2015年全国高中数学联合竞赛一试解答(A卷)
2014年全国高中数学联合竞赛一试(A卷)参考答案及评分
![2014年全国高中数学联合竞赛一试(A卷)参考答案及评分](https://img.taocdn.com/s3/m/c8c63c33763231126edb1146.png)
2014年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,共64分.1. 若正数,a b 满足 2362log 3log log ()a b a b ,则11a b的值为.答案:108.解:设2362log 3log log ()a b a b k ,则232,3,6k k k a b a b ,从而23231162310823k k k a b a b ab .2. 设集合312b a b a中的最大元素与最小元素分别为,M m ,则M m 的值为 .答案:5 .解:由12a b 知,33251b a ,当1,2a b 时,得最大元素5M .又33b a a a ,当a b 时,得最小元素m 因此,5M m3. 若函数2()1f x x a x 在[0,) 上单调递增,则实数a 的取值范围是 .答案:[2,0] .解:在[1,) 上,2()f x x ax a 单调递增,等价于12a,即2a .在[0,1]上,2()f x x ax a 单调递增,等价于02a,即0a .因此实数a 的取值范围是[2,0] .4. 数列{}n a 满足12a ,*12(2)()1n n n a a n n N ,则2014122013a a a a .答案:20152013.解:由题设 122(1)2(1)21n n n n n n a a a n n n112(1)2232(1)12n n n a n n n .记数列{}n a 的前n 项和为n S ,则21223242(1)n n S n −=+×+×+++ ,所以 2322223242(1)nn S n =×+×+×+++ ,智浪教育—普惠英才文库将上面两式相减,得 122(1)(2222)n n n nS n −−=+−++++2(1)22n nn n n =+−=.故2013201420131220132201522013a a a a20152013. 5. 正四棱锥P ABCD 中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN 与PC 之间的距离是 .答案解:设底面对角线,AC BD 交于点O ,过点C 作直线MN 的垂线,交MN 于点H .由于PO 是底面的垂线,故PO CH ,又AC CH ,所以CH 与平面POC 垂直,故CH PC .因此CH 是直线MN 与PC的公垂线段,又CH MN 与PC6. 设椭圆Г的两个焦点是12,F F ,过点1F 的直线与Г交于点,P Q .若212PF F F ,且1134PF QF,则椭圆Г的短轴与长轴的比值为.答案.解:不妨设114,3PF QF .记椭圆Г的长轴,短轴的长度分别为2a ,2b ,焦距为2c ,则2122PF F F c ,且由椭圆的定义知,1212224a QF QF PF PF c .于是 212121QF PF PF QF c .设H 为线段1PF 的中点,则12,5F H QH ,且有21F H PF .由勾股定理知,2222222121QF QH F H F F F H ,即2222(21)5(2)2c c ,解得5c ,进而7a ,b =,因此椭圆Г的短轴与长轴的比值为b a .7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI ,则△APB 与△APC 的面积之比的最大值为 .答案. 解:由1PI 知点P 在以I 为圆心的单位圆K 上.设BAP .在圆K 上取一点0P ,使得 取到最大值0 ,此时0P 应落在IAC 内,且是0AP 与圆K 的切点.由于003,故 001sin sin sin sin 621sin sin sin sin 23336APB APCAP AB S S AP AC, ①其中,006IAP. 由02AP I知,011sin 24IP AI r,于是cot ,所以sin356sin 6.②根据①、②可知,当0P P 时,APB APCS S 35.8. 设A ,B ,C ,D 是空间四个不共面的点,以12的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则A ,B 可用(一条边或者若干条边组成的)空间折线连接的概率为 .答案:34.解:每对点之间是否连边有2种可能,共有6264 种情况.考虑其中A ,B 可用折线连接的情况数.(1) 有AB 边:共5232 种情况.(2) 无AB 边,但有CD 边:此时A ,B 可用折线连接当且仅当A 与C ,D 中至少一点相连,且B 与C ,D 中至少一点相连,这样的情况数为22(21)(21)9 .(3) 无AB 边,也无CD 边:此时AC ,CB 相连有22种情况,AD ,DB 相连也有22种情况,但其中AC ,CB ,AD ,DB 均相连的情况被重复计了一次,故A ,B 可用折线连接的情况数为222217 .以上三类情况数的总和为329748 ,故A ,B 可用折线连接的概率为483644.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x 的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为Q ,R .(1) 证明R 是一个定点; (2) 求PQ QR的最小值.解: (1)设P 点的坐标为(,)(0)a b b ,易知0a ≠.记两切点A ,B 的坐标分别为1122(,),(,)x y x y ,则PA ,PB 的方程分别为112()yy x x , ① 222()yy x x ,② 而点P 的坐标(,)a b 同时满足①,②,故A ,B 的坐标11(,)x y ,22(,)x y 均满足方程2()by x a . ③故③就是直线AB 的方程.直线PO 与AB 的斜率分别为b a 与2b ,由PO AB 知,21b a b,故2a .………………4分从而③即为2(2)y x b,故AB 与x 轴的交点R 是定点(2,0). ……………8分(2) 因为2a =− ,故直线PO 的斜率12b k ,直线PR 的斜率24bk .设OPR ,则 为锐角,且22121211182824tan 2224b b PQ k k b b b b QR k k b b .当b 时,PQ QR的最小值为 …………………16分10. (本题满分20分)数列{}n a 满足16a,*1arctan (sec )()N n n a a n .求正整数m ,使得121sin sin sin 100m a a a. 解:由已知条件可知,对任意正整数n ,1,22n a,且 1tan sec n n a a .①由于sec 0n a ,故10,2n a.由①得,2221tan sec 1tan n n n a a a ,故 221132tan 1tan 133n n a n a n, 即3tan n n a…………………10分 因此121212tan tan tan sin sin sin sec sec sec m m ma a a a a a a a a12231tan tan tan tan tan tan m m a a a a a a(利用①) 11tan tan m a a1100,得m =3333. …………………20分11. (本题满分20分)确定所有的复数 ,使得对任意复数12121,(,1,z z z z z ≠2)z ,均有211()z z ≠222()z z .解:记2()()f z z z .则22121122()()()()f z f z z z z z121212(2)()z z z z z z .①假如存在复数12121,(,1,z z z z z ≠2)z ,使得12()()f z f z ,则由①知,121212(2)()z z z z z z ,利用121212z z z z z z ≠0知,12122222z z z z ,即2 . …………………10分另一方面,对任意满足2 的复数 ,令12i,i 22z z,其中012,则1z ≠2z ,而i 122,故12,1z z .此时将 12z z ,122i z z ,122i 2i z z代入①可得,12()()2i (2i)0f z f z ,即12()()f z f z .综上所述,符合要求的 的值为 ,2C . …………………20分。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)
![2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)](https://img.taocdn.com/s3/m/4a49303f0a1c59eef8c75fbfc77da26925c59690.png)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
2014年全国高中数学联赛试题及答案详解(A卷)
![2014年全国高中数学联赛试题及答案详解(A卷)](https://img.taocdn.com/s3/m/ed600728ae45b307e87101f69e3143323968f543.png)
说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,共64分.1. 若正数,a b 满足 2362log 3log log ()a b a b ,则11a b的值为 .答案:108.解:设2362log 3log log ()a b a b k ,则232,3,6k k k a b a b ,从而23231161082323k k k a b a b ab . 2. 设集合312b a b a中的最大元素与最小元素分别为,M m ,则M m 的值为 .答案:5解:由12a b 知,33251b a ,当1,2a b 时,得最大元素5M.又33b a a aa bm .因此,5M m .3. 若函数2()1f x x a x 在[0,) 上单调递增,则实数a 的取值范围是 .答案:[2,0] .解:在[1,) 上,2()f x x ax a 单调递增,等价于12a,即2a .在[0,1]上,2()f x x ax a 单调递增,等价于02a,即0a .因此实数a 的取值范围是[2,0] .4. 数列{}n a 满足12a ,*12(2)()1n n n a a n n N ,则2014122013a a a a .答案:20152013.解:由题设 122(1)22(1)1n n n n n n a a a n n n112(1)2232(1)12n n n a n n n .记数列{}n a 的前n 项和为n S ,则21223242(1)n n S n −=+×+×+++ ,所以 2322223242(1)nn S n =×+×+×+++ ,参考答案及评分标准2014年全国高中数学联合竞赛一试(A 卷)将上面两式相减,得 122(1)(2222)n n n nS n −−=+−++++2(1)22n nn n n =+−=.故2013201420131220132201522013a a a a20152013. 5. 正四棱锥P ABCD 中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN 与PC 之间的距离是 .答案解:设底面对角线,AC BD 交于点O ,过点C 作直线MN 的垂线,交MN 于点H .由于PO 是底面的垂线,故PO CH ,又AC CH ,所以CH 与平面POC 垂直,故CH PC .因此CH 是直线MN 与PC的公垂线段,又CHMN 与PC6. 设椭圆Г的两个焦点是12,F F ,过点1F 的直线与Г交于点,P Q .若212PF F F ,且1134PF QF ,则椭圆Г的短轴与长轴的比值为 .答案解:不妨设114,3PF QF .记椭圆Г的长轴,短轴的长度分别为2a ,2b ,焦距为2c ,则2122PF F F c ,且由椭圆的定义知,1212224a QF QF PF PF c .于是 212121QF PF PF QF c .设H 为线段1PF 的中点,则12,5F H QH ,且有21F H PF .由勾股定理知,2222222121QF QH F H F F F H ,即2222(21)5(2)2c c ,解得5c ,进而7a,b =,因此椭圆Г的短轴与长轴的比值为b a.7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI ,则△APB 与△APC 的面积之比的最大值为 .答案. 解:由1PI 知点P 在以I 为圆心的单位圆K 上.设BAP .在圆K 上取一点0P ,使得 取到最大值0 ,此时0P 应落在IAC 内,且是0AP 与圆K 的切点.由于003,故 001sin sin sin sin 621sin sin sin sin 23336APB APCAP AB S S AP AC, ①其中,006IAP. 由02AP I知,011sin 24IP AI r,于是cot ,所以sin 6sin 6.②根据①、②可知,当0P P 时,APB APC S S. 8. 设A ,B ,C ,D 是空间四个不共面的点,以12的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则A ,B 可用(一条边或者若干条边组成的)空间折线连接的概率为 .答案:34.解:每对点之间是否连边有2种可能,共有6264 种情况.考虑其中A ,B 可用折线连接的情况数.(1) 有AB 边:共5232 种情况.(2) 无AB 边,但有CD 边:此时A ,B 可用折线连接当且仅当A 与C ,D 中至少一点相连,且B 与C ,D 中至少一点相连,这样的情况数为22(21)(21)9 .(3) 无AB 边,也无CD 边:此时AC ,CB 相连有22种情况,AD ,DB 相连也有22种情况,但其中AC ,CB ,AD ,DB 均相连的情况被重复计了一次,故A ,B 可用折线连接的情况数为222217 .以上三类情况数的总和为329748 ,故A ,B 可用折线连接的概率为483644.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x 的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为Q ,R .(1) 证明R 是一个定点; (2) 求PQ QR的最小值.解: (1)设P 点的坐标为(,)(0)a b b ,易知0a ≠.记两切点A ,B 的坐标分别为1122(,),(,)x y x y ,则PA ,PB 的方程分别为112()yy x x , ① 222()yy x x ,② 而点P 的坐标(,)a b 同时满足①,②,故A ,B 的坐标11(,)x y ,22(,)x y 均满足方程2()by x a . ③故③就是直线AB 的方程.直线PO 与AB 的斜率分别为b a 与2b ,由PO AB 知,21b a b,故2a .………………4分从而③即为2(2)y x b,故AB 与x 轴的交点R 是定点(2,0). ……………8分(2) 因为2a =− ,故直线PO 的斜率12b k ,直线PR 的斜率24bk .设OPR ,则 为锐角,且21212111824tan 224b b PQ k k b b b QR k k b .当b 时,PQ QR的最小值为 …………………16分10. (本题满分20分)数列{}n a 满足16a,*1arctan (sec )()N n n a a n .求正整数m ,使得121sin sin sin 100m a a a. 解:由已知条件可知,对任意正整数n ,1,22n a,且 1tan sec n n a a .①由于sec 0n a ,故10,2n a.由①得,2221tan sec 1tan n n n a a a ,故 221132tan 1tan 133n n a n a n,即tan n a …………………10分因此121212tan tan tan sin sin sin sec sec sec m m ma a a a a a a a a12231tan tan tan tan tan tan m m a a a a a a(利用①)11tan tan m a a.1100,得m =3333. …………………20分11. (本题满分20分)确定所有的复数 ,使得对任意复数12121,(,1,z z z z z ≠2)z ,均有211()z z ≠222()z z .解:记2()()f z z z .则22121122()()()()f z f z z z z z121212(2)()z z z z z z .①假如存在复数12121,(,1,z z z z z ≠2)z ,使得12()()f z f z ,则由①知,121212(2)()z z z z z z ,利用121212z z z z z z ≠0知,12122222z z z z ,即2 . …………………10分另一方面,对任意满足2 的复数 ,令12i,i 22z z,其中012,则1z ≠2z ,而i 122,故12,1z z .此时将 12z z ,122i z z ,122i 2i z z代入①可得,12()()2i (2i)0f z f z ,即12()()f z f z .综上所述,符合要求的 的值为 ,2C . …………………20分. 证明1 若,则命题已成立.若,不妨设,则由知. 我们有, ①…………………10分以及, ② 其中①式等号在时成立,②式等号在时成立,因此①,②中等号不能同时成立. …………………30分由于,将①,②式相乘得 , 即 ,14ab bc ca ++<4ab bc ca ++≤4ab bc ca ++>max{,,}a a b c =1a b c ++=3a ≥21()11412434abc a ab bc ca ++−=≤++−≤11()44ab bc ca a b c bc ++−=+−+111(1)444a a bc bc bc −−+≤−+3a =2a =104ab bc ca ++−>2144abc ab bc ca++−<14ab bc ca ++−<一、(本题满分40分)设实数a ,b ,c 满足a +b +c =1,abc >0.求证:参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可2.评阅试卷时,请严格按照本评分标准的评分档次给分.1.说明:参考答案及评分标准2014年全国高中数学联合竞赛加试(A 卷)从而 . …………………40分 证明2 由于,故中或者一个正数,两个负数;或者三个都是正数. 对于前一种情形,不妨设,,则,结论显然成立. …………………10分下面假设,不妨设,则,. 我们有.,, 因此. …………30分于是只需证明,即 . ①由于,故 . ② 由平均不等式. ③将②,③两式相加即得①式成立,因此原不等式成立. ………………40分14ab bc ca ++<+0abc >,,a bc 0a >,0b c <()()(1)0ab bc ca b a c ca b a c b b ++=++<+=−<,,0a b c >a b c ≥≥13a ≥103c <≤()ab bc ca c a b ++++)(1c c =−+≥≥>122a b c+−≤=11(1)(1)22c c c c c c −−−≤−+ 213442c c =−++23042c c −>310c −−>103c <≤103c −≥1311113333333++≥⋅=>二、(本题满分40分)如图,在锐角三角形中,,过点分别作三角形的外接圆的切线,且满足.直线与的延长线分别交于点.设与交于点,与交于点. 证明:.证明1 如图,设两条切线交于点,则.结合可知.作的平分线交于点,连接.由知,,,故与相似. ………………10分由此并结合,及内角平分线定理可得, 因此. ………………20分同理,.由此推出. ………………30分再结合以及内角平分线定理得到, ABC 60BAC ∠≠°,B CABC ,BD CE BDCE BC ==DE ,AB AC ,F G CF BD M CE BG N AM AN =,BD CE K BK CK =BD CE =DE BC BAC ∠AL BC L ,LM LN DE BC ABC DFB ∠=∠FDB DBC BAC ∠=∠=∠ABC ∆DFB ∆DE BC BD BC =MC BC BD AC LC MF FD FD AB LB====LM BF LN CG 180ALM ALB BLM ALB ABL BAL ∠=∠+∠=∠+∠=−∠ 180CAL ALC ACL ALC CLN =−∠=∠+∠=∠+∠ ALN =∠BC FG 1LM LM BF CG CL AB BC CL ABLN BF CG LN BC AC BL BL AC=⋅⋅=⋅⋅=⋅=GFNMED CB AF即.故由,,得到与全等,因而,证毕. ………………40分证明2由于和都是的切线,故. 再由,可得四边形是等腰梯形,从而DE BC .由于,,故∽. ………………10分设三角形的三内角分别为,三条边长分别为,,. 由∽有,可得.由,可得,故由可得. ① 在三角形中,,由余弦定理得. ② ………………30分 用同样方法计算和时,只需在上述与的表达式①,②中将交换. 而由②可见的表达式关于对称,因此,即,结论获证. ………………40分LM LN =AL AL =ALM ALN ∠=∠LM LN =ALM ∆ALN ∆AM AN =BD EC ωDBC BAC ECB ∠=∠=∠BD CE =BCED BFD ABC B ∠=∠=FDB DBC BAC A ∠=∠=∠=DFB ∆ABC ∆ABC ,,A B C BC a =CA b =AB c =DFB ∆ABC ∆FD BD a c b b ==ac FD b=BC FD ‖BM BC bMD FD c==BD a =abBM b c=+ABM ABM B A ∠=+222222cos()()a b abcAM c A B b c b c=+−+++22222222()2a b abc a b c c b c b c ab+−=++⋅++()222222221()()()()c b c a b c a b c b c b c ++++−++()22342222232234212()b c bc c a b a bc a c b c b c bc c b c +++++++−−+()223322222212()b c bc b c a b a c a bc b c ++++++CN 2AN BM 2AM ,b c 2AM ,b c 22AN AM =AM AN =三、(本题满分50分)设. 求最大的整数,使得有个互不相同的非空子集,具有性质:对这个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.解 对有限非空实数集,用与分别表示的最小元素与最大元 素.考虑的所有包含1且至少有两个元素的子集, 一共个, 它们显然满足要求, 因为. 故. …………………10分 下面证明时不存在满足要求的个子集. 我们用数学归纳法证明:对整数, 在集合的任意个不同非空子集中, 存在两个子集,,满足, 且. ① 显然只需对的情形证明上述结论.当时, 将 的全部7个非空子集分成3组, 第一组:, , ;第二组:, ;第三组:, . 由抽屉原理, 任意4个非空子集必有两个在同一组中, 取同组中的两个子集分别记为,排在前面的记为,则满足①. …………………20分假设结论在时成立, 考虑的情形. 若中至少有个子集不含, 对其中的 个子集用归纳假设,可知存在两个子集满足①.…………………30分 若至多有个子集不含, 则至少有个子集含, 将其中子集都去掉, 得到的个子集.由于的全体子集可分成组,每组两个子集互补,故由抽屉原理,在上述个子集中一定有两个属于同一组,即互为补集. 因此,相应地有两个子集, 满足, 这两个集合显然满足①. 故时结论成立.综上所述, 所求. …………………50分 {1,2,3,,100}S = k S k k A min A max A A S 9921−min()1max i j i A A A ∩=<99max 21k ≥−992k ≥k 3n ≥{1,2,,}n 1()2n m −≥12,,,m A A A ,i j A A i j ≠i j A A ∩≠∅min()max i j i A A A ∩=12n m −=3n ={}1,2,3{3}{1,3}{2,3}{2}{1,2}{1}{1,2,3},i j A A i A (3)n ≥1n +122,,,n A A A 12n −1n +12n −121n −−1n +121n −+1n +121n −+1n +{1,2,,}n 121n −+{1,2,,}n 12n −121n −+,i j A A {1}i j A A n ∩=+1n +99max21k =−四、(本题满分50分)设整数模2014互不同余, 整数模2014也互不同余. 证明:可将重新排列为, 使得模4028互不同余.证明 记. 不妨设, . 对每个整数,, 若,则令,; 否则, 令,. …………………20分如果是前一种情形,则. 如果是后一种情形, 则也有.若不然, 我们有,,两式相加可得,于是, 但模互不同余,特别地,,矛盾. …………30分由上述构造方法知是的排列. 记, . 下面验证模互不同余. 这只需证明,对任意整数, ,模两两不同余. (*)注意,前面的构造方式已保证.(**) 情形一:, 且. 则由前面的构造方式可知,.由于,故易知与及模不同余,与及模不同余,从而模更不同余,再结合(**)可见(*)得证.情形二:, 且. 则由前面的构造方式可知122014,,,x x x 122014,,,y y y 122014,,,y y y 122014,,,z z z 112220142014,,,x z x z x z +++ 1007k =()mod 2i i x y ik ≡≡12i k ≤≤i 1i k ≤≤()mod 4i i i k i kx y x y k +++≡+/i i z y =i k i k z y ++=i i k z y +=i k i z y +=()mod 4i i i i i k i k i k i kx z x y x y x z k +++++=+≡+=+/()mod 4i i i i k i k i i k i kx z x y x y x z k +++++=+≡+=+/()mod 4i i i k i k x y x y k +++≡+()mod 4i i k i k ix y x y k +++≡+()22mod 4i i kx x k +≡()mod 2i i k x x k +≡122014,,,x x x 2014(2)k =()mod 2i i k x x k +≡/122,,,k z z z 122,,,k y y y ii i w x z =+1,2,,2i k = 122,,,k w w w 4k ,i j 1i j k ≤<≤,,,i j i k j k w w w w ++4k ()()mod 4,mod 4i i k j j k w w k w w k ++≡≡//i i z y =j j z y =()2mod 2i i k w w ik +≡≡()2mod 2j j k w w jk +≡≡()22mod 2i j k ≡/i w j w j k w +2k i k w +j w j k w +2k 4k i i k z y +=j j k z y +=, .同样有与及模不同余,与及模不同余.与情形一相同地可知(*)得证. …………………40分情形三:, 且(,且的情形与此相同). 则由前面的构造方式可知,.由于 是奇数, 故,更有, 因此仍然有与及模不同余,与及模不同余. 从而(*)得证. 因此本题得证. …………………50分()2mod 2i i k w w i kk +≡≡+()2mod 2j j k w w j k k +≡≡+i w j w j k w +2k i k w +j w j k w +2k i i z y =j j k z y +=i i k z y +=j j z y =()2mod 2i i k w w ik +≡≡()2mod 2j j k w w j kk +≡≡+k ()22mod 2i j k ≡+/()22mod 2i j kk ≡+/i w j w j k w +2k i k w +j w j k w +2k。
2015年全国高中数学联赛试题及答案详解(A卷)
![2015年全国高中数学联赛试题及答案详解(A卷)](https://img.taocdn.com/s3/m/ccdae943a98271fe910ef9f9.png)
(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .
①
2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:
.
答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为
.
答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被
2015年全国高中数学联赛试题答案
![2015年全国高中数学联赛试题答案](https://img.taocdn.com/s3/m/b93fa22e0912a2161479296e.png)
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
2024年全国中学生数学奥林匹克竞赛(预赛)一试参考答案与评分标准(A卷)
![2024年全国中学生数学奥林匹克竞赛(预赛)一试参考答案与评分标准(A卷)](https://img.taocdn.com/s3/m/79551416c950ad02de80d4d8d15abe23492f0301.png)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r . 根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x ≤−,则2()24f x x x =−,在这一区间上的最小值为(116f −=+;2.若(13x ∈−−,则()88f x x =−+,在这一区间上的最小值为(316f =−+…………15分3.若31x ∈− ,则2()24f x x x =−+,在这一区间上的最小值为((3116f f =−+=−+;4.若13x ∈− ,则()88f x x =−,在这一区间上的最小值为(116f −+=−+;5.若3x ≥+,则2()24f x x x =−,在这一区间上的最小值为(316f =+.综上所述,所求最小值为((3116f f =−+=−.…………20分。
2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析
![2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析](https://img.taocdn.com/s3/m/b402f7bf6bec0975f465e26e.png)
2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设8 分和0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9 小题4 分为一个档次,第10、11 小题5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 设集合A 1, 2, 3, , 99 , B {}2x x A∈, C {}2x x A∈,则B C 的元素个数为.答案:24 .解:由条件知,B C 2, 4, 6, ,198 12, 1, 32,2, ,9922, 4, 6, , 48 ,故B C 的元素个数为24 .2. 设点P 到平面Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为.答案:8 .解:设点 P 在平面 上的射影为O.由条件知,tan[3OPOPQOQ=∠∈即OQ [1, 3],故所求的区域面积为 32 12 8 .3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为a, b, c, d,e, f ,则abc +def是偶数的概率为答案:9 10解:先考虑abc +def 为奇数的情况,此时abc, def 一奇一偶,若abc 为奇数,则a, b, c 为1, 3, 5的排列,进而d , e, f 为2, 4, 6的排列,这样有3! ×3! = 36 种情况,由对称性可知,使abc +def 为奇数的情况数为36 ×2 = 72 种.从而abc +def 为偶数的概率为72729116!72010-=-=1 / 64. 在平面直角坐标系 xOy 中,椭圆 C :22221x y a b += (a b 0) 的左、右焦点分别是 F 1 、F 2 ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已 知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF 1F 2 的面积为 .解:由对称性,不妨设 P ( x P , y P ) 在第一象限,则由条件知x 1()2PT PS - 2, y 1()2PV PU - 1即 P (2, 1) .进而由 x P PU 1, PS 2 得U (2, 2), S (4, 1) ,代入椭圆C 的方程知111144161a b a b ⋅+⋅=⋅+=,解得a 220, b 2 5 .从而121212PF F P P S F F y y ∆===5. 设 f ( x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1] 上严格递减,且满足 f ( ) 1 f (2 ) 2 ,则不等式组121()2x f x ⎧⎨≤≤⎩的解集为 . 答案:[ 2, 8 2 ] .解:由 f ( x ) 为偶函数及在[0, 1] 上严格递减知, f ( x ) 在[ 1, 0] 上严格递增, 再结合 f ( x ) 以 2 为周期可知,[1, 2] 是 f ( x ) 的严格递增区间. 注意到f ( 2) f ( ) 1, f (8 2 ) f ( 2 ) f (2 ) 2 , 所以1 f ( x )2 f ( 2) f ( x ) f (8 2 ) ,而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2 ] .6. 设复数 z 满足z 1 ,使得关于 x 的方程 zx 2 2 z x 2 0 有实根,则这样 的复数 z 的和为.答案:32-解:设 z a b i (a , b R , a 2 b 2 1) .将原方程改为 (a b i) x 2 2(a b i) x 2 0 ,分离实部与虚部后等价于 ax 2 2ax 2 0 , ① bx 2 2bx 0 .②若b 0 ,则 a 2 1 ,但当 a 1 时,①无实数解,从而 a 1 ,此时存在实数 x 1 z 1 满足条件.若 b 0 ,则由②知 x {0, 2} ,但显然 x 0 不满足①,故只能是 x 2 ,代入①解得 a 14=-,进而b ,相应有 z综上,满足条件的所有复数 z 之和为 1=32- 7. 设O 为 ABC 的外心,若AO AB 2 AC ,则sin BAC 的值为.解:不失一般性,设 ABC 的外接圆半径 R 2 .由条件知, 2 AC AO AB -① 故 AC12BO 1 . 取 AC 的中点 M ,则 OM AC ,结合①知 OM BO ,且 B 与 A 位于直线 OM 的同侧.于是 cos BOC cos (90 MOC ) sin MOC MOOC14=-在 BOC 中,由余弦定理得BC =进而在 ABC 中,由正弦定理得sin BAC2BC R =8. 设整数数列 a 1 , a 2 , , a 10 满足 a 10 3a 1 , a 2 a 8 2a 5 ,且 a i 1 {1 a i ,2 a i }, i 1, 2, , 9 , 则这样的数列的个数为 .答案:80 .解:设b i a i 1 a i {1, 2}(i 1, 2, , 9) ,则有 2a 1 a 10 a 1 b 1 b 2 b 9 , ① b 2 b 3 b 4 a 5 a 2 a 8 a 5 b 5 b 6 b 7 .②用t 表示b 2 , b 3 , b 4 中值为 2 的项数.由②知,t 也是 b 5 , b 6 , b 7 中值为 2 的项数,其中t {0, 1, 2, 3} .因此 b 2 , b 3 , , b 7 的取法数为 (03C )2 (13C ) 2 (23C ) 2 (33C ) 2 20取定b 2 , b 3 , , b 7 后,任意指定 b 8 , b 9 的值,有 22 4 种方式.最后由①知,应取 b 1 {1, 2} 使得b 1 b 2 b 9 为偶数,这样的 b 1 的取法是 唯一的,并且确定了整数 a 1 的值,进而数列 b 1 , b 2 , , b 9 唯一对应一个满足条 件的 数列 a 1 , a 2 , , a 10 .综上可知,满足条件的数列的个数为 20 4 80 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R上的函数 f ( x )为3log 109()49x x f x x⎧-≤⎪=⎨-⎪⎩设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值围. 解:不妨假设 a b c .由于 f ( x ) 在 (0, 3] 上严格递减,在[3, 9] 上严格递增, 在[9, ) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知 a (0, 3) , b (3, 9) , c (9, ) ,并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得 1 l og 3 a log 3 b 1 ,即 log 3 a log 3 b 2 ,因此 ab 32 9 .于是 abc 9c . …………………8 分又0 f (c ) 4 1, …………………12 分 故 c (9, 16) .进而 abc 9c (81, 144) . 所以, abc 的取值范围是 (81, 144) . …………………16 分注:对任意的 r (81, 144) ,取09r c =,则0c ∈ (9, 16) ,从而 f (0c ) ∈ (0, 1) .过 点 (c 0 , f (c 0 )) 作平行于 x 轴的直线 l ,则 l 与 f ( x ) 的图像另有两个交点 (a , f (a )) ,(b , f (b )) (其中 a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且 ab 9 ,从 而 abc = r .10.(本题满分 20 分)已知实数列 a 1 , a 2 , a 3 , 满足:对任意正整数 n ,有 a n (2S n a n ) 1 ,其中 S n 表示数列的前 n 项和.证明:(1) 对任意正整数 n ,有 a n (2) 对任意正整数 n ,有 a n a n 1 1 .证明: (1) 约定 S 0 0 .由条件知,对任意正整数 n ,有1 a n (2S n a n ) (S n S n -1)(S n S n -1) S n2 S n -12 ,S n n S 0 n ,即 S n n 0 时亦成立). …………………5 分显然, a n S n S n 1 …………………10 分 (2) 仅需考虑 a n , a n 1 同号的情况.不失一般性,可设 a n , a n 1 均为正(否则将数列各项同时变为相反数,仍满足条件),则 S n 1 S n S n 1 此时从而a n a n 1 () 1. …………………20 分1 2 1 1 2 2 1 1 2 1 2 2 1 211.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 2 4 x 的 过点 F (1, 0) 的弦, AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平 分 APB ,求 PF 的所有可能值.解:设211(,)4y A y ,222(,)4y B y ,233(,)4y P y ,由条件知 y 1 , y 2 , y 3 两两不等且非零. 设直线 AB 的方程为 x ty 1 ,与抛物线方程联立可得 y 2 4ty 4 0 ,故y 1 y 2 4 . ①注意到 AOB 的外接圆过点O ,可设该圆的方程为 x 2 y 2 dx ey 0 ,与x 24y 联立得,42(1)0164y d y ey +++=.该四次方程有 y y 1 , y 2 , y 3,0 这四个不同的实根,故由韦达定理得 y 1 y 2 y 3 0 0 ,从而y 3 ( y 1 y 2 ) .②…………………5 分因 PF 平分 APB ,由角平分线定理知,12PA FA y PB FB y ==,结合①、②,有 222312231122322232232()()44()()44y y y y PA y y y y PB y y -+-==-+-222212112222212221[()]16(2)[()]16(2)y y y y y y y y y y +-++=+-++ 422142126419264192y y y y +-=+- 即 y 6 64 y 2 y 2 192 y 2 y 6 64 y 2 y 2 192 y 2,故( y 2 y 2 )( y 4 y 2 y 2 y 4192) 0 .当 y 2 y 2 时, y y ,故 y 0 ,此时 P 与 O 重合,与条件不符. 当 y 4 y 2 y 2 y 4 192 0 时,注意到①,有 (y 2 y 2 )2=192+(y y ) 2=208y 2 y 28 212y y ,故满足①以及 y 1 y 2的实数 y 1 , y 2 存在,对应可得满足条件的点 A , B .此时,结合①、②知222231212()4411444y y y y y PF +++-=+==== …………………20 分。
2015年全国高中数学联合竞赛一试试题(A卷)解析
![2015年全国高中数学联合竞赛一试试题(A卷)解析](https://img.taocdn.com/s3/m/8ea179d3a6c30c2258019e94.png)
33 ,
.
22
于是每个小三角形的面积为
1 2
×4×
3 2
= 3,
所以阴影部分的面积为 3 × 8 = 24.
y
33 A,
22
O
x
7. 设 ω 为正实数,若存在 a, b(π ⩽ a < b ⩽ 2π),使得 sin ωa + sin ωb = 2,则 ω
的取值范围是
.
解答
依题意,存在
k, l
∈
Z,使得
设 A(x1, y1), B(x2, y2), F1(−1, 0),则
y1
+
y2
=
2km −k2 + 2,
y1y2
=
m2 − 2. k2 + 2
且 ∆ = 4k2m2 − 4(k2 + 2)(m2 − 2) = 8(k2 − m2 + 2) > 0.
于是
kAF1
+
kBF1
=
y1 x1 +
1
+
y2 x2 +
−
1 2
=
1007
⇒
z2015
=
2015
+
1007i.
4. 在矩形 ABCD 中,AB = 2, AD = 1,边 DC 上 (包含点 D、C) 的动点 P 与
CB 延长线上 (包含点 B) 的动点 Q 满足 |D# P»| = |B# Q»|,则向量 P# A» 与向量
#» PQ
的数量积
#» #» PA · PQ
为满足 d = 0 的 P 类数的个数,记 A 为满足 d = 0 的 P 类数的集合.
2015年全国高中数学联合竞赛试题及解答.(A卷)
![2015年全国高中数学联合竞赛试题及解答.(A卷)](https://img.taocdn.com/s3/m/9893cb3f6edb6f1aff001fca.png)
2k 2 1 m2 .②
由直线
AF1, l, BF1
的斜率
y1 , k, y2 x1 1 x2 1
依次成等差数列知,
y1 x1 1
y2 2k x2 1
,又
y1 kx1 m, y2 kx2 m ,所以 (kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) ,化简并
棱两两异面的取法数为 4×2=8,故所求概率为 8 2 . 220 55
2015A6、在平面直角坐标系 xOy 中,点集 K (x, y) | ( x 3 y 6)( 3x y 6) 0 所对应的平
面区域(如图所示)的面积为
◆答案: 24 ★解析:设 K1 {(x, y) || x | | 3y | 6 0} . 先考虑 K1 在第一象限中的部分,此时有 x 3y 6 ,故这些点
对应于图中的△OCD 及其内部.由对称性知, K1 对应的区
域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 {(x, y) || 3x | | y | 6 0} ,则 K2 对应
的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知,K 所对应的平面区域是被 K1 、K2
1 sin
cos4
cos 2 sin 2 sin
sin 2
(1 sin )(1 cos2 )
2 sin
cos2
2.
2015A 3、已知复数数列 zn 满足 z1 1,zn1 zn 1 ni (n 1,2,) ,其中 i 为虚数单位,zn 表
2015年全国高中数学联合竞赛一试试题(a卷)解答集锦
![2015年全国高中数学联合竞赛一试试题(a卷)解答集锦](https://img.taocdn.com/s3/m/3b63aa84dc3383c4bb4cf7ec4afe04a1b071b07d.png)
2015年全国高中数学联合竞赛一试试题(a卷)解答集锦全国高中数学联合竞赛一试试题(A卷)高中数学联赛篇一:2015年全国高中数学联赛试题一、填空题:本大题共8小题,每小题8分,满分64分1.设a,b为不相等的实数,若二次函数f(x) x2 ax b满足f(a) f(b),则f(2)的值为2.若实数满足cos tan ,则1 cos4 的值为sin3.已知复数数列{zn}满足z1 1,zn 1 zn 1 ni(n 1,2,3, ),其中i为虚数单位,zn 表示zn的共轭复数,则z2015的值为4.在矩形ABCD中,AB 2,AD 1,边DC(包含点D,C)上的动点P与CB延长线上(包含点B)的动点Q满足DP BQ,则向量PA与向量PQ的数量积PA PQ的最小值为5.在正方体中随机取3条棱,它们两两异面的概率为6.在平面直角坐标系xOy中,点集K (x,y)(x 3y 6)(3x y 6) 0所对应的平面区域的面积为7.设为正实数,若存在a,b( a b 2 ),使得sin a sin b 2,则的取值范围是8.对四位数abcd(1 a 9,0 b,c,d 9),若a b,b c,c d,则称abcd为P类数,若a b,b c,c d,则称abcd为Q类数,用N(P),N(Q)分别表示P类数与Q类数的个数,则N(P) N(Q)的值为二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤9.(本题满分16分)若实数a,b,c满足2a 4b 2c,4a 2b 4c,求c的最小值.10.(本题满分20分)设a1,a2,a3,a4是4个有理数,使得31 aa1 i j 4 24, 2, , ,1,3 ,求a1 a2 a3 a4的值. ij 28x211.(本题满分20分)在平面直角坐标系xOy中,F1,F2分别是椭圆y2 1的左、右焦点,2设不经过焦点F1的直线l与椭圆交于两个不同的点A,B,焦点F2到直线l的距离为d,如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围.2015年全国高中数学联合竞赛加试试题(A卷)一、(本题满分40分)设a1,a2, ,an(n 2)是实数,证明:可以选取1, 2, , n 1, 1 ,使n2 得ai iai (n 1) ai . i 1 i 1 i 1二、(本题满分40分)设S A1,A2, ,An ,其中A1,A2, ,An是n个互不相同的有限集合(n 2),满足对任意的Ai,Aj S,均有Ai Aj S,若k minAi 2.证明:存在x Ai,1 i ni 1nn2n2使得x属于A1,A2, ,An中的至少n个集合(这里X表示有限集合X 的元素个数).k 上一点,点K在线段AP上,使得三、(本题满分50分)如图,ABC内接于圆O,P为BCBK平分ABC,过K,P,C三点的圆与边AC交于D,连接BD交圆于点E,连接PE并延长与边AB交于点F.证明:ABC 2 FCB.(解题时请将图画在答卷纸上)四、(本题满分50分)求具有下述性质的所有正整数k:(kn)!对任意正整数n,2(k 1)n 1不整除.n!高中数学联赛篇二:高中数学联赛基本知识集锦高中数学联赛基本知识集锦一、三角函数常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。
历年全国高中数学竞赛试卷及答案(77套)
![历年全国高中数学竞赛试卷及答案(77套)](https://img.taocdn.com/s3/m/8fe53de3941ea76e58fa0432.png)
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.
则
A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
2015年全国高中数学联赛试卷解析汇报
![2015年全国高中数学联赛试卷解析汇报](https://img.taocdn.com/s3/m/454efb00be23482fb4da4cf5.png)
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年全国高中数学联合竞赛试题及解答.(B卷)
![2015年全国高中数学联合竞赛试题及解答.(B卷)](https://img.taocdn.com/s3/m/94ee0dc14afe04a1b071ded5.png)
2015年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2015B1、已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x x a x f x ,其中a 为常数,如果)4()2(f f <,则a 的取值范围为◆答案:()+∞-,2★解析:(2)2,(4)2f a f a =-=,所以22a a -<,解得:2a >-.2015B 2、已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为◆答案:2015★解析:由己知得33(10)(10)(10)10f f -+-=+,即(10)(10)2000f f -=+=2015.2015B 3、某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值为◆答案:★解析:由辅助角公式:sin cos )T a t b t t ϕ=+=+,其中ϕ满足条件sin ϕϕ==T 的值域是[,室内最大温差为10≤5≤.故a b +≤≤等号成立当且仅当a b ==2015B 4、设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA ◆答案:62★解析:取BD 的中点O ,连接OA,OA 1,OC 1.则∠A 1OC 1是二面角A 1-BD-C 1的平面角,因此∠A 1OC 1=3π,又△OA 1C 1是等边三角形.故A 1O=A 1C 1,所以12AA ===.2015B 5、已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是◆答案:34★解析:设数列{}n a 的公差为d ,则215191,4,8a a d a a d a a d =+=+=+.因为952,,a a a 依次成等比数列,所以2295a a a =,即2111()(8)(4)a d a d a d ++=+.化简上式得到:218a d d =.又0d >,所以18a d =.由11211(1)(1)210016k k k a k d a a a k k k a a -++++-==+> .解得min 34k =.2015B 6、设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为◆答案:2-★解析:点集A 是圆周22:(1)(1)2x y Γ-+-=,点集B 是恒过点)3,1(-P 的直线:3(1)l y k x -=+及下方(包括边界).作出这两个点集知,当A 自B 是单元集时,直线l 是过点P 的圆Γ的一条切线.故圆Γ的圆心M (1,l )到直线l,=2k =-2015B 7、设P 为椭圆122=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为◆答案:5★解析:取F (0,l ),则F,B 分别是椭圆的上、下焦点,由椭圆定义知,|PF|+|PB|=4.因此,|PA|+|PB|=4-|PF|+|PA |≤4+|FA|=4+l=5.当P 在AF 延长线与椭圆的交点3(,1)2-时,|PA|+|PB|最大值为5.2015B 8、正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,,1≥+OA 的概率为◆答案:6711007★解析:因为||||1i j OA OA == ,所以222||||||22(1cos ,)i j i j i j i j OA OA OA OA OA OA OA OA +=++⋅=+<> .故1≥+OA 的充分必要条件是1cos ,2i j OA OA <>≥- ,即向量,i j OA OA 的夹角不超过32π.对任意给定的向量i OA,满足条件1≥的向量可的取法共有:222134232015ππ⎡⎤÷⨯=⎢⎥⎣⎦1≥+OA 的概率是:20151342671201520141007p ⨯==⨯.二、解答题:本大题共3小题,共56分。
2009-2018年全国高中数学联合竞赛一试试题(A卷)
![2009-2018年全国高中数学联合竞赛一试试题(A卷)](https://img.taocdn.com/s3/m/27632576767f5acfa1c7cda8.png)
60° ,则这样的点Q 所构成的区域的面积为.3.将1, 2, 3,4,5,6 随机排成一行,记为,,,,,,f e d c b a 则def abc +是偶数的概率为 .4.平面直角坐标系 xOy 中,椭圆C 的左、右焦点分别是 F 1、F 2,椭圆C 的弦ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已知线段 PT PV PS PU ,,, 的长分别为1,2,3,6 ,则△PF 1F 2 的面积为 .5.设)(x f 是定义在R 上的以2 为周期的偶函数,满足2)2(,1)(==ππf f ,且在区间[0,1]上严格递减,则不等式组⎩⎨⎧≤≤≤≤2)(121x f x 的解集为 .6.设复数 z 满足1||=z ,使得关于 x 的方程0222=++x z zx 有实根,则所有 z 的和为 .7.设O 为△ABC 的外心,若 AC AB AO 2+=,则ABC ∠sin 的值为 .8. 设整数数列10321,...,,,a a a a 满足5821102,3a a a a a =+=,且{},9,...,2,1,2,11=++∈+i a a a i i i 则这样的数列的个数为 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分 16 分)已知定义在R +上的函数 f (x ) 为⎪⎩⎪⎨⎧-≤-=9,490|,1log |)(3><x x x x x f .设a , b , c 是三个互不相同的实数,满足f (a ) = f (b ) = f (c ) ,求abc 的取值范围. 10.(本小题满分 20 分)已知实数列,...,,321a a a 满足:对任意正整数n ,有1)2(=-n n n a S a ,其中S n 表示数列的前n 项和.证明:对任意正整数n ,有①n a n 2<;②11<+n n a a . 11.(本小题满分 20 分)平面直角坐标系 xOy 中,AB 是抛物线24x y =的过 F (1, 0) 的弦,△AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平分∠APB ,求|PF|的所有可能值.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为平稳数.平稳数的个数是 .5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________. 7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC △的面积为3,则ANAM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b . 10.(本小题满分20分)设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最值. 11. (本小题满分20分)设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z . (1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值.一、填空题:本大题共8小题,每小题8分,共64分.1.设实数a 满足||1193a a a a <-<,则a 的取值范围是 .2.设复数w z ,满足3||=z ,i w z w z 47))((+=-+,则)2)(2(w z w z -+的模为 .3.正实数w v u ,,均不等于1,若5log log =+w vw v u ,3log log =+v u w v ,则u w log 的值为 .4.袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币.现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 . 5.设P 为一圆锥的顶点,A ,B ,C 是其底面圆周上的三点,满足ABC∠=90°,M 为AP 的中点.若AB =1,AC =2,2=AP ,则二面角M-BC-A 的大小为 . 6.设函数10cos 10sin )(44kxkx x f +=,其中k 是一个正整数.若对任意实数a ,均有}|)({}1|)({R x x f a x a x f ∈=+<<,则k 的最小值为 .7.双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F ,过点2F 作直线与双曲线C 的右半支交于点P ,Q ,使得PQ F 1∠=90°,则PQ F 1∆的内切圆半径是 .8.4321,,,a a a a 是1,2,…,100中满足2433221242322232211)())((a a a a a a a a a a a a ++=++++的4个互不相同的数,则这样的有序数组),,,(4321a a a a 的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)在ABC △中,已知CB CA BC BA AC AB ⋅=⋅+⋅32.求C sin 的最大值.10.(本小题满分20分)已知)(x f 是R 上的奇函数,1)1(=f ,且对任意0<x ,均有)()1(x xf x xf =-. 12.(本小题满分20分)如图所示,在平面直角坐标系xOy 中,F 是x轴正半轴上的一个动点.以F 为焦点,O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切线,且|PQ |=2.圆21,C C 均与直线OP 相切于点P ,且均与轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值.2015年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f = . 2.若实数α满足cos tan αα=,则41cos sin αα+的值为 . 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++=,其中i 为虚数单位,n z 表示nz 的共轭复数,则2015z 的值为 .4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ⋅的最小值为 .5.在正方体中随机取3条棱,它们两两异面的概率为 .6.在平面直角坐标系xOy 中,点集{}(,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为 .7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是 .8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为 .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)若实数,,a b c 满足242,424abcabc+=+=,求c 的最小值. 10.(本小题满分20分)设1234,,,a a a a 是4个有理数,使得{}311424,2,,,1,328ija ai j ⎧⎫≤<≤=----⎨⎬⎩⎭,求1234a a a a +++的值.11.(本小题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF的斜率依次成等差数列,求d 的取值范围.2014年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.若正数b a ,满足)log(log 3log 232b a b a +=+=+,则ba 11+的值为_________.2.设集合}21|3{≤≤≤+b a b a中的最大值与最小值分别为m M ,,则m M -=________.3.若函数|1|)(2-+=x a x x f 在),0[+∞上单调递增,则a 的取值范围为_______.4.数列}{n a 满足)(1)2(2,211⋅+∈++==N n a n n a a n n ,则2013212014...a a a a +++=_________. 5.已知正四棱锥ABCD P -中,侧面是边长为1的正三角形,N M ,分别是边BC AB ,的中点,则异面直线MN 与PC 之间的距离是_____________.6.设椭圆Γ的两个焦点是21,F F ,过点1F 的直线与Γ交于点Q P ,,若||||212F F PF =,且||4||311QF PF =,则椭圆Γ的短轴与长轴的比值为__________.7.设等边三角形ABC 的内切圆半径为2,圆心为I 。
2015全国高中数学联赛一试(A卷)试题及其解答
![2015全国高中数学联赛一试(A卷)试题及其解答](https://img.taocdn.com/s3/m/e2f4de4c76232f60ddccda38376baf1ffc4fe3ea.png)
2015全国高中数学联赛一试(A卷)试题及其解答2015年全国高中数学联合竞赛一试解答(A卷)2014全国高中数学联赛一试(A卷)试题及其解答2014全国高中数学联赛加试(A卷)试题及其解答2014全国高中数学联赛一试、加试(B卷)试题及其解答熊昌进 2015全国高中数学联赛(A)不等式题的解参考文献:宋庆 2015全国高中数学联赛一试(A卷)试题及其解答 Sqing张云华:2015全国高中数学联赛一试(A卷) 第9题解2015全国高中数学联赛一试(A卷)试题及其解答熊昌进 2015全国高中数学联赛(A)第1,2题的详解参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答 Sqing熊昌进 2015全国高中数学联赛(A)第3题的参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答 Sqing熊昌进 2015全国高中数学联赛(A)第4题的解参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答 Sqing熊昌进 2015全国高中数学联赛(A)8题的详解参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答熊昌进 2015全国高中数学联赛(A)解析几题的解原解有误,现修正.参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答 Sqing张云华:2015全国高中数学联赛一试(A卷)第10题解2015全国高中数学联赛一试(A 卷)试题及其解答熊昌进 2015全国高中数学联赛(A )8题的详解参考文献:宋庆2015全国高中数学联赛一试(A卷)试题及其解答 S qing张云华:求最小值2015年全国高中数学联合竞赛一试解答(A卷)张云华 :2015全国高中数学联赛一试(A卷) 第10题一变式2015年全国高中数学联合竞赛一试解答(A卷)anzhenping 问题2494 2015年全国高中数学竞赛第一试第9题背景杏坛孔门 2015年全国高中数学联赛A卷试题及其解答yellow19811024 2015年全国高中数学联赛A卷第7题解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
10. (本题满分 20 分)设 a1 , a2 , a3 , a4 是 4 个有理数,使得
ai a j
求 a1 a2 a3 a4 的值.
3 1 1 i j 4 24, 2, , , 1, 3 , 2 8
(1 sin ) (1 cos 2 ) 2 sin cos 2 2 .
3. 已知复数数列 {zn } 满足 z1 1, zn1 zn 1 n i (n 1, 2, ) ,其中 i 为虚数单位, zn 表示 zn 的共轭复数,则 z2015 的值为 答案: 2015 1007i . 解:由已知得,对一切正整数 n ,有 .
1 3 2 {a2 a3 , a1a4 } 2 , 24a1 2, , 2 8a1
1 结合 a1 ,只可能 a1 . 4
…………15 分
1 1 1 1 由此易知 a1 , a2 , a3 4, a4 6 或者 a1 , a2 , a3 4, a4 6 .经 4 2 4 2 检验知这两组解均满足问题的条件. 9 故 a1 a2 a3 a4 . 4
解: 由条件可知, 且其中没有两个为相反数, ai a j (1 ≤ i < j ≤ 4 ) 是 6 个互不相同的数, 由 此 知 , a1 , a2 , a3 , a4 的 绝 对 值 互 不 相 等 , 不 妨 设 a1 a2 a3 a4 , 则
ai a j (1 ≤ i < j ≤ 4 ) 中最小的与次小的两个数分别是 a1 a2 及 a1 a3 ,最大与次大的两个
南京惟越教育中学(初高)课外辅导中心
2l 2 . 2 2 当 4 时,区间 [, 2 ] 的长度不小于 4 ,故必存在 k , l 满足①式. 2k
当 0 4 时,注意到 [, 2 ] (0, 8 ) ,故仅需考虑如下几种情况:
zn2 zn1 1 n 1i zn 1 n i 1 n 1i zn 2 i ,
于是 z2015 z1 1007 2 i 2015 1007i . 4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的 最小值为 .
.
2. 若实数 满足 cos tan ,则 答案:2.
解:由条件知, cos 2 sin ,反复利用此结论,并注意到 cos 2 sin 2 1 ,得
1 cos 2 sin 2 cos 4 sin 2 sin sin
(i )
9 5 13 综合 (i ) 、 (ii) 、 (iii) ,并注意到 4 亦满足条件,可知 , , . 4 2 4
8. 对四位数 abcd (1 a 9, 0 b, c, d 9) ,若 a b, b c, c d ,则称 abcd 为 P 类 数;若 a b, b c, c d ,则称 abcd 为 Q 类数.用 N ( P ) 与 N (Q) 分别表示 P 类数与 Q 类 数的个数,则 N ( P ) N (Q) 的值为 答案:285. 解:分别记 P 类数、 Q 类数的全体为 A 、 B ,再将个位数为零的 P 类数全体记为 A0 , 个位数不等于零的 P 类数全体记为 A1 . 对任一四位数 abcd A1 ,将其对应到四位数 dcba ,注意到 a b, b c, c d 1 ,故 反之, 每个 dcba B 唯一对应于 A1 中的元素 abcd . 这建立了 A1 与 B 之间的一一 dcba B . 对应,因此有 .
数分别是 a3 a4 及 a2 a4 ,从而必须有
1 a1a2 , 8 a a 1, 1 3 a2 a4 3, a3 a4 24,
…………………10 分 于是 a2
1 1 3 , a3 , a4 24a1 .故 8a1 a1 a2
3 答案: . 4
解 : 不 妨 设 A (0, 0), B (2, 0), D (0,1) . 设 P 的 坐 标 为 (t ,1) ( 其 中 0 ≤ t ≤ 2 ) ,则由 DP BQ 得 Q 的坐标为 (2, t ) ,故 PA (t , 1), PQ (2 t , t 1) ,因此 2 1 33. t PA PQ (t ) (2 t ) ( 1) (t 1) t 2 t 1 2 4 4
N ( P ) N (Q) A B A0 A1 B A0 .
由b a 9 下面计算 A0 :对任一四位数 abc0 A0 ,b 可取 0, 1, , 9 ,对其中每个 b , 及 b c 9 知, a 和 c 分别有 9 b 种取法,从而
A0 (9 b) 2 k 2
C 220 种.
3 12
下面考虑使 3 条棱两两异面的取法数. 由于正方体的棱共确定 3 个互不平行的方向 (即 ,具有相同方向的 4 条棱两两共面,因此取出的 3 条棱必属于 3 个 AB 、 AD 、 AE 的方向) 不同的方向.可先取定 AB 方向的棱,这有 4 种取法.不妨设取的棱就是 AB ,则 AD 方向 只能取棱 EH 或棱 FG ,共 2 种可能.当 AD 方向取棱是 EH 或 FG 时, AE 方向取棱分别 只能是 CG 或 DH . 由上可知,3 条棱两两异面的取法数为 4 2 8 ,故所求概率为 6. 在平面直角坐标系 xOy 中,点集 K ( x, y ) 应的平面区域的面积为 答案:24. 解:设 K1 ( x, y ) x 3 y 6 0 .先考虑 K1 在第一象限中的部分,此时有 x 3 y 6 ,故这些点对 应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部. 同理,设 K 2 ( x, y ) 3 x y 6 0 ,则 K 2 对 应的区域是图中以 O 为中心的菱形 EFGH 及其内部. 由点集 K 的定义知, K 所对应的平面区域是被 .
南京惟越教育中学(初高)课外辅导中心
2015 年全国高中数学联合竞赛一试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不要增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.
①
5 1 5 2 ,此时 且 ,无解; 2 2 2 4 5 9 9 5 (ii) 2 ,此时有 ; 2 2 4 2 9 13 13 13 9 (iii) 2 ,此时有 ,得 4 . 2 2 4 4 2
1. 设 a, b 为不相等的实数,若二次函数 f ( x) x 2 ax b 满足 f (a ) f (b) ,则 f (2) 的值为 答案:4. 解:由已知条件及二次函数图像的轴对称性,可得 .
a b a ,即 2a b 0 ,所以 2 2 f (2) 4 2a b 4 . 1 cos 4 的值为 sin
南京惟越教育中学(初高)课外辅导中心
当t
3 1 时, PA PQ . min 4 2 5. 在正方体中随机取 3 条棱,它们两两异面的概率为 2GH ,它共有 12 条棱,从中任意取出 3 条棱的方法共有
z 2 y x 2 ( z y 2 )2 z 2 2 y 2 z y 4 .
因此,结合平均值不等式可得,
…………………8 分
南京惟越教育中学(初高)课外辅导中心
z
1 3 1 1 33 y4 y 1 2 y 2 1 1 3 2 y2 2. 2 y y 4 2y 4 y y 4
b0 k 1
9
9
9 10 19 285 . 6
因此, N ( P ) N (Q) 285 .
二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程 或演算步骤.
9.(本题满分 16 分)若实数 a, b, c 满足 2a 4b 2c , 4a 2b 4c ,求 c 的最小值. 解:将 2a , 2b , 2c 分别记为 x, y, z ,则 x, y, z 0 . 由条件知, x y 2 z , x 2 y z 2 ,故
8 2 . 220 55
x 3 y 6 3x
y 6 0 所对
K1 、 K 2 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积 S .
由于直线 CD 的方程为 x 3 y 6 ,直线 GH 的方程为 3 x y 6 ,故它们的交点 P 的 3 3 坐标为 , .由对称性知, 2 2 1 3 S 8SCPG 8 4 24 . 2 2 7. 设 为正实数,若存在 a, b ( a b 2 ) ,使得 sin a sin b 2 ,则 的取值 范围是 . 9 5 13 答案: , , . 4 2 4 解:由 sin a sin b 2 知, sin a sin b 1 ,而 [ a, b] [, 2 ] ,故题目条 件等价于:存在整数 k , l (k l ) ,使得