导数的概念经典例题
导数典型例题讲解
![导数典型例题讲解](https://img.taocdn.com/s3/m/e8bc4ea784868762caaed5f0.png)
资料一 :导数.知识点1.导数的概念例1.已知曲线yP (0, 0),求过点P的切线方程·解析:如图,按切线的定义,当x →0时,割线PQ 的极限位置是y 轴(此时斜率不存在),因此过P 点的切线方程是x =0. 例2.求曲线y =x 2在点(2,4)处的切线方程·解析:∵ y =x 2, ∴ ∆y =(x 0+∆x )2-x 02=2x 0∆x +(∆x )2 =4∆x +(∆x )2∴ k =00limlim (4)4x x yx x ∆→∆→∆=+∆=∆. ∴ 曲线y =x 2在点(2,4)处切线方程为y -4=4(x -2)即4x -y -4=0. 例3.物体的运动方程是 S =1+t +t 2,其中 S 的单位是米,t 的单位是秒,求物体在t =5秒时的瞬时速度及物体在一段时间[5,5+∆t ]内相应的平均速度.解析:∵ S =1+t +t 2, ∴ ∆S =1+(t +∆t )+(t +∆t )2-(1+t +t 2)=2t ·∆t +∆t +(∆t )2,∴21St t t∆=++∆∆, 即()21v t t t =++∆, ∴ (5)11v t =∆+, 即在[5,5+∆t ]的一段时间内平均速度为(∆t +11)米/秒∴ v (t )=S ’=00limlim(21)21t t St t t t ∆→∆→∆=++∆=+∆ 即v (5)=2×5+1=11.∴ 物体在t =5秒时的瞬时速度是11米/秒. 例4.利用导数的定义求函数yx =1处的导数。
解析:∆y1=, ∴ y x ∆∆, ∴ 0limx y x ∆→∆∆=1lim 2x ∆→=-.例5.已知函数f (x )=21sin 00x x xx ⎧≠⎪⎨⎪=⎩, 求函数f (x )在点x =0处的导数解析:由已知f (x )=0,即f (x )在x =0处有定义,∆y =f (0+∆x )-f (0)=21()sin x x∆∆,y x∆∆=1sin x x ∆⋅∆, 0lim x yx ∆→∆∆=01lim sin x x x ∆→∆⋅∆=0, 即 f ’(0)=0.∴ 函数f (x )在x =0处导数为0.例6.已知函数f (x )=21(1)121(1)12x x x x ⎧+⎪⎪⎨⎪+>⎪⎩≤, 判断f (x )在x =1处是否可导?解析:f (1)=1, 20001[(1)1]112lim lim lim (1)12x x x x y x x x ---∆→∆→∆→+∆+-∆==+∆=∆∆,001(11)112lim lim 2x x x y x x ++∆→∆→+∆+-∆==∆∆, ∵00lim lim x x y y x x -+∆→∆→∆∆≠∆∆, ∴ 函数y =f (x )在x =1处不可导. 例7.已知函数 y =2x 3+3,求 y ’.解析:∵ y =2x 3+3, ∴ ∆y =2(x +∆x )3+3-(2x 3+3)=6x 2·∆x +6x ·(∆x )2+2(∆x )3,∴ y x∆∆=6x 2+6x ·∆x +2(∆x )2, ∴ y ’=0lim x y x ∆→∆∆=6x 2.例8.已知曲线y =2x 3+3上一点P ,P 点横坐标为x =1,求点P 处的切线方程和法线方程.解析:∵ x =1, ∴ y =5, P 点的坐标为(1, 5), 利用例7的结论知函数的导数为y ’=6x 2,∴ y ’1|x ==6, ∴ 曲线在P 点处的切线方程为y -5=6(x -1) 即6x -y -1=0, 又曲线在P 点处法线的斜率为-61, ∴ 曲线在P 点处法线方程为y -5=-61( x -1),即 6y +x -31=0. 例9.抛物线y =x 2在哪一点处切线平行于直线y =4x -5?解析:∵ y ’=0lim x yx ∆→∆∆=220()lim2x x x x x x∆→+∆-=∆, 令2x =4.∴ x =2, y =4, 即在点P (2,4)处切线平行于直线y =4x -5.例10.设mt ≠0,f (x )在x 0处可导,求下列极限值(1) 000()()lim x f x m x f x x ∆→-∆-∆; (2) 000()()lim x x f x f x t x∆→∆+-∆.解析:要将所求极限值转化为导数f ’(x 0)定义中的极限形式。
导数的概念及题型
![导数的概念及题型](https://img.taocdn.com/s3/m/3fefe8b9580216fc700afdf7.png)
导数的概念及题型一、变化率 设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数值的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx ∆∆,则上式就表示为 ,此比值就称为平均变化率.也就是说:所谓平均变化率也就是 函数值 的增量y ∆与 自变量 的增量x ∆的比值.举例说明:+例1已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,1.1]; (2)[1,2]变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=小结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率二、导数的概念 函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlim x x f x x f x yx x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =处的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆举例说明:f(x)=3x+5, 2'例2求f ()练习.函数32)(f 2++=x x x ,求)3(f '小结利用导数的定义求导,步骤为: 第一步,求函数的增量; 第二步:求平均变化率; 第三步:取极限得导数.三、导数的物理意义 设0t 时刻一车从某点出发,在1t 时刻该车走了一定的位移)(t S S =。
在0t -1t 这段时间里,位移的变化量)()t (01t S S -,这段时间车的平均速度为101)(t t t t S S --)(;当1t 很接近0t 时,该平均速度近似于0t 时刻的瞬时速度,若令1t →0t ,则可认为0101)()(lim 01t t t S t S t t --→,即)(0't S 就是0t 时刻的瞬时速度。
导数的概念及运算1
![导数的概念及运算1](https://img.taocdn.com/s3/m/aa8078590740be1e650e9ad8.png)
例1. (14分)已知曲线y=31x 3+34. (1)求曲线在x=2处的切线方程; (2)求曲线过点(2,4)的切线方程. 解 (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k=y ′|x=2=4. 3分 ∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.6分(2)设曲线y=31x 3+34与过点P (2,4)的切线相切于点 A(x 0,31x 03+34),则切线的斜率 k=y ′|0x x ==x 02.8分∴切线方程为y-(31x 03+34)=x 02(x-x 0), 即y=x 02·x-32x 03+34.10分∵点P (2,4)在切线上,∴4=2x 02-32x 03+34,即x 03-3x 02+4=0,∴x 03+x 02-4x 02+4=0, ∴x 02 (x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.例 2.【2010·北京丰台一模】函数21(01)y x x =+≤≤图象上点P 处的切线与直线0,0,1y x x ===围成的梯形面积等于S ,则S 的最大值等于 ,此时点P 的坐标是 .【答案】54 15,24⎛⎫⎪⎝⎭【解析】函数()2101y x x =+≤≤在P ()200,1x x +点处的切线方程为()()200012y x x x x -+=⋅-,即20021y x x x =⋅-+,它与y 轴的交点为201x -,与1x =的交点为20021x x -+.于是题中梯形的面积()()222000001121112S x x x x x ⎡⎤=-+-+⋅=-++⎣⎦201524x ⎛⎫=--+ ⎪⎝⎭,当012x =时,S 取得最大值为54,此时P 点坐标为211,122⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭即15,24⎛⎫ ⎪⎝⎭.例题3.【2010·湖北理数】复习巩固1.【2010·江西理数】如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为( )【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。
导数知识点总结及例题
![导数知识点总结及例题](https://img.taocdn.com/s3/m/26468827571252d380eb6294dd88d0d233d43cad.png)
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
导数典型例题(含答案)
![导数典型例题(含答案)](https://img.taocdn.com/s3/m/c3f0312e2af90242a995e507.png)
导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
导数概念练习题
![导数概念练习题](https://img.taocdn.com/s3/m/429297987e192279168884868762caaedd33ba9a.png)
导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
高中数学导数经典20题附解析
![高中数学导数经典20题附解析](https://img.taocdn.com/s3/m/bb3330d79b6648d7c0c74693.png)
导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。
《导数的概念及其几何意义》典型例题
![《导数的概念及其几何意义》典型例题](https://img.taocdn.com/s3/m/5febb7556d85ec3a87c24028915f804d2a168763.png)
《导数的概念及其几何意义》典型例题深研1 导数的几何意义1.可导函数在0x x =处切线的斜率为此处函数的导数值.2.根据导数值的变化可确定原函数图象的变化情况. 考向1 由切线确定导数值例1(★)如图,函数()y f x =的图象在点P 处的切线方程是29y x =-+,点P 的横坐标是4,则(4)(4)f f +'=_______________.解析 ∵函数()f x 的图象在点P 处的切线为29y x =-+, ∴2(4)k f '=-=切.又 ∵点P 在切线29y x =-+上,∴(4)1f =,∴(4)(4) 1.f f +'=-① 答案 1-考向2 由切线特点确定函数图象②例2(★)已知函数()y f x =的图象如图所示,则其导函数()y f x '=的图象可能是___________.(填序号)解析 由()y f x =的图象及导数的几何意义可知,当x <0时,()f x '>0;当x =0时,()f x '=0;当x >0时,()f x '<0,故②符合. 答案 ② 方法技巧①1.由切线方程可确定函数()y f x =在0x 处的导数值,即()0f x k '=切. 2.切点为切线与曲线的公共点. 即时训练1.(1)(★★)已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是( )A.(1)(2)f f a '<'<B.(1)(2)f a f '<<'C.(2)(1)f f a '<'<D.(1)(2)a f f <'<'解析 由题中图象可知,在区间(0,)+∞上,函数()f x 增长得越来越快,∴(1)f '(2)f <',∵(2)(1)21f f a -=-,∴通过作切线与割线可知(1)(2)f a f '<<',故选B.答案 B 方法技巧②导数的符号、曲线的升降、切线的斜率、切线的倾斜角之间的关系即时训练2.(★)()()()y f x y g x y h x ===,,的图象如图1所示:而图2是其对应导数的图象:则()y f x =的导数图象对应___________;()y g x =的导数图象对应___________;()y h x =的导数图象对应___________.解析 由导数的几何意义,知()f x 图象上任一点处的切线斜率均小于零且保持不变,故()y f x =的导数图象对应B ;()y g x =图象上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无穷,故()y g x =的导数图象对应C ;()y h x =图象上任一点处的切线斜率都大于零,且先小后大,故()y h x =的导数图象对应A. 答案 B ;C ;A深研2 求曲线的切线方程由于可导函数()f x 在0x x =处切线的斜率为0()f x ',从而可用点斜式确定切线方程.考向1 求过曲线上一点的切线方程 例3(★★)求曲线213y x x=+-在2x =处的切线方程. 解析 设()y f x =,则21()3f x x x=+-.2222(2)(2)11(2)32322114()224().2(2)14.2(2)y f x f x x x x x xx x x yx x x ∆=+∆-⎛⎫=+∆+--+- ⎪+∆⎝⎭=∆+∆+-+∆∆=∆+∆+∆∆∴=+∆-∆+∆-∵当x ∆无限趋近于0时,y x ∆∆无限趋近于115444-=, ∴曲线()y f x =在2x =处的切线斜率为154. 又2x =时,32y =,∴切点坐标为32,2⎛⎫ ⎪⎝⎭. ∴曲线在2x =处的切线方程为315(2)24y x -=-, 即154240x y --=.考向2 求过曲线外一点的切线方程例4(★★)求曲线2y x =过点(3,5)的切线方程.思路分析 先判断点(3,5)是否在曲线上,不在曲线上则需设切点坐标为(0x ,20x ),再利用(3,5)与(0x ,20x )连线的斜率等于0()f x '建立方程求0x ,从而确定切线斜率.解析 因为点(3,5)不在曲线上,所以设切点坐标为(0x ,20x ), 又()()()220000lim lim 22x x x x x f x x x x x∆→∆→+∆-'==+∆=∆,故切线斜率为02x ,则切线方程为()20002y x x x x -=-, 因为点(3,5)在切线上,所以()2000523x x x -=-,解得01x =或05x =,则切点坐标为(1,1)或(5,25),故切线方程为12(1)y x -=-或2510(5)y x -=-, 即210x y --=或10250x y --=. 主编点评求过某点的曲线的切线方程④时,需先设切点(0x ,0y ),再对()y f x =求导得出切线斜率()0f x ',从而得到含参的切线方程0y y -=()()00f x x x '-,最后代入已知点,从而求出切点坐标以及切线方程.即使已知点在曲线上,也不能按在某点处的切线方程求解,否则易漏解.⑤ 方法技巧③求曲线()y f x =在点()00,P x y 处的切线方程,其切线只有一条,点()00,P x y 在曲线()y f x =上,且是切点.切线方程为()()000y y f x x x -='-.如图1,在点()00,P x y 处的切线为1l ,如图2,在点()00,P x y 处的切线为(22l l 与曲线()y f x =有两个公共点不影响结果).即时训练3.(★★)已知3()21f x x x =-+,求曲线()y f x =在点(1,0)处的切线方程.解析 因为330()2()121()lim x x x x x x x f x x ∆→∆+-∆++-+-'=∆3220()3()32lim x x x x x x xx∆→∆+⋅∆+⋅∆-∆=∆ 220lim ()332x x x x x ∆→⎡⎤=∆+⋅∆+-⎣⎦ 232x =-,所以(1)321f '=-=, 所以切线的方程为1y x =-, 即10x y --=. 知识补充④求曲线()y f x =过点()00,P x y 的切线方程的步骤 第一步:设出切点坐标()()11,P x f x ';第二步:写出过()()11,P x f x '的切线方程()()()111y f x f x x x -='⋅-; 第三步:将点P 的坐标()00,x y 代入切线方程,求出1x ;第四步:将1x 的值代入方程()()11y f x f x -='()1x x ⋅-,由此即可得过点()00,P x y 的切线方程. 误区警示⑤此处点()00,P x y 可以在曲线()y f x =上,也可以不在曲线()y f x =上.如图1,过点()00,P x y (不在曲线()y f x =上)的切线12l l ,,如图2,过点(0P x ,0y )(在曲线()y f x =上)的切线34l l ,.即时训练4.(★★)求过点(-1,-2)且与曲线32y x x =-相切的直线方程.解析 33002()()2limlim x x y x x x x x x y x x∆→∆→∆+∆-+∆-+'==∆∆2220lim 233()23x x x x x x ∆→⎡⎤=--∆-∆=-⎣⎦. 设切点坐标为()3000,2x x x -,则切线方程为()320000223()y x x x x x -+=--.∵切线过点(1,2)--,∴()()32000022231x x x x --+=---,即320230x x +=,解得00x =或032x =-, ∴切点坐标为(0,0)或33,28⎛⎫- ⎪⎝⎭,当切点坐标为(0,0)时,切线斜率2k =,切线方程为20x y -=;当切点坐标为33,28⎛⎫- ⎪⎝⎭时,切线斜率23192324k ⎛⎫=-⨯-=- ⎪⎝⎭,切线方程为192(1)4y x +=-+,即194270x y ++=. 综上可知,过点(1,2)--且与曲线32y x x =-相切的直线方程为20x y -=或19x +4270y +=.考点3 导数几何意义的综合应用求解导数几何意义的综合应用问题的关键是对函数进行求导,利用题目所提供的直线的位置关系、斜率的范围等条件求解相关问题,此处常与函数、方程、不等式等知识相结合. 考向1 求切点坐标⑥例5(★★)在曲线2y x =上取一点,使得在该点处的切线; (1)平行于直线45y x =-; (2)垂直于直线2650x y -+=; (3)倾斜角为135︒.分别求出满足上述条件的点的坐标.思路分析 先求函数的导函数()f x ',再设切点()00,P x y ,由导数的几何意义知切点()00,P x y 处的切线的斜率为()0f x ',最后根据题意列方程,解关于0x 的方程即可求出0x ,又点()00,P x y 在曲线2y x =上,易得0y .解析 设()y f x =,则2200()()()()lim lim x x f x x f x x x x f x x x∆→∆→+∆-+∆-'==∆∆lim(2)2x x x x ∆→=+∆=.设()00,P x y 是满足条件的点.(1)因为点P 处的切线与直线45y x =-平行,所以024x =,解得0x 2=,所以04y =,即(2,4)P .(2)因为点P 处的切线与直线2650x y -+=垂直,且直线265x y -+0=的斜率为13, 所以01213x ⋅=-,解得032x =-,所以094y =,即39,24P ⎛⎫- ⎪⎝⎭. (3)因为点P 处的切线的倾斜角为135︒,所以切线的斜率为tan1351︒=-,即021x =-,解得012x =-,所以014y =,即11,24P ⎛⎫- ⎪⎝⎭.⑦知识补充⑥根据切线斜率求切点坐标的步骤 (1)设切点坐标为()00,x y ; (2)求导函数()f x '; (3)求切线的斜率()0f x ';(4)由斜率间的关系列出关于0x 的方程,解方程求0x ;(5)由点()00,x y 在曲线()f x 上,将()00,x y 代入解析式求0y ,即得切点坐标. 知识补充⑦求解本题注意方程思想的应用.切点坐标()00,x y 有两个变量,因此需建立两个方程求解. 即时训练5.(★)已知曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.解析 设点P 的坐标为()300,x x ,∵()()000limx f x x f x x∆→+∆-∆22300033()()lim x x x x x x x ∆→∆+∆+∆=∆ 22000lim 33()x x x x x ∆→⎡⎤=+∆+∆⎣⎦ 203x =,2033x =,解得01x =±,∴点P 的坐标是(1,1)或(1,1)--. 考向2 切线围成的三角形的面积问题例6(★★)已知直线1l 为曲线22y x x =+-在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (1)求直线2l 的方程;(2)求由直线1l 、2l 和x 轴所围成的三角形的面积.解析(1)因为()2200()()22lim lim x x x x x x x x y y x x∆→∆→+∆++∆--+-∆'==∆∆21x =+,所以12113x y ='=⨯+=,所以直线1l 的方程为3(1)y x =-,即330x y --=. 设直线2l 与曲线22y x x =+-切于点()2,2B b b b +-,则2l 的方程为2(21)2y b x b =+--.因为12l l ⊥,所以1213b +=-,所以23b =-,所以直线2l 的方程为12239y x =--,即39220x y ++=.(2)由(1)知,联立330,39220,x y x y --=⎧⎨++=⎩解得1,65.2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以直线1l 和2l 的交点坐标为15,62⎛⎫- ⎪⎝⎭.又易知1l 、2l 与x 轴的交点的坐标分别为22(1,0),03⎛⎫- ⎪⎝⎭、,所以所求三角形的面积125512523212S =⨯⨯-=.主编点评本题求解时应抓住两切线斜率的关系及切线斜率与导数的关系,构建方程组求解. 方法技巧求切线围成的三角形的面积时,关键是准确求得切线方程,然后分析围成的三角形的特点,进而求其面积.6.(★★)求曲线1(0)y x x x =->上一点()00,P x y 处的切线分别与x 轴、y 轴交于点,A B O 、是坐标原点,若△OAB 的面积为13,则0x =_____________.解析 ∵1(0)y x x x=->, ∴011lim x x x x x x x y x∆→⎡⎤⎛⎫+∆--- ⎪⎢⎥+∆⎝⎭⎣⎦'=∆011()lim x x x x x x x x∆→⎡⎤⎛⎫+∆-+- ⎪⎢⎥+∆⎝⎭⎣⎦=∆ 0()lim x x x x x x x∆→∆∆++∆=∆ 01lim 1()x x x x ∆→⎡⎤=+⎢⎥+∆⎣⎦ 211x=+, ∴切线的斜率为2011x +,则切线的方程为()00200111y x x x x x ⎛⎫-+=+- ⎪⎝⎭, 令0x =得02y x =-,令0y =得02021x x x =+,∴△OAB 的面积020********x S x x =⨯⨯=+,解得0x =(负根舍去).答案考向3 根据切线求参数值例7(★★)设函数32()91(0)f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值.思路分析 先利用定义求导,结合二次函数求最值,最后结合切线斜率求a . 解析 ∵32()()()()9()1y f x x f x x x a x x x x ∆=+∆-=+∆++∆-+∆--()()3222391329(3)()()xax x x ax x x a x x +--=+-∆++∆+∆, ∴22329(3)()y x ax x a x x x∆=+-++∆+∆∆, ∴22220()lim 329399333x y a a a f x x ax x x ∆→∆⎛⎫'==+-=+---- ⎪∆⎝⎭. 由题意知()f x '的最小值是12-,∴29123a --=-,即29a =,∵0a <,∴3a =-.⑨ 主编点评本题得到()f x '的表达式是关于x 的二次函数,从而可利用二次函数求最值. 方法技巧⑨当题中涉及切线方程、切线的斜率(或倾斜角)、切点坐标等问题时,可利用导数的定义与几何意义迅速获解.遇到“切线的斜率最小、最大”问题时,通常只需求出导函数,再求其最值即可解决.即时训练⑦(★★)已知函数3()1f x x ax =++的图象在点(1,(1))f 处的切线过点(1,1)-,求a 的值.解析 函数3()1f x x ax =++的导函数为3320()()11()lim 3x x x a x x x ax f x x a x∆→⎡⎤+∆++∆+---⎣⎦'==+∆, ∴(1)3f a '=+,而(1)2f a =+,∴切线方程为2(3)(1)y a a x --=+-,∵切线方程过点(1,1)-,∴12(3)(11)a a --=+--,解得5a =-.。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)
![2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)](https://img.taocdn.com/s3/m/b0e6e5cc77a20029bd64783e0912a21614797fd7.png)
2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导数有关知识点总结经典例题及解析近年高考题带答案
![导数有关知识点总结经典例题及解析近年高考题带答案](https://img.taocdn.com/s3/m/0ab27298763231126fdb1109.png)
导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
【知识梳理】一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
第01讲导数的概念及其意义、导数的运算(十二大题型)(练习)-1
![第01讲导数的概念及其意义、导数的运算(十二大题型)(练习)-1](https://img.taocdn.com/s3/m/72df0278fbd6195f312b3169a45177232f60e4df.png)
第01讲 导数的概念及其意义、导数的运算目录模拟基础练题型一:导数的定义及变化率问题题型二:导数的运算题型三:在点P 处的切线题型四:过点P 的切线题型五:公切线问题题型六:已知切线或切点求参数问题题型七:切线的条数问题题型八:利用导数的几何意义求最值问题题型九:牛顿迭代法题型十:切线平行、垂直、重合问题题型十一:奇偶函数图像的切线斜率问题题型十二:切线斜率的取值范围问题重难创新练真题实战练题型一:导数的定义及变化率问题1.设()f x 是定义在R 上的可导函数,若()()000lim2h f x h f x h a h®+--=(a 为常数),则0()f x ¢=( )A .2a-B .a-C .aD .2a2.对于函数()f x ,若()0f x ¢存在,求:(1)()()000()limh f x h f x h®+---;(2)()()000lim h f x h f x h h®+--.题型二:导数的运算3.求下列函数的导数:(1)()2133ex y x x +=++(2)cos(21)x y x+=(3)ln12x y x=+(4)1()23()()y x x x =+++(5)2ln 2y x x x x =+-+(6)31ln 2e e xxy x =++-4.求下列函数的导数:(1)22()2f x a ax x =+-;(2)sin ()ln x xf x x=.(3)()2(34)21y x x x =-+;(4)2sin 12cos 24x x y æö=-ç÷èø;(5)y =2ln 1xx +.(6)221()(31)y x x =-+;(7)sin 2cos 2y x x x =-;(8)e cos x y x =;(9)y =ln(21)x x+.(10)n 1l y x x=+(11)sin x y x=(12)22(1e )2x y x x -=+-.5.已知函数()e 2(0)1x f x f x ¢=++,则()2f ¢的值为 .(2024·河南·一模)6.已知函数()f x 的导函数为()f x ¢,且23()(3)ln (1)47f x f x f x x ¢=---,则()f x 的极值点为( )A .32或12B .12C .12-或32D .32题型三:在点P 处的切线7.曲线e x y =在点(0,1)处的切线方程为( )A .210x y -+=B .10x y --=C .10x y -+=D .210x y -+=(2024·黑龙江·二模)8.函数()31f x x =+在1x =-处的切线方程为( )A .46y x =+B .26y x =-+C .33y x =--D .31y x =--(2024·全国·模拟预测)9.函数()()2e 22xf x x x =-+的图象在点()()1,1f --处的切线方程为( )A .e 40x y +-=B .e 60x y -+=C .e 60x y -+=D .5e e 0ex y -++=10.下列函数的图象与直线y x =相切于点()0,0的是( )A .3y x =B .sin y x=C .e xy =D .()ln 2y x =+题型四:过点P 的切线11.过原点的直线l 与e x y =相切,则切点的坐标是 .12.已知直线l 为曲线314()33f x x =+过点(2,4)P 的切线. 则直线l 的方程为 .13.已知函数()ln f x x =,过点()0,0P 作曲线()f x 的切线,则其切线方程为 .14.在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点()e,1--(e 为自然对数的底数),则点A 的坐标是,切线方程为题型五:公切线问题15.经过曲线37y x x =-与353y x x =--+的公共点,且与曲线e 1x y =+和1e x y +=的公切线l 垂直的直线方程为( )A .8870x y ++=B .8870x y +-=C .8810x y -+=D .8810x y --=16.已知直线(R,0)y ax b a b =+Î>是曲线()e xf x =与曲线()ln 2g x x =+的公切线,则a b +=( )A .2B .12C .eD .1e17.过原点的直线l 与曲线()e ,ln xy y x a ==+都相切,则实数a =( )A .12B .14C .1eD .2e18.若曲线ln y x =与曲线22(0)y x x a x =++<有公切线,则实数a 的取值范围是( )A .(ln 21,)--+¥B .[ln 21,)--+¥C .(ln 21,)-++¥D .[ln 21,)-++¥19.已知曲线e x y =在点()11,x y 处的切线与曲线ln y x =在点()22,x y 处的切线相同,则()()1211x x +-=( )A .-1B .-2C .1D .220.设曲线()e xf x a b =+和曲线()πcos2xg x c =+在它们的公共点()02P ,处有相同的切线,则+a b c 的值为( )A .0B .πC .2D .3题型六:已知切线或切点求参数问题(2024·山东临沂·二模)21.若直线1y ax =+与曲线ln y b x =+相切,则ab 的取值范围为 .(2024·高三·云南楚雄·期末)22.若直线y x m =+与曲线()320y x x x =-<相切,则切点的横坐标为 .(2024·湖北·二模)23.y kx b =+是2ln xy x =在(1,0)处的切线方程,则b = .(2024·高三·安徽亳州·期末)24.已知直线l 的斜率为2,且与曲线2e x y =相切,则l 的方程为.(2024·全国·模拟预测)25.若直线y kx b =+与函数()e xf x =的图象相切,则k b -的最小值为( )A .eB .e-C .1e-D .1e(2024·四川绵阳·一模)26.设函数()e x f x x -=-,直线y ax b =+是曲线()y f x =的切线,则2a b +的最小值为( )A .12e-B .211e -C .212e -D .212e +题型七:切线的条数问题27.若过点()2,t 可以作曲线ln y x =的两条切线,则( )A .2e t <B .0e t <<C .ln 2t <D .ln 2t >(2024·全国·模拟预测)28.过坐标原点作曲线()()2e 22xf x x x =-+的切线,则切线共有( )A .1条B .2条C .3条D .4条29.已知函数()1ex x f x +=,若过()1,P t -可做两条直线与函数()f x 的图象相切,则t 的取值范围为( )A .4,e æö+¥ç÷èøB .4e ìüíýîþC .40,e æöç÷èøD .{}40,0e æöÈç÷èø(2024·宁夏银川·二模)30.已知点()1,P m 不在函数3()3=-f x x mx 的图象上,且过点P 仅有一条直线与()f x 的图象相切,则实数m 的取值范围为( )A .1110,,442æöæöç÷ç÷èøèøU B .1(,0)(,)4-¥+¥U C .110,,44æöæö+¥ç÷ç÷èøèøU D .11(,)(,)42-¥È+¥题型八:利用导数的几何意义求最值问题(2024·陕西西安·二模)31.若1112ln 30x x y --+=,2250x y -+=,则()()221212x x y y -+-的最小值为( )A .B .6C .8D .12(2024·广东·一模)32.设点P 在曲线e x y =上,点Q 在直线1ey x =上,则PQ 的最小值为( )A BC D 33.已知点P 是曲线()ln f x x x =上任意一点,点Q 是直线3y x =-上任一点,则PQ 的最小值为( )A B C .1D .e(2024·高三·四川成都·期末)34.已知(,)P x y 为函数12e 24x y x x -=+-( )A B C .1D )e 5+35.设点P 在曲线e x y =上,点Q 在直线ln y x =上,则PQ 的最小值为( )A .1B .2C D参考答案:1.C【分析】根据导数的定义即可求解.【详解】0()f x ¢=()()0001lim222h f x h f x h a a h®+--=´=.故选:C.2.(1)()0f x ¢(2)()02f x ¢【分析】(1)利用导数的定义求解即可;(2)利用导数的定义求解即可;【详解】(1)0h ®Q 时,0h -®()()()()()000000()()limlimh h f x h f x f x h f x f x hh®-®+--+--¢=-\=-(2)[][]000000()()()()()()f x h f x h f x h f x f x f x h +--=+-+--Q 又0000()()lim()h f x h f x f x h ®+-¢=()()()()()0000000limlimh h f x f x h f x h f x f x h h®-®---=-¢-\=0000()()lim 2()h f x h f x h f x h®+--¢\=3.(1)()12e 56x y xx +=++¢(2)22sin(21)cos(21)x x x y x -+-+¢=(3)(12)1y x x =+¢(4)231211y x x =++¢(5)y ¢ln 2x x=+(6)213e e xxy x ¢=++【分析】(1)—(6)根据导数的运算法则及基本初等函数函数的导数公式计算可得.【详解】(1)因为()2133e x y x x +=++,所以()()()212133e 33e x x y x x x x ++¢¢¢=++×+++×()121(23)e 33e x x x x x ++=++++()12e 56x x x +=++.(2)因为cos(21)x y x+=,所以2[cos(21)]cos(21)x x x x y x ¢¢+-+×¢=22sin(21)cos(21)x x x x -+-+=.(3)因为ln 12xy x=+,所以1212x x y x x ¢+æö¢=×ç÷+èø2122(12)(12)121x x x x x x x +-=+×=++.(4)因为1()23()()y x x x =+++326116x x x =+++,所以231211y x x =++¢.(5)因为2ln 2y x x x x =+-+,所以1ln 21y x x x x¢=+×+-ln 2x x =+.(6)因为31ln 2e exx y x =++-,所以213e exx y x ¢=++.4.(1)()22f x a x ¢=-(2)2sin ln cos ln sin ()ln x x x x x xf x x+-¢=(3)218104y x x -¢=-(4)1cos 2y x¢=-(5)()222212ln 1x x x y x x +-¢=+(6)21843y x x ¢=+-(7)12cos 4y x¢=-(8)()e cos sin ¢=-xy x x (9)22(21)ln(21)(21)x x x x x -+++(10)211x x =-(11)2cos sin x x xy x -¢=(12)22)3e (-¢=+-xy x 【分析】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)直接利用导数的运算法则及基本初等函数的求导公式分别对函数求导即可得出答案.【详解】(1)解:因为22()2f x a ax x =+-,所以()22f x a x ¢=-;(2)解:因为sin ()ln x xf x x=,所以22(sin )ln sin (ln )sin ln cos ln sin ()(ln )ln x x x x x x x x x x x xf x x x ¢¢×-×+-¢==;(3)解:因为()2325(3)42164y x x x x x x =-+=--,所以218104y x x ¢=--;(4)解:因为21sin 12cos sin cos sin 24222x x x x y x æöæö=-=-=-ç÷ç÷èøèø,所以1cos 2y x ¢=-;(5)解:因为2ln 1xy x =+,所以()()()()2222ln 11ln 1x x x xy x ¢¢+-+¢=+()()()2222222112ln 12ln 11x x x x x x x x x x +-+-==++;(6)解:因为232()()21316231y x x x x x =-+=+--,所以21843y x x ¢=+-;(7)解:因为sin 2cos 2y x x x =-1sin 42x x =-,所以114cos 412cos 42y x x ¢=-´=-;(8)解:因为cos x y e x =,所以()cos sin cos sin x x xy e x e x e x x ¢=-=-;(9)解:因为ln(21)x y x+=,所以[]2ln(21)ln(21)x x x x y x ¢¢+-+¢==22ln(21)21xx x x -++=22(21)ln(21)(21)x x x x x -+++;(10)解:因为n 1l y x x=+,所以()2111ln y x x x x ¢æö¢¢=+=-ç÷èø;(11)解:因为sin xy x=,所以22(sin )sin cos sin x x x x x x xy x x ¢¢-×-¢==;(12)解:因为22(1e )2x y x x -=+-,所以22222(2)()()2213x x x y x e x x e x e ---¢=+-++--=.5.2e 2-【分析】先求出()0f ¢的值,进而求出()2f ¢即可.【详解】由题意知:()()e 20xf x f =¢+¢,所以()()0120f f =+¢¢,所以()01f ¢=-,所以()e 2xf x ¢=-,所以()22e 2f ¢=-.故答案为:2e 2-.6.D【分析】先对函数求导,先后代入3x =和1x =,确定函数()f x 的解析式,再通过导函数的符号确定函数的极小值点即可.【详解】对23()(3)ln (1)47f x f x f x x ¢=---进行求导,可得31()(3)2(1)47f x f f x x¢=-×¢--,将3x =代入整理,4(3)21(1)140f f ¢++=①将 1x =代入23()(3)ln (1)47f x f x f x x ¢=---可得(1)(1)4f f =--,即(1)2f =-,将其代入① ,解得:(3)7f ¢=,故得2()3ln 24f x x x x =-+-.于是3()44f x x x¢=-+-,由()0f x ¢=可得12x =-或32x =,因0x >,故当302x <<时,()0f x ¢<,当32x >时,()0f x ¢> ,即32是函数()f x 的极小值点,函数没有极大值.故选:D.7.C【分析】根据导数的几何意义,直线的点斜式方程即可求解.【详解】()e xy f x ==Q ,()'e x f x \=,()'01f \=,\曲线e x y =在点()01,处的切线方程为:1y x =+,即10x y -+=,故选:C .8.D【分析】当0x <时()31f x x =-+,利用导数的几何意义求出切线的斜率,再由点斜式求出切线方程.【详解】因为()31f x x =+,则()()31112f -=-+=,当0x <时()31f x x =-+,则()23f x x ¢=-,所以()()21313f ¢-=-´-=-,所以切点为()1,2-,切线的斜率为3-,所以切线方程为()231y x -=-+,即31y x =--.故选:D 9.B【分析】根据导数的几何意义,即可求解.【详解】由()()2e 22x f x x x =-+,可得()2e xf x x ¢=,则()11e f ¢-=,又()()()2151e 1212e f -éù-=--´-+=ëû,则所求切线方程为()511e ey x -=+,即e 60x y -+=.故选:B .10.B【分析】利用导数的几何意义求出对应斜率是否为1,并由切点进行逐一判断即可得出结论.【详解】A .323y x y x ¢==,,在()0,0的切线斜率为0,不符合;B .sin cos y x y x ¢==,,在()0,0的切线斜率为1,所以切线为01(0)y x -=-,成立;C .D .两个函数均不经过()0,0,不符合.故选:B .11.(1,e)【分析】设切点坐标为00(,e )x x ,根据导数的几何意义求出切线方程,将(0,0)代入,即可求得答案.【详解】由题意设切点坐标为00(,e )x x ,由e x y =,得e x y ¢=,故直线l 的斜率为0e x ,则直线l 的方程为00e e ()x x y x x -=-,将(0,0)代入,得0001e e ,x x x x -=-\=,则切点的坐标为(1,e),故答案为:(1,e)12.20x y -+=或440x y --=【分析】设切点为00(,)M x y ,由导数的几何意义求得切线方程,代入P 点坐标求出0x ,再回代得切线方程.【详解】∵314()33f x x =+,∴2()f x x ¢=. 设直线l 与曲线()f x 相切于点00(,)M x y ,则直线l 的斜率为200()k f x x ¢==,∴过点00(,)M x y 的切线方程为000()()()y f x f x x x ¢-=-,即3200014()()33-+=-y x x x x ,又点(2,4)P 在切线上,∴32000144()(2)33x x x -+=-,整理得3200340x x -+=,∴200(1)(2)0x x +-=,解得01x =-或02x =;∴所求的切线方程为20x y -+=或440x y --=.故答案为:20x y -+=或440x y --=.13.1ey x =【分析】设切点为()00,ln x x ,利用导数的几何意义求出切线方程,再由切线过点()0,0P ,代入求出0x ,即可求出切线方程.【详解】设切点为()00,ln x x ,由()ln f x x =,则()1f x x¢=,则()001f x x ¢=,所以切线方程为()0001ln y x x x x -=-,又切线过点()0,0P ,所以0ln 1x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =.故答案为:1ey x =14.(e,1)ex y =【分析】求导,根据点斜式得切线方程,代入()e,1--可得00ln e x x =,构造函数()ln H x x x =,求导,根据函数的单调性结合()e =e H ,可得0e x =,即可求解.【详解】设点A (x 0,y 0),则00ln y x =.又1y x¢=,当0x x =时,01y x ¢=,曲线ln y x =在点A 处的切线方程为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点()e,1--,得00e1ln 1x x ---=-,即00ln e x x =,记()ln H x x x =,当x ∈(0,1)时,()0H x <,当x ∈(1,+∞)时,()0H x >,且()ln 1H x x =¢+,当1x >时,()()0,H x H x ¢>单调递增,注意到()e =e H ,故00ln e x x =存在唯一的实数根0e x =,此时01y =,故点A 的坐标为()e,1,切线方程为ex y =,故答案为:()e,1,ex y =15.B【分析】首先联立37y x x =-与353y x x =--+得到方程组,求出方程组的解,即可求出交点坐标,再设l 与()e 1x f x =+和()1e x g x +=分别相切于()111,e x x +,()212,e x x +,利用导数的几何意义得到方程,求出1x ,即可得到切线的斜率,再由点斜式求出所求直线方程.【详解】由33753y x xy x x ì=-í=--+î,消去y 整理得38430x x +-=,令()3843F x x x =+-,则()22440F x x ¢=+>,所以()3843F x x x =+-在R 上单调递增,又31118430222F æöæö=´+´-=ç÷ç÷èøèø,所以方程组33753y x x y x x ì=-í=--+î的解为1238x y ì=ïïíï=ïî,即曲线37y x x =-与353y x x =--+的公共点的坐标为13,28æöç÷èø,设l 与()e 1x f x =+和()1e x g x +=分别相切于()111,e x x +,()212,e x x +,而()e x f x ¢=,1()e x g x +¢=,11()e x f x ¢\=,212()e x g x +¢=,\122111121e e e e 1e x x x x x x x++ì=ïí--=ï-î,解得1201x x =ìí=-î,0(0)e 1f ¢\==,即公切线l 的斜率为1,故与l 垂直的直线的斜率为1-,所以所求直线方程为3182y x æö-=--ç÷èø,整理得8870x y +-=.故选:B .16.A【分析】设(),e tt 是()f x 图象上的切点,利用导数的几何意义求出曲线()ln 2g x x =+上的切点,继而求出t 的值,结合切线方程,即可求得答案.【详解】由题意知直线(R,0)y ax b a b =+Î>是曲线()e xf x =与曲线()ln 2g x x =+的公切线,设(),e tt 是()f x 图象上的切点,()e x f x ¢=,所以()f x 在点(),e tt 处的切线方程为()e e t t y x t -=-,即()e 1e t t y x t =+-①令()1e t g x x=¢=,解得()e ,e lne 22t t t x g t ---==+=-,即直线(R,0)y ax b a b =+Î>与曲线()ln 2g x x =+的切点为()e ,2tt --,所以2e e e t t t t t ---=-,即()11e tt t -=-,解得0t =或1t =,当1t =时,①为e ,0y x b ==,不符合题意,舍去,所以0t =,此时①可化为1y x =+,所以112a b +=+=,故选:A 17.D【分析】设出切点,利用导数的几何意义结合两点式斜率公式列式,即可求解.【详解】由e x y =得e x y ¢=,由()ln y x a =+得1y x a¢=+,设过原点的直线l 分别与曲线()e ,ln xy y x a ==+相切于点A (x 1,y 1),B (x 2,y 2),则由导数的几何意义得111e x y x =,且11e x y =,故11x =,所以直线l 的斜率为e ,所以2221e y x x a ==+,所以()22ln e x a x +=,所以2e 1x =-,即21e x =-,代入21e x a =+得2e a =.故选:D 18.A【分析】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,然后利用导数的几何意义表示出切线方程,则可得21212122ln 1x x x a x ì=+ïíï-=-î,消去1x ,得222ln(22)1a x x =-+-,再构造函数,然后利用导数可求得结果.【详解】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,由()ln f x x =,得1()f x x¢=,所以公切线的斜率为11x ,所以公切线方程为1111ln ()-=-y x x x x ,化简得111(ln 1)y x x x =×+-,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,由2()2(0)g x x x a x =++<,得()22g x x ¢=+,则公切线的斜率为222x +,所以公切线方程为22222(2)(22)()y x x a x x x -++=+-,化简得2222(1)y x x x a =+-+,所以21212122ln 1x x x a x ì=+ïíï-=-î,消去1x ,得222ln(22)1a x x =-+-,由1>0x ,得210x -<<,令2()ln(22)1(10)F x x x x =-+--<<,则1()201F x x x ¢=-<+,所以()F x 在(1,0)-上递减,所以()(0)ln 21F x F >=--,所以由题意得ln 21a >--,即实数a 的取值范围是(ln 21,)--+¥,故选:A【点睛】关键点点睛:此题考查导数的几何意义,考查导数的计算,考查利用导数求函数的最值,解题的关键是利用导数的几何意义表示出公切线方程,考查计算能力,属于较难题.19.B【分析】利用导数的几何意义计算即可.【详解】根据常用函数的导数可知:e e x x y y ¢=Þ=,1ln y x y x¢=Þ=,则两函数在点()11,x y 和()22,x y 处的切线分别为:()()1112221e,x y y x x y y x x x -=--=-,化简得()111221e 1e ,ln 1x x y x x y x x x =+-=+-由题意可得:()112121e 1e ln 1x x xx x ì=ïíï-=-î,化简得()()12211210112x x x x x x +-+=Þ+-=-.故选:B 20.C【分析】根据两曲线在()02P ,有公切线,则P 是公共点,该点处的导数值相同,列出方程求出,,a b c 的值,则答案可求【详解】由已知得(0)2(0)12f a b g c =+=ìí=+=î,解得1,2c b a ==-,又()()ππ,e sin 22xf x ag x x ¢¢==-,所以(0)(0)f g ¢¢=得0a =,所以0,2,1a b c ===,所以0212a b c +=+=.故选:C.21.31,e éö-+¥÷êëø【分析】利用导数求切点坐标,再由切点在直线上可得2ln b a =+,则()2ln 0ab a a a a =+>,构造()2ln g a a a a =+并研究单调性,进而求值域即可.【详解】函数ln y b x =+的导数为1y x¢=,设切点为()00,1x ax +,所以01a x =,则01ax =,即01x a=又因为()00,1x ax +在ln y b x =+上,所以001ln ax b x +=+,所以0ln 2b x +=,即ln 2b a -=,所以2ln b a =+,所以()()2ln 2ln 0ab a a a a a a =+=+>,令()2ln g a a a a =+,1()2ln ln 3g a a a a a=++×=+¢,令()0g a ¢>,可得31e a >,令()0g a ¢<,可得310e a <<,所以()g a 在310,e æöç÷èø上单调递减,在31,e æö+¥ç÷èø上单调递增,所以min 33333331211231()ln e e e e e e e g a g æö==+=-=-ç÷èø.当a 趋近正无穷时,()g a 趋近正无穷.所以ab 的取值范围为:31,e éö-+¥÷êëø.故答案为:31,e éö-+¥÷êëø.22.1-【分析】利用导数的几何意义求解即可.【详解】由()320y x x x =-<求导得()2320y x x ¢=-<,直线y x m =+斜率为1,代入导函数有:()23210x x -=<,解得=1x -.故答案为:1-23.1-【分析】利用导数的几何意义求出斜率,再求切线方程即可.【详解】令2ln ()x y f x x==,42ln ()x x xy f x x -¢¢==,则(1)1k f ¢==,则方程为y x b =+,将(1,0)代入方程,得01b =+,解得1b =-,故答案为:1-24.22y x =+【分析】由题意令()2e 2xf x =¢=,解方程可得切点横坐标,进一步得到切点坐标即可得解.【详解】设()2e x f x =,令()2e 2xf x =¢=,得0x =,则切点为(0,2),故所求l 的方程为22y x =+.故答案为:22y x =+.25.C【分析】由题意,设出切点,利用导数求出函数()e xf x =在该点的切线方程,对照已知的切线方程,得到k b -的解析式,故构造函数,利用导数知识求解其最小值即得.【详解】由()e xf x =可得()e x f x ¢=,设切点为()00,e x x ,则切线方程为()000e e x x y x x -=-,即()000e 1e ,x xy x x =+-依题意,()000e ,1e x x k b x ==-,故00e xk b x -=.设()e xg x x =, 则()()1e xg x x +¢=,当1x <-时,()0g x ¢<,()g x 单调递减,当1x >-时,()0g x ¢>,()g x 单调递增,故()g x 的极小值为()11e g -=-,也是最小值,即k b -的最小值为1e -.故选:C.26.C【分析】先设切点写出切线方程,再求2a b +的解析式,最后通过求导判断单调性求出最小值.【详解】令()f x 的切点为()000,e xx x --,因为()1e x f x -¢=+,所以过切点的切线方程为()()()000e 1e x x y x x x ----=+-,即()()001ee1x x y x x --=+-+,所以()0001e e 1x x a b x --ì=+ïí=-+ïî,所以002e e 2x x a b x --+=-++,令()e e 2x x g x x --=-++,则()()e e e e 2x x x xg x x x ----¢=-+-=-,所以当(),2x Î-¥时()0g x ¢<恒成立,此时()g x 单调递减,当()2,x Î+¥时()0g x ¢>恒成立,此时()g x 单调递增,所以()()2min 22e g x g -==-,所以()22min 122e 2e a b -+=-=-,故选:C 27.D【分析】设出切点000(,ln ),(0)x x x >,写出切线方程,依题转化成000(1)ln 20t x x x +--=有两个不同得实数根.设()(1)ln 2,(0)g x t x x x x =+-->,求得()g x 的单调区间和最大值即可得解.【详解】设切点为000(,ln ),(0)x x x >,由题得:1y x¢=,故切线斜率为01x ,切线方程为:0001ln ()y x x x x -=-,因切线经过点()2,t ,则0001ln (2)t x x x-=-,故000(1)ln 20t x x x +--=有两个不同得实数根.不妨设()(1)ln 2,(0)g x t x x x x =+-->,则()ln ,g x t x ¢=-当0e t x <<时,()0g x ¢>,()g x 单调递增;当e t x >时,()0g x ¢<,()g x 单调递减.故max ()(e )e 2t tg x g ==-,则e 20t ->,即ln 2t >.故选:D.28.A【分析】利用导数求出斜率,结合斜率公式列方程求出切点坐标即可得解.【详解】设切点为()()02000,e 22x x x x -+,由()()2e 22x f x x x =-+可得()2e xf x x ¢=,则过坐标原点的切线的斜率()0020020e 22ex x x x k x x -+==,故()32000210x x x -+-=,即()()200120x x -+=,解得01x =,故过坐标原点的切线共有1条.故选:A .29.B【分析】根据导数几何意义求出切线方程,依题意,过点()1,P t -的直线与函数()1e xx f x +=的图象相切的切线条数即为直线y t =与曲线()2(1)e a a g a +=的图象的公共点的个数,根据导数研究函数()g a 的图象可得结果.【详解】设过点()1,P t -的直线与函数()1e xx f x +=的图象相切时的切点为(),a b ,则1e aa b +=,因为()()()2e 1e 1,e e ex x x xx x x xf x f x -++==-¢=,所以切线方程为()1e ea a a ay x a +-=--,又()1,P t -在切线上,所以()11e e a a a a t a +-=---,整理得2(1)e aa t +=,则过点()1,P t -的直线与函数()1ex x f x +=的图象相切的切线条数即为直线y t =与曲线()2(1)e aa g a +=的图象的公共点的个数,因为()()()()2221e (1)e 11e e a a a aa a a a g a ¢+-+-+-==,令()0g a ¢=,得1a =±,所以,当1a <-时,()()0,g a g a ¢<单调递减;当11a -<<时,()()0,g a g a ¢>单调递增;当1a >时,()()0,g a g a ¢<单调递减,因为()()410,1eg g -==,当a ®+¥时()0g a ®,所以,函数()g a 的图象大致如图:所以当4et =时,图像有两个交点,切线有两条.故选:B.【点睛】关键点点睛:依题意求出切线方程,本题关键是将过点()1,P t -的直线与函数()1e x x f x +=的图象相切的切线条数转化为直线y t =与曲线()2(1)e a a g a +=的图象的公共点的个数,在利用导数研究函数()g a 的图象.30.B【分析】根据直线和曲线相切得到322340t t m -+=,结合导数及函数零点的个数可得答案.【详解】点()1,P m 不在函数()33f x x mx =-的图象上,则()113f m m =-¹,即14m ¹,设过点P 的直线与()33f x x mx =-的图象相切于()3,3Q t t mt -,则切线的斜率()323331t mt mk f t t m t --¢==-=-,整理可得322340t t m -+=,则问题可转化为()32234g t t t m =-+只有一个零点,且()266g t t t ¢=-,令()0g t ¢=,可得0t =或1t =,当(),0t Î-¥时,()0g t ¢>,则()g t 单调递增,当()0,1t Î时,()0g t ¢<,则()g t 单调递减,当()1,t Î+¥时,()0g t ¢>,则()g t 单调递增,即当0t =时,()g t 有极大值,当1t =时,()g t 有极小值,要使()32234g t t t m =-+仅有一个零点,(0)(1)00g g m ×>Þ<或14m >故选:B31.C【分析】设函数()2ln 3,0f x x x x =-+>和5y x =+,转化为切点P 到直线50x y -+=的距离为平方,根据导数的几何意义,求得切点坐标,结合点到直线的距离公式,即可求解.【详解】由题意,设函数()2ln 3,0f x x x x =-+>,直线5y x =+,设直线y x b =+与函数()y f x =的切点为00(,)P x y 可得()21f x x¢=-,可得()00211f x x ¢=-=,解得01x =,可得02y =,即切点坐标为(1,2)P ,则切点到直线50x y -+=的距离为d ,又因为()()221212x x y y -+-表示点P 到直线50x y -+=的距离为平方,所以()()221212x x y y -+-的最小值为28d =.故选:C.32.B【分析】利用导数的几何意义及点到直线的距离公式即可求解.【详解】令e e 1xy ¢==,得1x =-,代入曲线11e e y -==,所以PQ 的最小值即为点11,e æö-ç÷èø到直线1e y x =的距离d =.故选:B.33.A【分析】利用导数的几何意义求出曲线的切线,利用数形结合进行求解即可.【详解】函数()ln f x x x =的定义域为全体正实数,()()ln ln 1f x x x f x x ¢=Þ=+,当1ex >时,()()0,f x f x ¢>单调递增,当10ex <<时,()()0,f x f x ¢<单调递减,函数图象如下图:过点()00,P x y 的曲线()ln f x x x =的切线与直线3y x =-平行时,PQ 最小,即有()()000ln 11101,0f x x x y P ¢=+=Þ=Þ=Þ,所以min PQ ==故选:A34.A【分析】先观察出函数关于1x =对称,在根据所求的式子可以判断1x >时比1x <的值要大,所以只需研究1x >的情况即可,把所求的式子经过换元,适当的变形转化为复合函数问题,其中一个内层函数又是两点斜率问题,借助数形结合思想和导数的几何意义即可求出最值.【详解】由函数解析式可知函数y 关于1x =对称,设z ()1x n n =<则z =()21x n n =-<,z =>即当1x >时z 的值要大于1x <时z 的值,所以只需研究1x >的情况即可, 当1x >时,12e 24x y x x -=+-,设1,4x a y b -=+=,b t a=则22222222111a ab b z b a a b t a b t++==+=++++, 根据复合函数单调性可知:()0,1t Î时,2z 递增,当(1,)t Î+¥,2z 递减.41b y t a x +==-,所以t 的几何意义是函数12e 24x y x x -=+-上一点与点()1,4-的斜率,设过点()1,4-的切线与函数12e 24x y x x -=+-的交点坐标(即切点)为()12,e24m m m m-+-(1)>m ,1e 44x y x -¢=+-,所以切线的斜率1e 44m k m -=+-,切线方程为()()()121e 24e 44m m y m m m x m ---+-=+--,把点()1,4-代入切线方程整理得:()()1e220m m m -+-=,所以2m =或1e 20m m -+=,设()1e 2mf m m -=+,()1e 20m f m -+¢=>,所以()f m 在(1,+∞)单调递增,所以()()13f m f >=,即1e 20m m -+=不合题意,所以2m =,此时切线的斜率1e 44e 4m k m -=+-=+,如图:[)e4,¥++,所以当e 4t =+时,2z 最大,此时z ==.故选:A【点睛】方法点睛:式子较为复杂的最值问题需要经过适当的变形求解,求函数的最值或值域常用方法有:(1)换元法;(2)函数单调性法;(3)复合函数法;(4)数形结合;(5)导数法;(6)基本不等式.35.C【分析】求|PQ |的最小值转化为求P 到直线y x =的最小距离,然后求曲线上斜率为1的切线方程式.进一步解析即可得出答案.【详解】e x y = 和ln y x =互为反函数,问题可以转化为直线y x =到e x y =距离的两倍.e x y ¢=,令e 1x =,得0,x =故切点为(0,1),min故选:C.。
(完整版)导数应用题
![(完整版)导数应用题](https://img.taocdn.com/s3/m/3678cbc2d5d8d15abe23482fb4daa58da0111ced.png)
(完整版)导数应用题
导数应用题
导数是微积分中的一个重要概念,它在物理学、经济学等学科
中有广泛的应用。
下面是几个关于导数应用的题目。
题目一:速度和加速度
一个物体随时间 t 的位移函数为:s(t) = 2t^3 - 3t^2 + 4t - 6。
求:
1. 物体在 t=2 时的速度;
2. 物体在 t=2 时的加速度。
题目二:边际利润
某公司生产某种产品的总成本和销售量之间的关系由函数 C(x) = 40x^2 - 10x + 200 决定,其中 x 表示销售量(单位:千件)。
产
品的销售价格为 500 元/件。
求:
1. 销售量为 10 千件时的总成本;
2. 销售量为 10 千件时的边际利润(边际利润定义为每增加一
单位销售量所带来的额外利润)。
题目三:物体的高度
一颗子弹以初速度 v0 被发射成 60°角度与水平面成的抛体轨迹。
子弹的飞行轨迹可以用函数 h(t) = -5t^2 + v0*sin(60°)*t 表示,
其中h(t) 表示子弹的高度(单位:米),t 表示时间(单位:秒)。
求:
1. 子弹飞行的最高点的高度;
2. 子弹从发射到达最高点的时间。
题目四:排队等候时间
某银行服务窗口的等候时间服从指数分布,平均等候时间为 10 分钟。
一位客户进入银行后等候 8 分钟后决定离开,请问他的等待
时间与等候时间之差服从的概率分布是什么?
以上是关于导数应用的几个题目,希望能帮助到你。
如果有任何疑问,请随时提问。
高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)
![高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)](https://img.taocdn.com/s3/m/240a3565ff4733687e21af45b307e87101f6f811.png)
5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。
导数的基本公式14个例题
![导数的基本公式14个例题](https://img.taocdn.com/s3/m/61175b9a2dc58bd63186bceb19e8b8f67c1cef8f.png)
导数的基本公式14个例题一、导数的基本公式。
1. 常数函数的导数:若y = C(C为常数),则y^′=0。
- 例如:y = 5,求y^′。
- 解析:根据常数函数导数公式,y^′ = 0。
2. 幂函数的导数:若y=x^n,则y^′ = nx^n - 1。
- 例如:y=x^3,求y^′。
- 解析:根据幂函数导数公式,n = 3,所以y^′=3x^2。
- 例如:y = x^(1)/(2),求y^′。
- 解析:n=(1)/(2),根据公式y^′=(1)/(2)x^(1)/(2)-1=(1)/(2)x^-(1)/(2)=(1)/(2√(x))。
3. 正弦函数的导数:若y = sin x,则y^′=cos x。
- 例如:y=sin x,求y^′。
- 解析:根据正弦函数导数公式,y^′=cos x。
4. 余弦函数的导数:若y=cos x,则y^′ =-sin x。
- 例如:y = cos x,求y^′。
- 解析:根据余弦函数导数公式,y^′=-sin x。
5. 指数函数y = a^x的导数(a>0,a≠1):y^′=a^xln a。
- 例如:y = 2^x,求y^′。
- 解析:根据指数函数导数公式,a = 2,所以y^′=2^xln2。
6. 对数函数y=log_ax的导数(a>0,a≠1,x>0):y^′=(1)/(xln a)。
- 例如:y=log_2x,求y^′。
- 解析:根据对数函数导数公式,a = 2,所以y^′=(1)/(xln2)。
- 特别地,当a = e时,y=ln x,y^′=(1)/(x)。
- 例如:y=ln x,求y^′。
- 解析:根据自然对数函数导数公式,y^′=(1)/(x)。
7. 正切函数的导数:若y=tan x=(sin x)/(cos x),则y^′=sec^2x=(1)/(cos^2)x。
- 例如:y = tan x,求y^′。
- 解析:根据正切函数导数公式,y^′=sec^2x=(1)/(cos^2)x。
导数的概念经典例题
![导数的概念经典例题](https://img.taocdn.com/s3/m/c2beb7d2561252d381eb6e0a.png)
0.03005g 0.01 同理v 23.005g (m / s)。
经典例题透析类型一:求函数的平均变化率21例仁求y 2x 1在X 0到X 0X 之间的平均变化率,并求 X 0 1 , X时平均变化率的值思路点拨:求函数的平均变化率,要紧扣定义式 一丫f (X0一x )一进行操作.x解析:当变量从X 。
变到X 。
x 时,函数的平均变化率为Xf (X 。
X) 2 2f(X °) [2(X 0X) 1] [2X 0 1]4X 0 2 xXX当X 0 11x —时,平均变化率的值为: 4 12 2 125. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式, 其他就迎刃而解•举一反三:2 、 ,【变式1】求函数y=5x +6在区间[2,2+ x ]内的平均变化率。
【答案】y 5(2x )2 6 (5 22 6) 20 x 5 x 2,所以平均变化率为丄 20 5 x 。
x【变式2】已知函数f (x ) x 2,分别计算f (x )在下列区间上的平均变化率: (1) [1,3]; (2) [1,2]; (3) [1,]; (4) [1,]•【答案】(1)4;( 2)3;( 3);(4).一 一 1 2【变式3】自由落体运动的运动方程为 s gt ,计算t 从3s 到,,各段内的平均速度(位移 s 的单位为m )。
【答案】要求平均速度,就是求 —的值,为此需求出s 、 t 。
t设在[3,]内的平均速度为 V 1,贝Ut 1 3.1 3 0.1(s ),1 2 12 S s (3.1) s (3) -g 3.12 -g 320.305g (m )。
所以 v 1 —s10.305g 3.05g (m / s )。
0.03005g 0.01同理v 23.005g (m / s)。
t 10.1 t 2x(1) f'(4)x线的斜率•【答案】 当x 0.1时类型二:利用定义求导数x(1 .1)一 —x举一反三:【变式1】已知函数y 1 Gxx=4处的导数.-x 上一点P(4, 7)处的切线方程。
初中数学导数题型汇编(含答案)--
![初中数学导数题型汇编(含答案)--](https://img.taocdn.com/s3/m/77fd6e8028ea81c758f578ca.png)
重难点突破 | 导数题型汇编角度一:导数的概念及运算【例题1】知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为【解析】由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x∴f ′(x )=1x 2,∴f ′(1)=1,由导数的几何意义知,所求切线的斜率k =1【变式1】已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .【解析】由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 【变式2】函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )图象可能是( )【解析】设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3, 由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0; 当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),函数f (x )在(-∞,x 1),(x 2,x 3)上递减,在(x 1,x 2),(x 3,+∞)上递增,选D角度二:求不含参数函数的单调性【例题2】定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )单调递增区间是____【分析】确定函数单调区间的步骤:(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式 f ′(x )>0,得到单调递增区间.(4)解不等式f ′(x )<0,得到单调递减区间. 【解析】f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.【变式3】已知函数f (x )=(-x 2+2x )e x (x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.【解析】因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 【变式4】已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间. 【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,且x >0,∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).角度三:讨论含参数函数的单调性【例题3】已知函数f (x )=x 2e-ax-1(a 是常数),求函数y =f (x )的单调区间【分析】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【解析】当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax+x 2(-a )e-ax=e-ax(-ax 2+2x ).因为e-ax>0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a.①当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0, 即f ′(x )≥0,函数y =f (x )单调递增.②当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )递减. 综上所述,当a =0时,函数y =f (x )单调递增区间为(0,+∞),单调递减区间为(-∞,0); 当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0.【变式5】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式6】函数f (x )=bex -1(b ∈R )在点(0,f (0))处切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.【解析】f (0)=b -1,过点(0,b -1),(2,-2)直线斜率k =b -1-(-2)0-2=-b +12,而f ′(x )=-b e x ,,f ′(0)=-b =-b +12,所以b =1,f (x )=1e x -1.则F (x )=ax +1e x -1,F ′(x )=a -1ex ,当a ≤0时,F ′(x )<0恒成立;当a >0时,由F ′(x )<0,得x <-ln a ,由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减;当a >0时,函数F (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. 【变式7】已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.【解析】f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a >1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a .②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a <1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减.角度四:利用单调性求参数的取值范围【例题4】已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解析】(1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞).(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1,所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 【变式8】函数f (x )=x ln x -ax 2在(0,+∞)上单调递减,则实数a 的取值范围是________【解析】f ′(x )=ln x -2ax +1,若f (x )在(0,+∞)上单调递减,则ln x -2ax +1≤0在(0,+∞)上恒成立,即a ≥ln x +12x 在(0,+∞)上恒成立.令g (x )=ln x +12x ,x ∈(0,+∞),则g ′(x )=-ln x2x 2,令g ′(x )>0,解得0<x <1,令g ′(x )<0,解得x >1, 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故g (x )max =g (1)=12,故a ≥12.【变式9】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 由题意知,f ′(x )>0在⎣⎡⎭⎫23,+∞上有解,当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式10】 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.【解析】f ′(x )=1-23cos 2x +a cos x ==-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.【变式11】 若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 范围是____ 【解析】易知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )=0有2个不同的实根. 需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).角度五:根据图象定性判定极值问题【例题5】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 【解析】由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.【变式12】 函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点【解析】设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C.角度六:处理含参(不含参)函数的极值(最值)【例题6】函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 【解析】(1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e≤x <1, 令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎭⎫1e ,1上单调递增;在(1,e]上单调递减, ∴f (x )max =f (1)=-12.【变式13】 函数f (x )=ln x -ax (a ∈R ).讨论函数f (x )在定义域内极值点的个数.【分析】运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.【解析】函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .【变式14】 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.【分析】求最值一般步骤:第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求 f (x )在给定区间上的单调性和极值;第三步:(求端点值)求f (x )在给定区间上的端点值; 第四步:(求最值)将f (x )的各极值与f (x )的端点值进比较,确定f (x )的最大值与最小值; 【解析】(1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞)②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ (2)①当1a ≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在[1,2]上是增函数,所以f (x )的最小值是f (1)=-a③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[11分]综上可知,当0<a <ln 2时,函数f (x )的最小值是f (1)=-a当a ≥ln 2时,函数f (x )的最小值是f (2)=ln 2-2a角度七:利用极值或最值求参数的取值或范围【例题7】函数f (x )=ax +ln x ,a 为常数,若f (x )在区间(0,e]上最大值为-3,求a 值.【分析】求函数在无穷区间(或开区间)上最值,不仅要研究极值情况,还要研究单调性,通过单调性和极值情况,画出函数的大致图象,借助图象得到最值. 【解析】f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0,舍去.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数,∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.【变式15】 若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的 取值范围是________.【解析】函数f (x )在区间⎝⎛⎭⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝⎛⎭⎫12,3内有根, 由f ′(x )=0有2个不相等的实根,得a <-2或a >2. 由f ′(x )=0在⎝⎛⎭⎫12,3内有根,得a =x +1x 在⎝⎛⎭⎫12,3内有解, 又x +1x ∈⎣⎡⎭⎫2,103,所以2≤a <103.综上,a 的取值范围是⎝⎛⎭⎫2,103.【变式16】 已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的 最小值是________.【解析】f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4. f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4.【变式17】 设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.【解析】(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x.又a >0,当x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )递增,当x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )递减. ∴函数y =g (x )的单调递增区间为⎝⎛⎭⎫0,12a ,单调递减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞.角度八:证明或判定不等式大小【例题8】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【解析】因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数, 所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A.【变式18】 已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2 019)>(m -2 019)f (2),则实数m 的取值范围为 【解析】令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0,∴函数h (x )在(0,+∞)上单调递减, ∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2).∴m -2 019<2且m -2 019>0,得2 019<m <2 021.∴实数m 的取值范围为(2 019,2 021).【变式19】 设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________. 【解析】∵当x >0时,⎣⎡⎦⎤f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)减函数,φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).角度九:不等式恒成立求参数的取值范围【例题9】已知函数f (x )=x ln x (x >0).(1)求f (x )的单调区间和极值;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.【解析】(1)由f (x )=x ln x (x >0),得f ′(x )=1+ln x , 令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e.∴f (x )的单调增区间是⎝⎛⎭⎫1e ,+∞,单调减区间是⎝⎛⎭⎫0,1e . 故f (x )在x =1e 处有极小值f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≥-x 2+mx -32及f (x )=x ln x ,得m ≤2x ln x +x 2+3x恒成立,问题转化为m ≤⎝⎛⎭⎫2x ln x +x 2+3x min .令g (x )=2x ln x +x 2+3x (x >0),则g ′(x )=2x +x 2-3x 2,由g ′(x )>0⇒x >1,由g ′(x )<0⇒0<x <1.所以g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )min =g (1)=4,因此m ≤4,所以m 的最大值是4.【变式20】 已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 范围. 【证明】(1) 当a =0时,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0. 【解析】(2) f ′(x )=e x -1-2ax ,令h (x )=e x -1-2ax ,则h ′(x )=e x -2a .①当2a ≤1,a ≤12时,在[0,+∞)上,h ′(x )≥0,h (x )递增,h (x )≥h (0),f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上为增函数,∴f (x )≥f (0)=0,∴当a ≤12时满足条件.②当2a >1,即a >12时,令h ′(x )=0,解得x =ln(2a ),在[0,ln(2a ))上,h ′(x )<0,h (x )递减,∴当x ∈(0,ln(2a ))时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0,∴f (x )在(0,ln(2a ))上为减函数, ∴f (x )<f (0)=0,不合题意.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,12. 【变式21】 已知函数f (x )=sin xx (x ≠0).(1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值.【分析】利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如 a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围. 【解析】(1)f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. g (x )在区间⎝⎛⎭⎫0,π2恒小于零,f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零,函数f (x )在区间⎝⎛⎭⎫0,π2上递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0. 当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.角度十:不等式能成立求参数的取值范围【例题10】 函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围.【解析】依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e .由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e .【变式22】 已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.【解析】依题意知f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min . 当a =14时,f (x )=ln x -14x +34x -1,所以f ′(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,则当0<x <1时,f ′(x )<0,当1<x <2时,f ′(x )>0,所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,①当b <1时,可求得g (x )min =g (1)=5-2b ,则5-2b ≤-12,解得b ≥114,这与b <1矛盾;②当1≤b ≤2时,可求得g (x )min =g (b )=4-b 2,则4-b 2≤-12,得b 2≥92,与1≤b ≤2矛盾;③当b >2时,可求得g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综合①②③得实数b 的取值范围是⎣⎡⎭⎫178,+∞.【变式23】 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 【解析】(1)当a =1时,f (x )=x 3-x 2+10,所以f ′(x )=3x 2-2x ,所以k =f ′(2)=8.又f (2)=14,所以切线方程为y =8x -2. (2)由已知得:a >x 3+10x 2=x +10x 2至少有一个实数x 使之成立,即a >⎝⎛⎭⎫x +10x 2min . 设g (x )=x +10x 2(1≤x ≤2),则g ′(x )=1-20x3,因为1≤x ≤2,所以g ′(x )<0.所以g (x )在[1,2]上是减函数,所以g (x )min =g (2)=92,a >92,即a 的取值范围是⎝⎛⎭⎫92,+∞.角度十一:判定零点个数问题【例题11】 已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解析】f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2,所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增.f (x )min =f (e -2)=a -2e ,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.【变式24】 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解析】(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.角度十二:根据零点个数求参数的取值范围【例题12】 已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解析】由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知φ(x )在(2,e)为增函数,在(e ,e)为减函数,则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 22e 2e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2).所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .【变式25】 已知函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103. (1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 【解析】(1)因为函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2,所以f ′(x )=x 2-x -2.由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56,f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点,则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝⎛⎭⎫-76,1312.【变式26】 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )= 2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解析】由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2.且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,所以实数a 的取值范围为4<a ≤e +2+3e , 即a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 、【变式27】 函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解析】当x 从0的右侧趋近于0时,f (x )→+∞,所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能.故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,需x ∈⎝⎛⎭⎫0,14时,a >3-2ln x x -1恒成立.令h (x )=3-2ln x x -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x -2(x -1)2,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14,则m ′(x )=-2(1-x )x 2<0, 于是在⎝⎛⎭⎫0,14上m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0,所以h ′(x )>0在⎝⎛⎭⎫0,14恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数,所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2,所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.角度十三:零点综合问题【例题13】 若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和.【解析】f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝⎛⎭⎫0,a 3上递减,在⎝⎛⎭⎫a3,+∞上递增,又f (x )在(0,+∞)内有且只有一个零点, 所以f ⎝⎛⎭⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减.则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.【变式28】 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 【解析】(1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx(x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0。
导数的概念
![导数的概念](https://img.taocdn.com/s3/m/6469d3ceda38376baf1fae0e.png)
在高台跳水运动中,平均速度不能反映他在这 在高台跳水运动中 平均速度不能反映他在这 段时间里运动状态, 段时间里运动状态,需要用瞬时速度描述运 动状态。 动状态。我们把物体在某一时刻的速度称为 瞬时速度. 瞬时速度
又如何求 瞬时速度呢?
平均变化率近似地刻画了曲线在某一区间上的变化趋 势. 如何精确地刻画曲线在一点处的变化趋势呢? 如何精确地刻画曲线在一点处的变化趋势呢
∆t →0
= −9.8t0 + 6.5
由导数的定义可知, 的导数的一般方法: 由导数的定义可知 求函数 y = f (x)的导数的一般方法 的导数的一般方法 1. 求函数的改变量 ∆f = f (x0 + ∆x) − f (x0 ); f (x0 + ∆x) − f (x0 ) ∆f = ; 2. 求平均变化率 ∆x ∆x ∆f 3. 求值 f ′(x0 ) = lim .
1 2 物体作自由落体运动,运动方程为 s 运动方程为: 例2 物体作自由落体运动 运动方程为: = 2 gt 其 2
中位移单位是m,时间单位是 中位移单位是 时间单位是s,g=10m/s .求: 时间单位是 求 (1) 物体在时间区间 物体在时间区间[2,2.1]上的平均速度; 上的平均速度; 上的平均速度 (2) 物体在时间区间 物体在时间区间[2,2.01]上的平均速度; 上的平均速度; 上的平均速度 (3) 物体在 物体在t=2(s)时的瞬时速度 时的瞬时速度. 时的瞬时速度 分析:
局部以匀速代替变速,以平均速度代替瞬时速度, 局部以匀速代替变速,以平均速度代替瞬时速度,然后通过 取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。 取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
那么,运动员在某一时刻t 的瞬时速度? 那么,运动员在某一时刻t0的瞬时速度?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题透析类型一:求函数的平均变化率例1、求221y x =+在0x 到0x x +∆之间的平均变化率,并求01x =,12x ∆=时平均变化率的值. 思路点拨: 求函数的平均变化率,要紧扣定义式00()()f x x f x y x x+∆-∆=∆∆进行操作. 解析:当变量从0x 变到0x x +∆时,函数的平均变化率为220000()()[2()1][21]f x x f x x x x x x+∆-+∆+-+=∆∆042x x =+∆ 当01x =,12x ∆=时,平均变化率的值为:141252⨯+⨯=. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式,其他就迎刃而解.举一反三:【变式1】求函数y=5x 2+6在区间[2,2+x ∆]内的平均变化率。
【答案】2225(2)6(526)205y x x x ∆=+∆+-⨯+=∆+∆, 所以平均变化率为205yx x∆=+∆∆。
【变式2】已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]. 【答案】(1)4;(2)3;(3)2.1;(4)2.001. 【变式3】自由落体运动的运动方程为212s gt =,计算t 从3s 到3.1s ,3.01s ,3.001s 各段内的平均速度(位移s 的单位为m )。
【答案】要求平均速度,就是求st∆∆的值,为此需求出s ∆、t ∆。
设在[3,3.1]内的平均速度为v 1,则1 3.130.1(s)t ∆=-=,22111(3.1)(3) 3.130.305(m)22s s s g g g ∆=-=⨯-⨯=。
所以1110.305 3.05(m / s)0.1s gv g t ∆===∆。
同理2220.03005 3.005(m / s)0.01s gv g t ∆===∆。
3330.0030005 3.0005(m / s)0.001s gv g t ∆===∆。
【变式4】过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.【答案】3.31 当0.1x ∆=时33(1)1(1)(1)(1)1 1.11 3.31(1)10.1PQy y f x f x k x x x x +∆-∆+∆-+∆--======+∆-∆∆∆ 类型二:利用定义求导数例2、用导数的定义,求函数()y f x ==x=1处的导数。
解析:∵(1)(1)1y f x f ∆=+∆-====∴y x ∆=∆ ∴01'(1)lim2x y f x ∆→∆==-∆。
总结升华:利用导数的定义求导数的步骤: 第一步求函数的增量y ∆;第二步求平均变化率yx∆∆;第三步取极限得导数。
举一反三:【变式1】已知函数1y x=(1)求函数在x=4处的导数. (2)求曲线1y x =7(4,)4P -处的切线方程。
【答案】(1)0011(2)(4)(4)44'(4)lim lim x x f x f x f x x∆→∆→-+∆-+∆==∆∆0112)44lim x x x ∆→⎛⎫-- ⎪+∆⎝⎭=∆0lim x ∆→=15lim 4(4)16x x ∆→⎛-==- +∆⎝, (2)由导数的几何意义知,曲线在点7(4,)4P -处的切线斜率为'(4)f ,∴所求切线的斜率为516-。
∴所求切线方程为75(4)416y x +=--,整理得5x+16y+8=0。
【变式2】利用导数的定义求下列函数的导数: (1)()f x c =; (2)()f x x =; (3)2()f x x =; (4)1()f x x=。
【答案】(1)()()0y f x x f x c c ∆=+∆-=-=,∴()()0y f x x f x x x∆+∆-==∆∆, ∴00'lim lim 00x x yy x ∆→∆→∆===∆。
(2)()()y f x x f x x x x x ∆=+∆-=+∆-=∆,∴1y x x x∆∆==∆∆, ∴00'lim lim11x x yy x ∆→∆→∆===∆。
(3)222()()()2()y f x x f x x x x x x x ∆=+∆-=+∆-=⋅∆+∆,∴22()2y x x x x x x x∆⋅∆+∆==+∆∆∆, ∴00'limlim(2)2x x yy x x x x ∆→∆→∆==+∆=∆。
(4)11()()y f x x f x x x x ∆=+∆-=-+∆()()x x xx x x x x x x--∆-∆==+∆⋅+∆⋅,∴1()y x x x x∆=-∆+∆⋅, ∴20011'limlim ()x x y y x x x x x∆→∆→∆-===-∆+∆⋅。
例3、求曲线y=x 3+2x 在x=1处的切线方程.思路点拨:从函数在一点处的导数定义可求得函数y=x 3+2x 在x=1处的导数值,再由导数的几何意义,得所求切线的斜率,将x=1代入函数可得切点坐标,从而建立切线方程.解析:设3()2f x x x =+.0(1)(1)'(1)limx f x f f x ∆→+∆-=∆330(1)2(1)(121)lim x x x x ∆→+∆++∆-+⨯=∆ 20[()35]lim x x x x x∆→∆∆+∆+=∆20lim[()35]x x x ∆→=∆+∆+5= 由f(1)=3,故切点为(1,3),切线方程为y ―3=5(x ―1),即y=5x ―2.总结升华: 求函数()y f x =图像上点P 00(,)x y 处的切线方程的求解步骤:① 求出导函数在0x x =处的导数0'()f x (即过点P 的切线的斜率), ② 用点斜式写出切线方程,再化简整理。
举一反三:【变式】在曲线y=x 2上过哪一点的切线: (1)平行于直线y=4x ―5; (2)垂直于直线2x ―6y+5=0; (3)与x 轴成135°的倾斜角。
【答案】2200()()()'()limlim 2x x f x x f x x x x f x x x x∆→∆→+∆-+∆-===∆∆, 设所求切点坐标为P (x 0,y 0),则切线斜率为k=2x 0(1)因为切线与直线y=4x ―5平行,所以2x 0=4,x 0=2,y 0=4, 即P (2,4)。
(2)因为切线与直线2x ―6y+5=0垂直,所以01213x ⨯=-,得032x =-,094y =, 即39(,)24P -。
(3)因为切线与x 轴成135°的倾斜角,所以其斜率为―1。
即2x 0=―1,得012x =-,014y =, 即11(,)24P -。
例4.已知函数()f x 可导,若(1)3f =,'(1)3f =,求21()3lim 1x f x x →--解析:22211()3()3limlim[(1)]11x x f x f x x x x →→--=⋅+-- ((1)3f =) 221()(1)lim[(1)]1x f x f x x →-=⋅+- 2211()(1)lim lim(1)1x x f x f x x →→-=⋅+- (令t=x 2,x →1,t →1) 1()(1)2lim1t f t f t →-=-2'(1)236f ==⨯= 举一反三:【变式】已知函数()f x 可导,若(3)2f =,'(3)2f =,求323()lim 3x x f x x →--【答案】3323()(26)63()limlim33x x x f x x f x x x →→--+-=-- 33[2()]lim{2}3x f x x →-=+-3(3)()23lim 3x f f x x →-=+-3()(3)23lim 3x f x f x →-=--23'(3)23(2)8f =-=-⨯-=类型三:利用公式及运算法则求导数例5.求下列函数的导数:(1)41y x=; (2)y (3)222log log y x x =-; (4)y=2x 3―3x 2+5x +4解析: (1)44154514'()'()'44y x x x x x----===-=-=-.(2)332155533'()'55y x x x --=====(3)∵2222log log log y x x x =-=,∴21'(log )'ln 2y x x ==⋅. (4)322'2()'3()'5()'(4)'665y x x x x x =-++=-+总结升华:①熟练掌握导数基本公式,仔细观察和分析各函数的结构规律,选择基本函数求导公式进行求导; ②不具备求导法则条件的,一般要遵循先化简,再求导的原则,适当进行恒等变形,步步为营,使解决问题水到渠成.举一反三:【变式】求下列函数的导数:(1)y = (2)22sin(12cos )24x x y =-- (3)y=6x 3―4x 2+9x ―6【答案】(1)331223'(()'2y x x -====(2)22sin(12cos )24x x y =--22sin (2cos 1)24x x =-2sin cos sin 22x xx == ∴'cos y x =.(3)322'6()'4()'9()'(6)'1889y x x x x x =-+-=-+ 例6.求下列各函数的导函数(1)2()(1)(23)f x x x =+-;(2)y=x 2sinx;(3)y=1e 1e -+x x ; (4)y=x x xx sin cos ++解析:(1)法一:去掉括号后求导.32()2323f x x x x =-+- 2'()662f x x x =-+法二:利用两个函数乘积的求导法则22'()(1)'(23)(1)(23)'f x x x x x =+-++⋅-=2x(2x -3)+(x 2+1)×2=6x 2-6x+2 (2)y ′=(x 2)′sinx +x 2(sinx )′=2xsinx +x 2cosx(3)2(e 1)(e 1)(e 1)(e 1)'(e 1)x x x x x y ''+--+-=-2e 2-x x(4)2(cos )(sin )(cos )(sin )'(sin )x x x x x x x x y x x ''++-++=+=2)sin ()cos 1)(cos ()sin )(sin 1(x x x x x x x x +++-+- =2)sin (1cos sin sin cos x x x x x x x x +--+--举一反三:【变式1】函数2(1)(1)y x x =+-在1x =处的导数等于( ) A .1 B .2 C .3 D .4 【答案】D法一: 22'[(1)]'(1)(1)(1)'y x x x x =+-++- 222(1)(1)(1)321x x x x x =+⋅-++=+-∴1'|4x y ==.法二:∵22(1)(1)(1)(1)y x x x x =+-=-+321x x x =+--∴322'()'()''1'321y x x x x x =+--=+- ∴1'|4x y ==.【变式2】下列函数的导数(1)2(1)(231)y x x x =++-; (2)y =【答案】(1)法一:13232223-++-+=x x x x x y 125223-++=x x x∴26102y x x '=++法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322-+x x +)1(+x )34(+x 26102x x =++ (2)231212332----+-=x x xx y∴252232123233---+-+='x x x x y【变式3】求下列函数的导数.(1)2311()y x x x x =++; (2)1)y =-;(3)52sin x x y x =. 【答案】 (1)321y x x-=++,∴23'32y x x -=-.(2)1122y x x -===-,∴312211'22y x x --=--.(3)∵3322sin y x xx x --=++,∴522223'3()'sin (sin )'2y x x x x x x ---=-++52322332sin cos 2x x x x x x ---=--+.类型四:复合函数的求导 例7.求下列函数导数. (1)41(13)y x =-; (2)ln(2)y x =+;(3)21e x y +=; (4)cos(21)y x =+.思路点拨:求复合函数的导数首先必须弄清函数是怎样复合而成的,然后再按复合函数的求导法则求导. 解析:(1)4y u -=,13u x =-.4'''()'(13)'x u x y y u u x -=⋅=⋅-5554(3)1212(13)u u x --=-⋅-==-. (2)ln y u =,2u x =+∴'''(ln )'(2)'x u x y y u u x =⋅=⋅+ 1112u x =⋅=+ (3)e uy =,21u x =+.∴'''(e )'(21)'ux u x y y u x =⋅=⋅+212e 2eu x +==(4)cos y u =,21u x =+,∴'''(cos )'(21)'x u x y y u u x =⋅=⋅+ 2sin 2sin(21)u x =-=-+.总结升华:①复合函数的求导,一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。