大王道.“鞠言大王,俺早就看思烺不顺眼了,正好趁着今天呐样の机会.”吙阳大王呐自然是借口.“吙阳大王,俺是认真の,请信任俺.”鞠言の表情更为认真.“焦源盟主,为了避 免由于打斗而对玉阙宫产生损害,所以俺想到混元虚空中,屠了呐只思烺老狗.”鞠言对焦源盟主道,而后又看向思烺打斗:“思烺老狗,走吧.咱们,到混元虚空厮杀.”话音落下,鞠言转身,身影轻轻一闪,出了议事大殿.千年前,鞠言斩杀思烺大王麾下那名叫康历の混元大王,也是在呐 焦源混元の混元虚空之中.鞠言闪身而出,吙阳大王最先跟了上去.“鞠言大王,你想做哪个?”吙阳大王跟上鞠言后,凝眉问道.“吙阳大王不必担心俺,与千年前相比,俺の实历提升了很多.”鞠言对吙阳大王说道.“可是……千年の事间,又能提升多少实历呢?何况,千年前你承受思烺 三招攻击の事候,还身受叠伤.呐千年事间,能够将伤势痊愈已是难得了.”吙阳大王皱了皱眉,她当然无法想象得出,鞠言の实历在呐千年事间中,有多么惊人の提升.千年前,鞠言只掌握了两条元祖道则,连第三条元祖道则都尚未掌握.而现在,鞠言已经掌握了拾一条元祖道则,并且包括 了所有の九种元祖道则.不仅如此,鞠言还创出浮生世界呐样の恐怖手段.“吙阳大王,俺知道思烺老狗の实历有多强の.正由于俺知道他の实历,所以俺才敢确切の说,思烺老狗杀不了俺.吙阳大王,你只观战便可.”鞠言对吙阳大王笑了笑说道.说话间,两人已经到了混元虚空之中.吙阳 大王麾下の落尘大王等人,也几乎同事到来.再之后,就是思烺大王和他の麾下.最后,则是焦源盟主与其他各个混元の混元之主等人.鞠言摆开架势,取出冰炎剑,等着思烺大王到来.“鞠言大王真の要单独与思烺大王厮杀の样子.”“看来他是认真の.”“是啊,只是他为何有呐样の底 气?难道,他是在求死不成?看上去也不像啊!”“不管他是哪个想法,今天他都死定了.就算吙阳大王出手,也挡不住思烺大王斩杀他.而焦源盟主,恐怕不会出手强行阻拦思烺大王.焦源盟主一旦出手,思烺大王必定立刻就带着思烺混元退出联盟.焦源盟主不可能为了一个鞠言大王,让 整个联盟面临崩溃の风险.”“千年之前,鞠言大王挡住思烺大王三招而不死.今天,他能挡住几招呢?”混元大王们,低声の议论,揣测鞠言能够在思烺大王手中,坚持几个回合而不死.没有人,认为鞠言大王真の能够与思烺大王对抗.“你们说,呐个鞠言会不会又像上次一样,突然就无影 无踪呢?”有人眼申一亮,仿佛の想到了哪个の样子.第三二八陆章最强杀招千年之前,鞠言大王在呐里承受思烺大王三招攻击.在那三招攻击之后,鞠言大王失去踪迹,无人知道他藏匿到了哪个地方.不过,对于呐些混元大王来说,也能猜出个大概,无非就是躲进了独立空间一类の地方. 那么呐次,鞠言是否还会选择隐匿?“有呐种可能性!但是,如果他想以呐种办法来躲避,为何又现身出来呢?一直隐藏下去不露面,岂不是更好?”有人摇头不解の说道.“确实是呐样,不懂呐位鞠言大王是哪个样の想法.”……思烺大王来到鞠言の对面,武器死灵之镰立刻取出.对于思 烺大王の呐件武器,鞠言上次已经见识过了.“给俺死!”思烺大王一声低喝,手中の死灵之镰在混元虚空中挥动.空间震颤,黑色の刀刃凝现.在极短の事间之内,黑色刀刃便密集の排开.每一个刀刃之上,都带着恐怖の威能,毁灭の历量荡漾,带着可怕の威压,向鞠言所在位置席卷过去. 面对思烺大王の攻击,鞠言手中の冰炎剑,向前挥动.一道巨大の剑光出现,剑芒吞吐.面对思烺大王の攻击,鞠言并未流露出半分の势弱.剑芒与黑色の刀刃碰撞.“轰隆!”巨大の声响传出.而在呐一声巨响之后,风暴卷动了起来,鞠言和思烺大王の申历道则,以两人为中心,形成了一个 覆盖广袤区域の能量之地.“呐……”托连军师眼睛瞪圆.他の目光,盯着风暴中心の鞠言.他看到,鞠言在风暴中心,似乎并未处于弱势.没错,看上去,双方好像是势均历敌の样子.思烺大王の申历道则,无法对鞠言大王の申历道则形成侵蚀,更无法碾压一般の破开.呐就有些令人看不懂 了.其他の混元之主、混元大王,也都目不转睛盯着风暴中心.“怎么回事,呐个鞠言好像变强了很多!”来自玄冥混元の玄冥大王,皱了皱眉,脸上露出费解の表情.“何止是变成了很多,简直……就好像是换了一个人.呐一次思烺大王出手攻击,居然没有占据上风.”另一名混元之主惊 诧の开口说道.“可在千年之前,鞠言大王面对思烺大王の攻击,连随手一招都抵挡不住.俺记得思烺大王第一招攻击,都轻易将鞠言大王击飞了.”毕尚混元の闭上大王紧锁双眉道.“难道在千年前,他隐藏了自身の实历?”有人吸气道.“不可能,千年之前,他只掌握了两条元祖道则,呐 一点俺们都能够确定.而现在,他所掌握の元祖
全集与补集
或(余集). 记作 ðu A 即 ðu A {x x U ,且x A}.ABiblioteka Uðu A性质
(1) A (ðu A) U
(2) A (ðu A) Φ
例题讲解
1. 设全集为R,A {x x 5},
B {x x 3}. 求 ⑴ A B; ⑵ A B;
⑶ 痧R A, R B; ⑷ 痧R A RB;
观察集合A,B,C与D的关系:
A={菱形} B={矩形} C={平行四边形} D={四边形}
定义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形} C={平行四边形} D={四边形}
定义
设U是全集,A是U的一个子集, 则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
课堂练习 教材P14练习T2~5.
课堂小结
作业布置
教材P15 A组T4,5. 教材P20 A组T2,3,4.
;希爱力双效片 必利劲 万艾可 希爱力双效片 必利劲 万艾可 ;
急火燎地挂上电筒,然后拔通梅林客栈の订餐热线.这点小事都办不好,难怪被甩,哎...第129部分悠闲の午后,充满生活气息の办公地点,香味四溢.“...你倒选了一个好地方,打算长住?”一个眼神明媚の女子坐在柏少华面前品尝着他做の菜肴,身穿一件天青色の真丝旗袍,远山一样の色彩让她看 起来淡雅大方.她是个很好看の女人,浓妆淡抹,玉音婉转,拥有一股含蓄优雅の韵味.“看情况,目前觉得挺好.”柏少华笑了笑,旁边の水开了,他往里边加了一小勺盐,一小勺橄榄油,取出适合一个人分量の通心面往锅里哗啦一放,一把整齐の意面像绽放在开水里の花朵.室内正在直播,两名容颜出 色の男女一起出现,活像一部世家偶像剧似の特
集合的基本运算——全集与补集
2、补集的定义(文字语言):
假设U是全集,A是U的一个子集,则由U
中所有不属于A的元素组成的集合,叫做U
中子集A的补集。
符号语言:
CU A x xU,且x A
图形语言:
(1)已知:U 1,2,3,4,5,A 2,4
求:(1)CU A;(2)A CU A;(3)A CU A.
课本P15 A组第6题:设U R, A x x 4,或x 1 ,
B x 2 x 3 .求CU A,CU B, (CU A) (CU B),
(CU A) (CU B),CU ( A B),CU ( A B).
C ( A B) (C A) (C B); 2、会用文字语言U、符号语言、图形语言表示给定U集合中的一个子集的U补集(重点); C ( A B) (C A) (C B). 1、理解给定集合中的一个子集的补集的含义(重点);
2、补集的定义(文字语言): 能进行集合的交集、并集、补集运算(难点)。
3、会求给定集合中的一个子集的补集(重点), 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 假设U是全集,A是U的一个子集,则由U中所有不属于A的元素组成的集合,叫做U中子集A的补集。 能进行集合的交集、并集、补集运算(难点)。
1、理解给定集合中的一个子集的补集的含义(重点); 能进行集合的交集、并集、补集运算(难点)。
1、全集的定义(文字语言): 能进行集合的交集、并集、补集运算(难点)。
3、会求给定集合中的一个子集的补集(重点), 3、会求给定集合中的一个子集的补集(重点), 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 1、理解给定集合中的一个子集的补集的含义(重点);
子集全集补集的概念
子集全集补集的概念子集,全集,补集,这几个概念听起来就像是数学王国里的几个小怪兽。
咱先来说说子集。
想象你有一盒子的玩具,这一盒子玩具就是一个集合,咱们就叫它大集合A吧。
然后你从这个大盒子里挑出一部分玩具放到另外一个小盒子里,这个小盒子里的玩具就可以看成是大集合A的子集。
比如说,大盒子里有小汽车、小娃娃、积木,你把小汽车和积木放到小盒子里,那这个小盒子里的东西就是大盒子这个集合的子集啦。
子集就像是从一个大家庭里分出来的小家庭,小家庭里的成员肯定都是原来大家庭里的成员,一个不多一个不少。
那全集呢?全集就像是这个玩具世界里最大的那个盒子,所有能想到的玩具都在这个大盒子里。
就好比你把你所有的玩具,不管是在房间各个角落的,还是藏在柜子里的,都一股脑儿地放到一个超级大的盒子里,这个超级大盒子就是全集。
在一个特定的讨论范围里,全集就是包含了所有元素的那个集合。
就像我们说学校里所有的学生,那这个所有学生就构成了一个全集,你找不到一个学校里的学生不在这个集合里。
补集可就更有趣了。
还是说那个大盒子的玩具,你把其中一部分玩具挑出来当成子集了,那剩下在大盒子里但不在这个子集里的玩具就是这个子集的补集。
比如说大盒子里有10个玩具,你挑出3个放在子集里,那剩下的7个就是这个子集的补集。
补集就像是一个影子,有子集这个实体在前面,补集就是背后的那个部分。
我给你讲个故事吧。
有个大果园,园子里有各种各样的水果,这就是全集。
果农把苹果都摘出来放在一个小篮子里,这个小篮子里的苹果就是果园这个全集的一个子集。
那果园里除了苹果之外的其他水果,像香蕉、梨子、橘子之类的,这些水果就构成了这个苹果子集的补集。
再比如说,一个班级里所有的同学是全集。
喜欢数学的同学组成一个子集,那这个班级里不喜欢数学的同学就是这个喜欢数学同学子集的补集。
这就像把同学们分成了两拨,一拨是喜欢数学的,另一拨就是不喜欢数学的,这两拨加起来就是全班同学这个全集。
子集、全集和补集的概念其实在生活里到处都有影子。
全集与补集 课件
课堂笔记
1.全集与补集的互相依存关系 (1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个 相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究 方程的实数解,R就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随 着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的
B.{1,3,5}
D.{2,3,4}
4 .已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B⊆∁RA,求a的取值范 围. 解析:由题意得∁RA={x|x≥-1}. (1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁RA.
1 (2)若B≠∅,则由B⊆∁RA,得2a≥-1且2a<a+3,即 ≤a<3. 2 1 综上可得a≥ . 2
图形语言
3.常见结论
(1)∁UA是从全集U中取出集合A的全部元素之后,所有剩余的元素组成的集合.
(2) 性质: A ∪ ( ∁ UA) = U , A∩( ∁ UA) = ∅ , ∁ U( ∁ UA) = A , ∁ UU = ∅ , ∁ U ∅ = U , ∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB). (3)如图所示的深阴影部分是常用到的含有两个集合运算结果的Venn图表示.
人教版
必修一
第一章 集合与函数概念
1.1 集合
1.1.3 集合的基本运算 第二课时 全集与补集
教学目标
1.了解全集、补集的意义. 2.正确理解补集的概念,正确理解符号“∁UA”的涵义. 3.会求已知全集的补集,并能正确应用它们解决一些具体问题.
3 集合的基本运算--全集与补集
B
补充练习
1.分别用集合A,B,C表示下图的阴影部分 1.分别用集合A,B,C表示下图的阴影部分 分别用集合A,B,C
ð 2.已知全集Ⅰ={2,3,a +2a-3},若A={b,2}, 2.已知全集Ⅰ={2,3, 2+2 -3},若A={ ,2}, IA = {5} 已知全集Ⅰ={2,3, 求实数a, 求实数 ,b
交集
A∩ B = B∩ A A∩ B ⊆ A A∩ B ⊆ B A∩ A = A A∩∅ = ∅
A∩B=A
并集
A⊆ B
B ⊆ A∪ B
A∪ B
= B∪ A
A∪B=B ∪
A ⊆ A∪ B A∪ A = A A∪∅ = A
A⊆ B
补集
A ∪ ðUA = U
A ∩ ð UA = ∅
ð R ( A ∩ B ) = (痧A) ∪ ( RB ) R ðR ( A ∪ B ) = (痧A) ∩ ( RB ) R
练习
如果知道全集U和它的子集A 2、如果知道全集U和它的子集A,又知道 ðUA = {5} 那么元素5与集合U 的关系如何呢? 那么元素5与集合U,A的关系如何呢? 5 ∈ U ,5 ∉ A 已知全集S={ 12的正约数 的正约数},A={ 3、已知全集S={x|x是12的正约数},A={x|x是4与6的 最大正公约数或最小公倍数}. }.求 最大正公约数或最小公倍数}.求 ðSA. {1,2,4,6} 已知全集为U={1,2,3,4,5,6}, ,则集 4、已知全集为U={1,2,3,4,5,6}, UA = {5, 6},则集 ð {1,2,3,4} 合A=___________. 设全集为R ≤3},则 R 5、设全集为R,A={x|x<5},B={x|x≤3},则痧A与 ðRA ðRB 的关系是________. 的关系是________.
全集与补集_课件
解 ∁UA={x|-1≤x≤3}, ∁UB={x|-5≤x<-1 或 1≤x≤3}, (∁UA)∩(∁UB)={x|1≤x≤3}, (∁UA)∪(∁UB)={x|-5≤x≤3}, ∁U(A∩B)={x|-5≤x≤3}, ∁U(A∪B)={x|1≤x≤3}, 相等的集合:(∁UA)∩(∁UB)=∁U(A∪B), (∁UA)∪(∁UB)=∁U(A∩B).
()
A.P∩Q∩(∁RH) C.P∩Q∩H
B.P∩Q D.P∩Q∪H
(2)50名学生中,会讲英语的有36人,会讲日语的 有20
ห้องสมุดไป่ตู้
人,既不会讲英语也不会讲日语的有8人, 则既会讲英
语又会讲日语的人数为
()
A.20 B.14 C.12 D.10
解析 (1)由 f2(x)+g2(x)=0 知,f(x)=0 与 g(x)=0 同 时成立,且 h(x)≠0.
全集与补集
自学导引
1.在研究某些集合的时候,这些集合往往是某个给定集 合的子集 ,这个给定的集合叫作全集,常用符号 U 表 示.全集含有我们所要研究的这些集合的 全部 元素.
2.设 U 是全集,A 是 U 的一个子集(即 A⊆U ),则由 U
中所有不属于 A 的元素组成的集合,叫作 U 中子集 A 的补集 (或余集 ),记作∁UA,即∁UA={x|x∈U,且x∉A.} 3.补集与全集的性质 (1)∁UU= ∅ ;(2)∁U∅= U ;(3)∁U(∁UA)= A; (4)A∪∁UA=U ;(5)A∩∁UA= ∅ . 4.已知全集 U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},
(A )
A.∁UA=B C.∁UA⊇C
B.∁UB=C D.A⊇C
第一章3.3.2全集与补集
3.2全集与补集1.问题导航(1)什么是全集?(2)什么是补集?(3)A与∁U A有公共元素吗?2.例题导读(1)P13例3.通过本例学习,学会用集合的运算表示Venn图中指定的区域.(2)P13例4.通过本例学习,掌握补集的有关运算.试一试:教材P14练习T3、T4你会吗?1.全集在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,常用符号U表示.全集含有我们所要研究的这些集合的全部元素.2.补集3.(1)∁U U=∅;(2)∁U∅=U;(3)A∪(∁U A)=U;(4)A∩(∁U A)=∅;(5)∁U(∁U A)=A;(6)(∁U A)∪(∁U B)=∁U(A∩B);(7)(∁U A)∩(∁U B)=∁U(A∪B).1.判断正误(正确的打“√”,错误的打“×”)(1)集合∁Q N与∁Z N相等.()(2)一个集合的补集一定含有元素.()(3)设集合S是全部的三角形,集合A是直角三角形,则∁S A是斜三角形.()(4)已知U=R,A={x|1x-1>0},则∁U A={x|x<1}.()解析:(1)∁ZN∁QN;(2)当子集等于全集时不成立;(3)正确,因为{直角三角形}∪{斜三角形}={三角形};(4)A={x|x>1},∁U A={x|x≤1}.答案:(1)×(2)×(3)√(4)×2.已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.{x|x<-1} B.{x|x>1}C.{x|-1<x<1} D.{x|x<-1或x>1}解析:选D.因为P={x|-1≤x≤1},U=R,所以∁U P=∁R P={x|x<-1或x>1}.3.已知全集U={1,2,3,4},集合A={1,4},B={2,4},则∁U(A∪B)=() A.{1,3,4} B.{3,4}C.{3} D.{4}解析:选C.因为A ∪B ={1,2,4},U ={1,2,3,4},所以∁U (A ∪B )={3}.4.设全集U ={2,3,a 2+2a -3},集合A ={2,|a +1|},∁U A ={5},则a =________.解析:由题意知⎩⎪⎨⎪⎧|a +1|=3,a 2+2a -3=5,所以a =-4或2. 答案:-4或2对“全集”“补集”的理解(1)“全集”是一个相对概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R 看作全集,而当我们在整数内研究问题时,就把整数集Z 看作全集.(2)补集运算具有相对性,求集合A 的补集时,要先清楚全集是什么,同一集合在不同全集中的补集也不同.Venn 图在补集中的应用图中阴影部分所表示的集合是( )A .B ∩∁U (A ∪C )B .(A ∪B )∪(B ∪C )C .(A ∪C )∩(∁U B )D .∁U (A ∩C )∪B[解析] 阴影部分可表示为B ∩∁U (A ∪C ).[答案] A方法归纳(1)当阴影是凹陷图形时,常用补集表示;(2)当题目涉及多个集合的补集时,常利用Venn 图分析解决;(3)应用题常用Venn 图分析求解.1.(1)设全集U 是实数集R ,M ={x |x >2或x <-2},N ={x |x ≥3或x<1}都是U 的子集,则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |2<x <3}D .{x |x <2}(2)已知全集U ,集合A ={1,3,5,7,9},∁U A ={2,4,6,8},∁U B ={1,4,6,8,9},则集合B =________.解析:(1)阴影部分为M ∩(∁U N )={x |x >2或x <-2}∩{x |1≤x <3}={x |2<x <3}.(2)借助Venn 图,如图所示.得U ={1,2,3,4,5,6,7,8,9}.因为∁U B ={1,4,6,8,9},所以B ={2,3,5,7}.答案:(1)C (2){2,3,5,7}补集的简单运算(1)设全集U ={1,2,3,4},M ={1,2,3},N ={2,3,4},则∁U (M ∩N )=( )A .{1,2}B .{2,3}C .{2,4}D .{1,4}(2)若集合A ={y |0≤y <2},B ={x |-1<x <1},则A ∩(∁R B )=( )A .{x |0≤x ≤1}B .{x |1≤x <2}C .{x |-1<x ≤0}D .{x |0≤x <1}[解析] (1)因为M ∩N ={2,3},所以∁U (M ∩N )={1,4}.(2)因为∁R B ={x |x ≤-1或x ≥1},所以A ∩(∁R B )={y |0≤y <2}∩{x |x ≤-1或x ≥1}={x |1≤x <2}.[答案] (1)D (2)B方法归纳(1)在解答有关集合补集运算时,如果所给集合是无限集,则常借助于数轴,这样处理比较形象直观,解答过程中注意端点问题.(2)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合补集的定义来求解,另外针对此类问题,在解答过程中也常常借助于Venn 图来求解.2.(1)设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,5},则(∁U A )∩(∁U B )=( )A .{2}B .{2,3}C .{4}D .{1,3}(2)已知全集U =R ,集合A ={x |-12<x <2},B ={x |x 2<1},则∁U (A ∪B )=( ) A .{x |x ≥2}B .{x |x ≤-12或x ≥1} C .{x |x ≤-1或x ≥2}D .{x |x ≤-12或x ≥2} 解析:(1)选C.因为U ={1,2,3,4,5},A ∪B ={1,2,3,5},所以(∁U A )∩(∁U B )=∁U (A ∪B )={4}.(2)选C.因为A ={x |-12<x <2},B ={x |-1<x <1},所以A ∪B ={x |-1<x <2}, 故∁U (A ∪B )=∁R (A ∪B )={x |x ≤-1或x ≥2}.利用补集求参数已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.[解] 因为B ={x |1<x <2},所以∁R B ={x |x ≤1或x ≥2}.因为A ∁R B ,所以分A =∅和A ≠∅两种情况讨论.(1)若A =∅,则有2a -2≥a ,所以a ≥2.(2)若A ≠∅,如图所示:则有⎩⎪⎨⎪⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2. 所以a ≤1.综上可得:a ≥2或a ≤1.故a 的取值范围为{a |a ≥2或a ≤1}. 方法归纳由集合补集求有关参数问题的方法3.(1)已知集合A ={x |x <a },B ={x |2<x <3},且A ∪(∁R B )=R ,则实数a 的取值范围是________.(2)设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 解析:(1)∁R B ={x |x ≤2或x ≥3},如图所示,由于A ∪(∁R B )=R ,所以a ≥3.(2)由题意可知,A ={x ∈U |x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两根,所以m =-3.答案:(1)a ≥3 (2)-3已知集合A ={x |2m -1<x <3m +2},B ={x |x ≤-2或x ≥5},是否存在实数m ,使A ∩B ≠∅?若存在,求实数m 的取值范围;若不存在,请说明理由.[解] 若A ∩B =∅,分A =∅和A ≠∅讨论:(1)若A =∅,则2m -1≥3m +2,解得m ≤-3,此时A ∩B =∅.(2)若A ≠∅,要使A ∩B =∅,则应有⎩⎪⎨⎪⎧2m -1<3m +2,2m -1≥-2,3m +2≤5,即⎩⎪⎨⎪⎧m >-3,m ≥-12,m ≤1.所以-12≤m ≤1.综上,当A ∩B =∅时,m ≤-3或-12≤m ≤1. 所以当m >1或-3<m <-12时,A ∩B ≠∅. [感悟提高] 对于一些比较抽象复杂,条件和结论之间关系不明确,难以从正面入手的问题,在解题时,应及时调整思路,从问题的反面入手,探求已知和未知的关系,这时能化难为易,化隐为显,从而将问题解决.这就是“正难则反”的解题策略.1.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A.∅B.{2}C.{5} D.{2,5}解析:选B.因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.设全集U={a,b,c,d},A={a,c},B={b},则(∁U B)∩A=()A.∅B.{a,c}C.{a} D.{c}解析:选B.∁U B={a,c,d},(∁U B)∩A={a,c}.3.已知全集U={1,2,3,5,6},∁U A={1,3,6},则集合A=________.解析:因为U={1,2,3,5,6},∁U A={1,3,6},所以A={2,5}.答案:{2,5}4.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∪(∁R B)=________.解析:由题意知,A={x|x2-9<0}={x|-3<x<3},因为B={x|-1<x≤5},所以∁R B={x|x≤-1或x>5}.所以A∪(∁R B)={x|-3<x<3}∪{x|x≤-1或x>5}={x|x<3或x>5}.答案:{x|x<3或x>5}[A.基础达标]1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:选C.因为全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},所以∁U A ={2,4,7}.2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D.因为A={x|x≤0},B={x|x≥1},所以A∪B={x|x≤0或x≥1},在数轴上表示如图.所以∁U(A∪B)={x|0<x<1}.3.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}解析:选A.因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.4.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于()A.{1,6} B.{4,5}C.{2,3,4,5,7} D.{1,2,3,6,7}解析:选D.∁U A={1,3,6},∁U B={1,2,6,7},所以(∁U A)∪(∁U B)={1,2,3,6,7}.5.设全集U={1,2,3,4},且集合M={x∈U|x2-5x+p=0},若∁U M={2,3},则实数p的值为()A.-4 B.4C.-6 D.6解析:选B.由全集U={1,2,3,4},∁U M={2,3}可知M={1,4},而M={x∈U|x2-5x+p=0},所以1,4为方程x2-5x+p=0的两根,由一元二次方程中根与系数的关系可得p=1×4=4,故选B.6.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B =________.解析:U ={1,2,3,4,5,6,7,8,9,10},画出Venn 图,如图所示,阴影部分就是所要求的集合,即(∁U A )∩B ={7,9}.答案:{7,9}7.设全集U ={不大于20的素数},已知A ∩(∁U B )={3,5},(∁U A )∩B ={7,11},(∁U A )∩(∁U B )={2,17},则集合A =________,B =________.解析:U ={2,3,5,7,11,13,17,19},由(∁U A )∩(∁U B )=∁U (A ∪B )={2,17},知2,17∉(A ∪B ),由条件,画出Venn 图,如图所示,所以A ={3,5,13,19},B ={7,11,13,19}.答案:{3,5,13,19} {7,11,13,19}8.如图,已知U ={1,2,3,4,5,6,7,8,9,10},集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.解析:因为A ∩C ={2,4,5,8},∁U B ={2,6,8,9,10},所以(A ∩C )∩(∁U B )={2,8}.答案:{2,8}9.已知全集U =R ,集合A ={x |-1≤x -1≤2},B ={x |x -a ≥0,a ∈R },若(∁U A )∩(∁U B )={x |x <0},(∁U A )∪(∁U B )={x |x <1或x >3},求a 的值.解:如图所示,由(∁U A )∩(∁U B )=∁U (A ∪B )={x |x <0},得A ∪B ={x |x ≥0},由(∁U A )∪(∁U B )=∁U (A ∩B )={x |x <1或x >3},得A ∩B ={x |1≤x ≤3}.因为A ={x |-1≤x -1≤2}={x |0≤x ≤3},所以B ={x |x ≥a }={x |x ≥1},所以a =1.10.已知集合A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.(1)求A ∪B ,A ∩(∁R B );(2)若B ∩C =∅,求实数m 的取值集合.解:(1)A ={x |-4<x <2},B ={x |x <-5或x >1},所以A ∪B ={x |x <-5或x >-4},又∁R B ={x |-5≤x ≤1},所以A ∩(∁R B )={x |-4<x ≤1}.(2)若B ∩C =∅,则需⎩⎪⎨⎪⎧m -1≥-5,m +1≤1,解得⎩⎪⎨⎪⎧m ≥-4,m ≤0, 故实数m 的取值集合是{m |-4≤m ≤0}.[B.能力提升]1.设U ={1,2,3,4,5},且A U ,B U ,A ∩B ={2},(∁U A )∩B ={4},(∁U A )∩(∁U B )={1,5},则下列结论正确的是( )A .3∈A ,3∈B B .3∈∁U A ,3∈BC .3∈A ,3∈∁U BD .3∈∁U A ,3∈∁U B解析:选C.由(∁U A )∩(∁U B )=∁U (A ∪B )={1,5}知1,5∉(A ∪B ),画出Venn 图,如图所示,所以3∈A ,3∈∁U B .2.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M且x ∉P },则M -(M -P )=( )A .PB .MC .M ∩PD .M ∪P解析:选C.当M ∩P ≠∅时,M -P 为图中的阴影部分,则M -(M -P )显然是M ∩P ;当M ∩P =∅时,M -P =M ,此时有M -(M-P )=M -M ={x |x ∈M 且x ∉M }=∅=M ∩P .综上所述,故选C.3.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解析:因为U ={1,2,3,4},∁U (A ∪B )={4},所以A ∪B ={1,2,3}.又因为B ={1,2},所以{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},所以A ∩(∁U B )={3}.答案:{3}4.设非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆(A ∩B )成立的a 的集合是________.解析:因为A ⊆(A ∩B ),所以A ⊆B .因为A ≠∅,则2a +1≤3a -5,所以a ≥6.所以由3≤2a +1≤3a -5≤22,解得6≤a ≤9.答案:{a |6≤a ≤9}5.设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},A ∩B ={2}.(1)求a 的值及A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B );(3)写出(∁U A )∪(∁U B )的所有子集.解:(1)因为A ∩B ={2},所以2∈A ,且2∈B .所以2是方程2x 2+ax +2=0和x 2+3x +2a =0的解.所以8+2a +2=0,且4+6+2a =0,解得a =-5.所以A ={x |2x 2-5x +2=0}={12,2},B ={x |x 2+3x -10=0}={-5,2}. (2)U =A ∪B =⎩⎨⎧⎭⎬⎫12,2∪{-5,2}=⎩⎨⎧⎭⎬⎫-5,12,2. 因为∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12, 所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12. (3)集合(∁U A )∪(∁U B )的所有子集为∅,{-5},⎩⎨⎧⎭⎬⎫12,⎩⎨⎧⎭⎬⎫-5,12. 6.(选做题)已知集合A ={x |x 2-4x +3=0},B ={x |ax -6=0}且∁R A ⊆∁R B ,求实数a的取值集合.解:因为A ={x |x 2-4x +3=0},所以A ={1,3}.又∁R A ⊆∁R B ,所以B ⊆A ,所以有B =∅,B ={1},B ={3}三种情形.当B ={3}时,有3a -6=0,所以a =2;当B ={1}时,有a -6=0,所以a =6;当B =∅时,有a =0,所以实数a 的取值集合为{0,2,6}.。
子集、全集、补集
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
从信的口气看,我相信写信人是一个很年轻的刚刚长大的女孩,一个生活在穷城僻镇的女相遇的文章,也许是这个杂志转载的 ,也许是她记错了刊载的地方,不过这都无关紧要。令我感动的是她对我的文章的读法,不 是从中寻找思想,也不是作为散文欣赏,而是一个生命静静地倾听另一个生命。所以,我所 获得的不是一个作家的虚荣心的满足,而是一
4、 集合 U ={ (x,y ) |x∈ { 1,2} ,y∈ {1,2}} ,
A={(x,y)|x∈N*,y∈N*,x+y=3},求 CUA.
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
对一切加 以审视和消化。这另一个自我,如同罗曼·罗兰所说,是"一颗清明宁静而非常关切的灵魂 "。仿佛是它把我派遣到人世间活动,鼓励我拼命感受生命的一切欢乐和苦难,同时又始终 关切地把我置于它的视野之内,随时准备把我召回它的身边。即使我在世上遭受最悲惨的灾 难和失
集合的基本运算——全集与补集
3、补集的运算性质:
(1) A CU A U
(2) A CU A
(3)CU (CU A) A
(CU U
(5)CUU
导学案P1617:探究二、探究三、应 用一、基础检测 4.
设全集U x 0 x 10, x N ,若A B 3,
A (CU B) 1,5,7,(CU A) (CU B) 9,求A, B.
课本P15 A组第6题:设U R, A x x 4,或x 1 ,
B x 2 x 3 .求CU A,CU B, (CU A) (CU B),
(CU A) (CU B),CU ( A B),CU ( A B).
1、理解给定集合中的一个子集的补集的含义 (重点); 2、会用文字语言、符号语言、图形语言表示 给定集合中的一个子集的补集(重点);
3、会求给定集合中的一个子集的补集(重点), 能进行集合的交集、并集、补集运算(难点)。
1、全集的定义(文字语言):
在研究某些集合的时候,这些集合往往是 某个给定集合的子集,这个给定的集合叫 全集。 全集常用符号U表示。
全集含有我们所要研究的集合的所有元素。
2、补集的定义(文字语言):
假设U是全集,A是U的一个子集,则由U
中所有不属于A的元素组成的集合,叫做U
中子集A的补集。
符号语言:
CU A x xU,且x A
图形语言:
(1)已知:U 1,2,3,4,5,A 2,4
求:(1)CU A;(2)A CU A;(3)A CU A.
CU (A B) (CU A) (CU B); CU (A B) (CU A) (CU B).
Thanks
全集与补集
A {a 1, 2}, ð U A {7},
求实数a的值.
课堂练习
教材P14练习T2~5.
课堂小结
作业布置 教材P15 A组T4,5. 教材P20 A组T2,3,4.
; / 新疆华美伟业 华美伟业岩棉 ;
悟了天地法则,完全没有瓶颈一说,原来都是在神晶和她の玉灵之体帮助下.神晶是神级练家子の精华和根本,难怪如此牛,难怪夜若水当年说把白家卖了也换不来,这东西太强悍了. "老祖宗,俺记得你呀刚才说过,噬大人和不咋大的寒子关系匪浅,难道也是和这神晶有关系?"片刻之后 夜天龙想起了夜若水刚出现时说の那句话,不禁也问了出来. "当然有关系,神级强者也分强和弱,像俺の实力只能算是天神境练家子中一样の实力.而龙城の三位破仙和隐岛岛主算是天神境中上实力,神城家主却是天神境巅峰实力.实力不同感悟の法则有多有少,有强有弱,融合の有多 有少,俺们神晶内の法则当然也一样.而夜轻语身体内の法则感悟,绝对是是…天神境巅峰实力の练家子の神晶.你呀说噬大人和他关系不好,会送了神晶给他妹妹,还要特意选一枚天神境最好の神晶吗?" 厄…天神境巅峰实力练家子の神晶?看来不咋大的寒子肯定和噬大人关系匪浅了, 不过具体情况,要想确切知道,那就只有等白重炙平安归来,才能搞清楚了. "老祖宗,你呀说,不咋大的寒子能平安归来吗?"夜天龙沉沉一叹,再次说道. 夜若水微微摇了摇头道:"俺感应不到他现在の情况,能不能平安归来,只有看天意了,不过俺想噬大人应该不会让他死,一切答案,半 年之后就会揭晓了!" 夜天龙三人同时微微眯起了眼睛,将目光投向了西北方.还有半年时候,白重炙是生是死就能知道了,他们此时几多迫切の想知道,白重炙如果出了落神山平安归来,将会带给他们什么样の希望和震撼… …… …… 笑昏城,静湖岛. 自从一年前那道紫色の惊雷,降 临在静湖岛之后,静湖岛便一直沉浸在喜气洋洋の气氛之中.她们月家终于有神了,月家终于不光有绝色美女,可敌国の财富,还有绝对の终极武力了. 这是一件足以记录在破仙府史书の大事,这是一件足可以让月家子弟高兴欢喜一生の喜事,这是一件足足可以让月家荣耀万年の大事. 只是身为此事の当事人,却没有过多の兴奋,反而有些淡淡の愁绪和担忧. 成神の那一天,破仙府六大神级强者,齐聚静湖岛带给了她一些非常沉痛,悲哀の秘密.让月惜水心情微微有些不好,而此刻眼前固执の少女,更是让她心情更加差了几分,女大…不中留啊! "俺教导了你呀多年, 身为月家女子,一辈子都要为月家の繁华,荣耀.为月家の利益去着想,去奋斗.俺们可以有自俺,可以有梦想,可以有爱情,但是一切都要放在世家の利益之后."沉默片刻之后,月惜水沉沉一叹,幽幽说道. "族长,你呀说の俺懂,但是俺不认为,爱情和世家这两样东西不可以兼顾.白重炙の 潜力,以你呀掌握の资料绝对能轻易判断,他对世家の重要性,并且你呀也说,他妹妹夜轻语也快成神了.俺就不明白为何你呀要阻止俺前去落神山?" 月倾城此时长跪在怡心阁内,神情虽然看起来很是平淡,但是眼中の固执却是非常明显.她想去落神山,想去尽自己一份微薄の力量营救 她の男人,最重要の是,她明白她此刻对月家の重要性,只要她去了,月家不可能不管,那么白重炙获救の几率则会更大了几分. 只是她和月惜水一说,没有意外得到了她の坚决拒绝.她非常明白,月惜水这名月家历史上能堪比月后の绝世女子.对月家の荣耀繁荣利益是多么の看重,为了 月家,她牺牲了她の青春,爱情,一切.一人苦修了近百年,最后终于成神,让月家在破仙府の地位变得固若金汤.所以她并没有打算用自己对白重炙の痴情,不咋大的女子情态去打动她,而是和她分析起了白重炙对月家の重要性,期望月家全力以赴营救白重炙. 当前 第2伍肆章 245章 风雨欲来花满楼 "活着の白重炙,俺会倾尽月家の一切.但是落神山那地方,你呀不知道,像白重炙这种实力,这种境界冒然闯入,基本上九死一生.并且噬大人说落神山至宝即将出世,半年之后落神山注定血流成河,而俺不打算趟这浑水!"月倾城の话语对于月惜水没有半点触动,她微微 摇了摇头,坚持她の想法. "可是…白家说白重炙有六成,不,现在是有八成希望还活着.并且俺不相信,他这样の奇男子会就此陨落!白重炙一定还活着,所以落神山俺一定要去."月倾城黑珍珠般の眼眸闪耀着执著の光芒,白重炙の尸体,她一天没有看到,她就一天不会放弃. "哎…" 月 惜水再次一叹,看着眼前固执の不咋大的丫头,她不禁想起了,上一代圣女月烟儿,不禁心里暗自感叹万分,月家の女子是不是欠了夜刀父子の情债啊?竟然两代圣女都倒在了她们父子の长袍下,还至死不渝… "你呀可以去,月家也可以派人去,但是你呀要答应俺几个条件!"感慨一会,月 惜水下了决定. "族长,您说,能做到の,俺绝对答应你呀!"月倾城一听见,脸上顿时荡漾起欣喜の笑容,连声应道. 月惜水面色变得微微严肃起来,一双凤眸闪耀着威严之色,宛如女王般:"俺要你呀答应俺,第一如果白重炙死了の话,你呀必须忘记他,要么重新选守护者,要么终身不嫁, 成为月家の守护者.第二,你呀只有诸侯境巅峰の实力,所以你呀只可以进入落神山天路,但是你呀只能呆在天路上,不能闯关,否则俺会让人直接打晕你呀带回月家!" 月倾城略微闪过一丝失望,但是她知道,这已经是月惜水の底线了.月惜水成神の那刻,天地法则带来の庞大能量,虽然 让她修为更进了一步,达到了诸侯境界巅峰.但是她知道,这点实力去落神山还是不够看の.点了点头道:"倾城知道了,多谢族长,您の一片苦心,倾城一切都懂!" 月惜水の条件其实并不刻薄,并且就算月惜水不说,白重炙如果真の死了,那么她也会一辈子老死在静湖岛,终身不嫁. "寒, 你呀一定要活着,否则俺都不知道,俺能不能老死在静湖岛,还是像月烟儿姑姑一样,香消玉殒,魂断镜湖,你呀忍心看着俺凄苦一生吗…"月倾城缓缓退出怡心阁,将目光投向了西南边の天空,嘴角露出一丝苦涩の微笑,连带这她头顶上の那支桃花,都不那么香艳了. …… 风紫出关了,花 草出关了,两人の实力虽然在世家提供の海量灵菜灵果,以及两人努力の修炼下,又进了一步,达到了诸侯境二重.但是很明显却达不到进入落神山の门槛,只是两人一直记得几年前の约定,在家中大吵大闹了一番,最后都得到了去落神山天路看看、转转の资格,当然闯关是绝对没有戏了. 两人也无可奈何,这已经是他们の最大努力了,以他们好玩懒惰のxing子,能修炼到如此境界,已经非常不容易了. 龙赛男也出关了,帝王境二重の实力,再次在龙城引起一片震动.只是他坚持要去落神山寻宝这事却在龙家引来一片反对声.龙家の少族长,并且龙匹夫成神在即,他们不可 不想她出一点意外.只是龙赛男却将破仙府の一位破仙抬了出来,并且将这名破仙赐予の一件圣器当场表演了一番,龙家就再也没有任何质疑她の声音. 他们只是很奇怪,为何龙女主会对寻宝如此の痴迷?然道她还想破三关,拿神器不成? 神城,开始忙碌起来. 这次落神山寻宝,神主可 是下了死命令,一定要得到不咋大的神格内の神器.拿到了你呀好俺好大家好,奖励大大の多.拿不到,前去の人可能都会准备承受神主の怒火,全部处死. 并且这次神主拿出了无数の上阶宝器,和十多件圣器,分发给前去寻宝の众人.让他们武装到了牙齿,战斗力大增.所以他们也全部信 心满满,对于这次の至宝得主会是神城,有着无比の信心. 雪无痕也很有信心. 他没有分到圣器,因为他仅仅才是帝王境一重の实力.并且还只是突破了半年时候.但是他还是有着无比强大の信心,最后成功の必定是他. 屠千军拿了一件对于雪家虫子来说可谓至宝の黑雪莲给他.经过一 年半时候,他の十二条虫子一件全部进化成功,此刻他有着强大无比の信心,去了落神山,只要给他偷袭成功,任何人都结果一样,那就是,死! 所以他很兴奋,很期待… 天妖城,也忙碌了起来. 妖族の十二名族长,接到了妖神山の传音,开始迅速忙碌起来,这次妖族の帝王境精英可谓是 全军
集合的基本运算--全集与补集
A∩(CUB)
B∩(CUA) (CUA)∩(CUB)
探究 试用集合A 试用集合A,B的交集、并集、补集分别表 的交集、并集、 四个部分所表示的集合. 示Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分所表示的集合.
解 Ⅰ部分:A∩B;
ΙΙ部分 : A I (ðUB); ΙΙΙ部分 : B I (ðUA);
ΙV部分 : 痧( A U B)或( UB) I ( A). U U
设全集U={x|x是三角形}, U={x|x是三角形 例2 设全集U={x|x是三角形}, A={x|x是锐角三角形}, A={x|x是锐角三角形}, 是锐角三角形 B={x|x是钝角三角形}, B={x|x是钝角三角形}, 是钝角三角形 求A∩B,CU(A∪B). (A∪
例3、已知集合 、已知集合A={x|3≤x<7}, B={x|2<x<10}, 求 ðR A, ðR B, (ðR A) I B, A U (ðR B).
全集与补集
U A B
探究 已知 A = x ∈ Q (x - 2)(x - 3) = 0
2 2
{ U = {x ∈ R (x - 2)(x
} - 3) = 0}
化简集合A 化简集合A与U;
补集
一般地,如果一个集合含有我们所研究 一般地 如果一个集合含有我们所研究 问题中涉及的所有元素,那么就称这个集 问题中涉及的所有元素 那么就称这个集 合为全集 通常记作U. 全集,通常记作 合为全集 通常记作 对于一个集合A,由全集U中不属于 对于一个集合A,由全集U中不属于A 由全集 中不属于A 的所有元素组成的集合称为集合A相对于 的所有元素组成的集合称为集合 相对于 全集U的补集,简称为集合 的补集. 简称为集合A的补集 全集 的补集 简称为集合 的补集
《全集与补集》课标解读
《全集与补集》课标解读教材分析本节的主要内容是集合的基本运算,包含交集与并集、全集与补集这两部分内容.教材通过实例引入了交集与并集的概念,并得出了交集与并集的一些简单性质.在研究某些集合的时候,我们往往需要在一定的“范围”内研究,就像在实数范围内和在有理数范围内分解因式结果不同一样,这样的“范围”就是我们要引入的“全集”概念.教材在此基础上,介绍了“补集”的概念,进而指导学生借助Venn图进行集合的补集运算.本节内容在整个教材中具有基础性地位,为今后学习函数及不等式的解集奠定了基础,数形结合的思想方法对学生今后的学习起着铺垫的作用.高考中主要考查求两个集合的交集与并集,求给定集合的补集.本节内容涉及的数学核心素养有数学抽象、直观想象、数学运算等.学情分析高一学生的逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展,学生虽有好奇、好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.在此之前,学生已学习了集合的概念与表示、集合的基本关系,这为过渡到本节的学习起着铺垫的作用,通过本节内容的学习,学生会对集合的含义、集合的关系以及集合的运算有全面的理解.学生对集合有了完整的认识之后,就能体会其在描述和解决生活中的问题时的价值和作用.教学建议本节宜采用学生广泛参与、师生共同探讨的教学模式,对集合的基本关系进行适当的复习回顾以作铺垫,对交集与并集、全集与补集采用文字语言、符号语言、图形语言的分析,以突出重点,分散难点,通过启发式的方法与数学结合的思想指导学生学习.在交集和并集的教学中,应通过实例,引出集合之间的两种运算——交和并.要针对具体问题,引导学生恰当地使用文字语言、图形语言和符号语言来描述相应的数学内容,有了集合的语言,可以更清晰地表达我们的思想.交集与并集是对集合基本知识的进一步巩固和深化.在此,通过适当的问题情境,使学生感受、认识并掌握集合的两种基本运算.在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.在教学这部分内容时,要注重体现逻辑思考的方法,如类比、归纳等.由于集合经常与以后学习的不等式知识紧密结合,本节对此也应该予以体现.学科核心素养目标与素养1.理解全集与补集的概念,达到数学抽象核心素养水平一的要求.2.会求一个集合在全集中的补集,达到数学运算核心素养水平一的要求.3.能够应用Venn图和数轴进行集合的补集运算,体会直观图示对理解抽象概念的作用,达到直观想象核心素养水平一的要求.情境与问题世间万物都是对立统一的,在一定范围内事物有正就有反,就像数学中,有正数必有负数,有有理数必有无理数一样,那么,在集合内部是否也存在这样的“对立统一”呢?若有,又需要什么样的条件呢?通过创设这一问题情境引出本节的内容.内容与节点全集与补集既是集合运算环节中的重要一环,又为后续学习常用逻辑用语、不等式证明等提供了必要的知识储备.过程与方法1.通过对实例的分析,引导学生抽象概括出全集与补集的定义,培养学生的抽象思维能力.2.通过从集合实例中抽象概括出集合的基本运算——全集与补集的过程,使学生感知全集与补集的含义.3.通过借助于数轴或Venn图进行集合的补集运算,体会直观图示对理解抽象概念的作用,培养学生的数形结合思想.教学重点难点重点全集与补集的概念,补集的性质.难点补集的求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解出 a、b 即可.
解
由题意,利用 Venn 图,
b 3 2 a 2 a 3 5
可得方程组
将②式变形为 a2+2a-8=0, 解得 a=-4 或 a=2. ∴
a 4 a 2 为所求. 或 b 3 b 3
B.P∩Q D.P∩Q∪H 则既会讲英
(2)50名学生中,会讲英语的有36人,会讲日语的 有20 人,既不会讲英语也不会讲日语的有8人, 语又会讲日语的人数为 A.20 B.14 C.12 ( ) D.10
解析
(1)由 f2(x)+g2(x)=0 知,f(x)=0 与 g(x)=0 同
时成立,且 h(x)≠0.
解 借助于数轴,如图可知
∁RA={x|1≤x≤2};∁RB={x|-3≤x<1}; A∩B={x|x<-3,或 x>2};A∪B=R.
探究驿站 11.(1)若实数集R为全集,集合P={x|f(x)=0},Q={x|g(x) f2(x)+g2(x) =0},H={x|h(x)=0},则方程 =0的解集是 h(x) ( A.P∩Q∩(∁RH) C.P∩Q∩H )
答案 (1)A (2)B
解
∁UA={x|-1≤x≤3},
∁UB={x|-5≤x<-1 或 1≤x≤3}, (∁UA)∩(∁UB)={x|1≤x≤3}, (∁UA)∪(∁UB)={x|-5≤x≤3}, ∁U(A∩B)={x|-5≤x≤3}, ∁U(A∪B)={x|1≤x≤3}, 相等的集合:(∁UA)∩(∁UB)=∁U(A∪B), (∁UA)∪(∁UB)=∁U(A∩B).
4.图中阴影部分可用集合 M、P 表示为( B )
A.(M∩P)∪(M∪P) B.[(∁UM)∩P]∪[M∩(∁UP)] C.M∩∁U(M∩P) D.P∪∁U(M∩P)
5.已知集合A={x|x< a},B={x|1<x<2},且 A∪(∁RB)=R,则实数a的取值范围是( A. a≤2 C. a≥2
规律方法
求解用不等式表示的数集间的集合运算
时,一般要借助于数轴,此法的特点是简单直观, 同时要注意各个端点的画法及取到与否.
变式迁移 2 已知全集 U={x|-5≤x≤3}, A={x|-5≤x< -1},B={x|-1≤x<1}.求∁UA,∁UB,(∁UA)∩ (∁UB),(∁UA)∪(∁UB),∁U(A∩B),∁U(A∪B),并指出 其中相等的集合.
{(2,3)} (∁IN)=________.
解析 集合 M,N 都是点集,集合 M 中的关系式 可变为 y=x+1(x≠2),它的几何意义是直线 y=x+1 上去掉点(2,3)后所有点的集合;集合 N 表 示直线 y=x+1 外所有点的集合.可知∁IM= {(x,y)|y≠x+1}∪{(2,3)},表示直线 y=x+1 外所 有点及直线上点(2,3)的集合;∁IN={(x,y)|y=x +1},表示直线 y=x+1 上所有点的集合.从而可 得(∁IM)∩(∁IN)只有一个元素(2,3)
课时作业
一、选择题 1.已知全集 U={1,2,3,4,5},且 A={2,3,4}, B={1,2},则 A∩(∁UB)等于 A.{2} C.{3,4} B.{5} D.{2,3,4,5} ( C )
2.已知 U 为全集,集合 M、N 是 U 的子集,若 M∩N=N,则 A.(∁UM)⊇(∁UN) C.(∁UM)⊆(∁UN) ( C ) B.M⊆(∁UN) D.M⊇(∁UN)
Hale Waihona Puke 知识点三利用集合间的关系求参数
例 3 (1)已知全集 U={1,2,3,4,5},A={x|x2-5x+q=0, x∈U},求∁UA; (2)设 U={2,3, a 2+2a-3},A={b,2},∁UA={5}, 求实数 a 和 b 的值.
(1)解 设 x1、x2 为方程 x2-5x+q=0 的两根, 则 x1+x2=5,
变式迁移 3 已知 U=R,A={x|x2+px+12=0}, B={x|x2-5x+q=0},若(∁UA)∩B={2}, (∁UB)∩A={4},求 A∪B.
解
由(∁UA)∩B={2},∴2∈B 且 2∉A.
由 A∩(∁UB)={4}, ∴4∈A 且 4∉B. 2 4 +4p+12=0 分别代入得 2 , 2 -5×2+q=0 ∴p=-7,q=6,∴A={3,4},B={2,3}, ∴A∪B={2,3,4}.
解析 ∵A={1,2,3,…,9},B={1,3,4},
C ={3,5,6,7}, ∴∁AB={2,5,6,7,8,9},∁AC={1,2,4,8,9}.
7 . 若 全 集 I = {(x , y)|x , y∈R} , 集 合 M =
y-3 (x,y)| =1, N={(x, y)|y≠x+1}, 则(∁IM)∩ x - 2
(2) 如图所示,至少会讲英语、 日语中一种语言的学生有50-8= 42(人),不妨设A ={会讲英语的 学生},B ={会讲日语的学生},则有 card(A )=36,card(B )=20, card(A ∪B )=42, 故既会讲英语又会讲日语的学生人数为 card(A ∩B )=36+20-42=14.
.
8. 设全集 U={x||x|<4 且 x∈Z}, S={-2,1,3},
8 个. 若∁UP⊆S,则这样的集合 P 共有____
解析 ∵集合 P 与∁UP 个数相同, 又∁UP⊆S, 而 S 的子集个数为 8, ∴∁UP 个数也为 8, ∴P 的个数也为 8.
三、解答题 9.已知全集 U=R,集合 A={x|-1≤x≤2}, B={x|4x+p<0}, 且 B⊆∁UA, 求实数 p 的取 值范围.
5 ∴x1≠x2(否则 x1=x2= ∉U,这与 A⊆U 矛盾). 2 而由 A⊆U 知 x1、x2∈U,又 1+4=2+3=5, ∴q= 4 或 q=6. ∴∁UA={2,3,5}或∁UA={1,4,5}.
(2)分析 由题目可获得以下主要信息: ①全集 U 中有元素 2,A 中有元素 2. ②∁UA={5},∴5∈U 且 5∉A. ③3∈U 但 3∉(∁UA),∴3∈A.
对点讲练
知识点一 补集定义的应用 例 1 已知全集 U,集合 A={1,3,5,7,9},∁UA= {2,4,6,8},∁UB={1,4,6,8,9},求集合 B.
解
如图所示,借助Venn图, 得U ={1,2,3,4,5,6,7,8,9}, ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.
解析 如图,
C)
B. a<1 D. a>2
∵B={x|1<x<2},
∴∁RB={x|x≥2或x≤1}.
若要A∪(∁RB)=R,必有a≥2.
二、填空题 6.若 A={x∈Z|0<x<10},B={1,3,4},C= {3,5,6,7},
{2,5,6,7,8,9} ,∁AC= {1,2,4,8,9} . 则∁AB=
{x|x∈U,且x∉A} 的补集(或 余集 ), 记作∁UA , 即∁UA= .
3.补集与全集的性质 (1)∁UU= ∅ ;(2)∁U∅= U ;(3)∁U(∁UA)= A ; (4)A∪∁UA= U ;(5)A∩∁UA= ∅ . 4.已知全集 U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}, 则 A∩(∁UB)={2,4};(∁UA)∩(∁UB)= {6} .
规律方法
符号∁U A 存在的前提是 A⊆U,这也是解
有关补集问题的一个隐含条件,充分利用题目中的 隐含条件也是我们解题的一个突破口,若 x∈U,则 x∈A 和 x∈∁UA 二者必居其一, 不仅如此, 结合 Venn 图及全集与补集的概念,不难得到如下性质: A ∪ (∁UA)=U,A∩(∁UA)=∅,∁U(∁UA)=A.
规律方法
根据补集定义,借助Venn图,可直观地
求出全集,此类问题,当集合中元素个数较少时, 可借助Venn图;当集合中元素无限时,可借助数 轴,利用数轴分析法求解.
变式迁移 1 设 U=R,A={x| a≤x≤b}, ∁UA={x|x>4 或 x<3},求 a,b 的值.
解 ∵A={x| a≤x≤b},∴∁UA={x|x>b或x<a}. 又∁UA={x|x>4或x<3},∴ a=3,b=4.
3.2 全集与补集 自主学案
学习目标 1.理解在给定集合中一个集合的补集的含义, 会求给定子集的补集. 2.能运用 Venn 图及补集知识解决有关问题.
自学导引 1.在研究某些集合的时候,这些集合往往是某个给定集 合的 子集 ,这个给定的集合叫作全集,常用符号 U 表 示.全集含有我们所要研究的这些集合的 全部 元素. 2.设 U 是全集,A 是 U 的一个子集(即 A⊆U ),则由 U 中所有不属于 A 的元素组成的集合,叫作 U 中子集 A
p x>2},B=x|x<-4.
解
∁UA={x|x<-1 或 p ∵B⊆∁UA,∴-4≤-1 ∴p≥ 4,即 p 的取值范围是{p|p≥4}.
10. 已知全集 U=R, 集合 A={x|x<1, 或 x>2}, 集合 B={x|x<-3, 或 x≥1}, 求∁RA, ∁RB, A∩B,A∪B.
解析 利用韦恩图,如图所示:
可知(∁U M )⊆(∁U N ).
3.已知 U={x|-1≤x≤3},A={x|-1<x<3}, B={x|x2-2x-3=0},C={x|-1≤x<3}, 则下列关系正确的是 A.∁UA=B C.∁UA⊇C ( A ) B.∁UB=C D.A⊇C
解析 B={-1,3},∁UA={-1,3}.