(完整版)信息论与编码试卷及答案

合集下载

信息论与编码试卷及答案(多篇)

信息论与编码试卷及答案(多篇)

一、概念简答题(每题5分,共40分)1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2.简述最大离散熵定理。

对于一个有m个符号的离散信源,其最大熵是多少?答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

最大熵值为。

3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?答:信息传输率R指信道中平均每个符号所能传送的信息量。

信道容量是一个信道所能达到的最大信息传输率。

信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。

平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U型凸函数。

4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。

答:通信系统模型如下:数据处理定理为:串联信道的输入输出X、Y、Z组成一个马尔可夫链,且有,。

说明经数据处理后,一般只会增加信息的损失。

5.写出香农公式,并说明其物理意义。

当信道带宽为5000Hz,信噪比为30dB时求信道容量。

.答:香农公式为,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于信噪比和带宽。

由得,则6.解释无失真变长信源编码定理。

.答:只要,当N足够长时,一定存在一种无失真编码。

7.解释有噪信道编码定理。

答:当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8.什么是保真度准则?对二元信源,其失真矩阵,求a>0时率失真函数的和?答:1)保真度准则为:平均失真度不大于允许的失真度。

2)因为失真矩阵中每行都有一个0,所以有,而。

二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。

信息论与编码试题集与答案

信息论与编码试题集与答案

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

四、计算题1.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x == (1)1/3p x == (0)1/3p y == (1)2/3p y == ()()(1/3,2/3)H X H Y H ===0.918 bit/symbol(),(1/3,1/3,1/3)H X Y H ==1.585 bit/symbol ();()()(,)I X Y H X H Y H X Y =+-=0.251 bit/symbol2.某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ 01X Y011/31/301/3(1)求对应的生成矩阵和校验矩阵; (2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。

信息论与编码考试题(附答案版)

信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。

3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。

4.数据处理过程中信息具有(不增性)。

5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。

6.单符号连续信道的信道容量取决于(信噪比)。

7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。

8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。

9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。

10.立即码指的是(接收端收到一个完整的码字后可立即译码)。

11.算术编码是(非)分组码。

12.游程编码是(无)失真信源编码。

13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。

14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。

15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。

16.卷积码的自由距离决定了其(检错和纠错能力)。

(对)1、信息是指各个事物运动的状态及状态变化的方式。

(对)2、信息就是信息,既不是物质也不是能量。

(错)3、马尔可夫信源是离散无记忆信源。

(错)4、不可约的马尔可夫链一定是遍历的。

(对)5、单符号连续信源的绝对熵为无穷大。

(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。

(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。

信息论与编码考试题(附答案版)

信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。

3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。

4.数据处理过程中信息具有(不增性)。

5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。

6.单符号连续信道的信道容量取决于(信噪比)。

7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。

8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。

9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。

10.立即码指的是(接收端收到一个完整的码字后可立即译码)。

11.算术编码是(非)分组码。

12.游程编码是(无)失真信源编码。

13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。

14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。

15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。

16.卷积码的自由距离决定了其(检错和纠错能力)。

(对)1、信息是指各个事物运动的状态及状态变化的方式。

(对)2、信息就是信息,既不是物质也不是能量。

(错)3、马尔可夫信源是离散无记忆信源。

(错)4、不可约的马尔可夫链一定是遍历的。

(对)5、单符号连续信源的绝对熵为无穷大。

(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。

(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

(完整word版)答案~信息论与编码练习(word文档良心出品)

(完整word版)答案~信息论与编码练习(word文档良心出品)

1、有一个二元对称信道,其信道矩阵如下图所示。

设该信道以1500个二元符号/秒的速度传输输入符号。

现有一消息序列共有14000个二元符号,并设在这消息中P(0)=P(1)=1/2。

问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?解答:消息是一个二元序列,且为等概率分布,即P(0)=P(1)=1/2,故信源的熵为H(X)=1(bit/symbol)。

则该消息序列含有的信息量=14000(bit/symbol)。

下面计算该二元对称信道能传输的最大的信息传输速率: 信道传递矩阵为:信道容量(最大信息传输率)为:C=1-H(P)=1-H(0.98)≈0.8586bit/symbol得最大信息传输速率为:Rt ≈1500符号/秒× 0.8586比特/符号 ≈1287.9比特/秒 ≈1.288×103比特/秒此信道10秒钟内能无失真传输得最大信息量=10× Rt ≈ 1.288×104比特 可见,此信道10秒内能无失真传输得最大信息量小于这消息序列所含有的信息量,故从信息传输的角度来考虑,不可能在10秒钟内将这消息无失真的传送完。

2、若已知信道输入分布为等概率分布,且有如下两个信道,其转移概率矩阵分别为:试求这两个信道的信道容量,并问这两个信道是否有噪声?3 、已知随即变量X 和Y 的联合分布如下所示:01100.980.020.020.98P ⎡⎤=⎢⎥⎣⎦111122221111222212111122221111222200000000000000000000000000000000P P ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11222211122222log 4(00)1/()log 42/log 8(000000)2/(),H bit symbol H X bit symbol C C H bit symbol H X C =-===>=-==1解答:(1)由信道1的信道矩阵可知为对称信道故C 有熵损失,有噪声。

信息论与编码考题标准答案

信息论与编码考题标准答案

信 息 论 与 编 码 考题与标准答案第一题 选择题1.信息是( b )a. 是事物运动状态或存在方式的描述b.是事物运动状态或存在方式的不确定性的描述c.消息、文字、图象d.信号 2.下列表达式哪一个是正确的(e )a. H (X /Y )=H (Y /X )b. )();(0Y H Y X I <≤c.)/()(),(X Y H X H Y X I -=d. )()/(Y H Y X H ≤e. H (XY )=H (X )+H (Y /X )3.离散信源序列长度为L ,其序列熵可以表示为( b )a. )()(1X LH X H =b.c. ∑==Ll lXH X H 1)()(d. )()(X H X H L =4.若代表信源的N 维随机变量的取值被限制在一定的范围之内,则连续信源为( c ),具有最大熵。

a. 指数分布b. 正态分布c. 均匀分布d. 泊松分布 5.对于平均互信息);(Y X I ,下列说法正确的是( b )a. 当)(i x p 一定时,是信道传递概率)(i j x y p 的上凸函数,存在极大值b. 当)(i x p 一定时,是信道传递概率)(i j x y p 的下凸函数,存在极小值c.当)(i j x y p 一定时,是先验概率)(i x p 的上凸函数,存在极小值d.当)(i j x y p 一定时,是先验概率)(i x p 的下凸函数,存在极小值 6.当信道输入呈( c )分布时,强对称离散信道能够传输最大的平均信息量,即达到信道容量 a. 均匀分布 b. 固定分布 c. 等概率分布 d. 正态分布7.当信道为高斯加性连续信道时,可以通过以下哪些方法提高抗干扰性(b d ) a. 减小带宽 b. 增大发射功率 c. 减小发射功率 d.增加带宽第二题 设信源 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡6.04.0)(21x x X p X 通过一干扰信道,接收符号为Y={y 1,y 2},信道传递矩阵为⎥⎦⎤⎢⎣⎡43416165 求:(1) 信源 X 中事件 x 1 和 x 2 分别含有的自信息量。

信息论与编码试题集与答案(新)

信息论与编码试题集与答案(新)

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。

18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。

信息论与编码试题集与答案

信息论与编码试题集与答案

信息论与编码试题集与答案1. 在⽆失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须⾸先信源编码,然后_____加密____编码,再______信道_____编码,最后送⼊信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的⾹农公式是log(1)C W SNR =+;当归⼀化信道容量C/W 趋近于零时,也即信道完全丧失了通信能⼒,此时E b /N 0为 -1.6 dB ,我们将它称作⾹农限,是⼀切编码⽅式所能达到的理论极限。

4. 保密系统的密钥量越⼩,密钥熵H (K )就越⼩,其密⽂中含有的关于明⽂的信息量I (M ;C )就越⼤。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输⼊符号表为X ={0,1},输出符号表为Y ={0,1}。

输⼊信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001??;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010??。

7. 已知⽤户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若⽤户B 向⽤户A 发送m =2的加密消息,则该加密后的消息为 8 。

⼆、判断题1. 可以⽤克劳夫特不等式作为唯⼀可译码存在的判据。

(√ )2. 线性码⼀定包含全零码。

(√ )3. 算术编码是⼀种⽆失真的分组信源编码,其基本思想是将⼀定精度数值作为序列的编码,是以另外⼀种形式实现的最佳统计匹配编码。

信息论与编码试题集与答案(新)

信息论与编码试题集与答案(新)

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)
110
111
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
其中N=2FT,б2X是信号的方差(均值为零),б2N是噪声的方差(均值为零).
再证:单位时间的最大信息传输速率
信息单位/秒
(证明详见p293-p297)
5.12设加性高斯白噪声信道中,信道带宽3kHz,又设{(信号功率+噪声功率)/噪声功率}=10dB.试计算改信道的最大信息传输速率Ct.
解:
5.13在图片传输中,每帧约有2.25×106个像素,为了能很好的重现图像,需分16个量度电平,并假设量度电平等概率分布,试计算每分钟传输一帧图片所需信道的带宽(信噪功率比为30dB).
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
3.10设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
3.5试证明:对于有限齐次马氏链,如果存在一个正整数n0≥1,对于一切i,j=1,2,…,r,都有pij(n0)>0,则对每个j=1,2,…,r都存在状态极限概率:
(证明详见:p171~175)
3.6设某齐次马氏链的第一步转移概率矩阵为:

信息论与编码试卷及答案

信息论与编码试卷及答案

一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

(2)必然事件的自信息是 0 。

(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。

(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。

(5)若一离散无记忆信源的信源熵H(X)等于,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。

(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。

(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。

(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。

(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5)居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高米以上的,而女孩中身高米以上的占总数的一半。

假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量解:设A表示“大学生”这一事件,B表示“身高以上”这一事件,则P(A)= p(B)= p(B|A)= (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=*= (2分)I(A|B)== (1分)四、(5)证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY)证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (1分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为,白色出现的概率为。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码试题集与答案(新)Word版

信息论与编码试题集与答案(新)Word版

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。

18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码理论(最全试题集+带答案+各种题型)

信息论与编码理论(最全试题集+带答案+各种题型)
6.相比于模拟通信系统,简述数字通信系统的优点。
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息理论与编码-期末试卷A及答案

信息理论与编码-期末试卷A及答案

一、填空题(每空1分,共35分) 1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

信息论的基础理论是 ,它属于狭义信息论。

2、信号是 的载体,消息是 的载体。

3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。

4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和12340.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。

5、信源的剩余度主要来自两个方面,一是 ,二是 。

6、平均互信息量与信息熵、联合熵的关系是 。

7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。

8、马尔可夫信源需要满足两个条件:一、 ; 二、 。

9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡010001000001100,则该信道的信道容量C=__________。

10、根据是否允许失真,信源编码可分为 和 。

11、信源编码的概率匹配原则是:概率大的信源符号用 ,概率小的信源符号用 。

(填短码或长码)12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。

13、差错控制的基本方式大致可以分为 、 和混合纠错。

14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。

15、码字101111101、011111101、100111001之间的最小汉明距离为 。

16、对于密码系统安全性的评价,通常分为 和 两种标准。

17、单密钥体制是指 。

信息论与编码试卷C(参考答案)

信息论与编码试卷C(参考答案)

一、(10分)设信源发出两个消息x1和x2,它们的概率分别为p(x1)=3/4,p(x2)=1/4。

求该信源的熵和冗余度。

解:(1)由信源的熵的计算公式有H(X)=0.81比特。

(2)最大熵出现在等概率情况,这时的熵为1比特。

冗余度为19%。

(1)由信源的熵的计算公式有H(X)=H(13,44)=0.81比特/信源符号。

(2)最大熵出现在等概率情况,即p(x1)=p(x2)=1/2,这时的熵为H(11,22)=1比特。

(3)冗余度为10.810.191γ-==。

二、(15分)已知一个信源包含八个符号消息,它们的概率分布如下表,进行费诺编码并计算信源熵、平均码长以及编码效率。

解:(1)对应的码字分别为00,01,100,101,1100,1101,1110,1111。

(2)信源熵H(S)=2.75比特/信源符号。

(3)平均码长L=2.75码元/信源符号。

(4)编码效率为1。

进行费诺编码并计算信源熵、平均码长以及编码效率。

解:(1)费诺编码如下:(2)信源熵1()()ii H s p s ==-∑㏒()ip s =2.75(比特/信源符号)。

(3)平均码长1() 2.75q i ii L p s l ===∑(码元/信源符号)。

(4) 编码效率为()1H S Lη==。

三、(15分)以下以码字集合的形式给出2种不同的编码,第一个码的码符号集合为{x ,y ,z},第二个码为二进制编码, {xx ,xz ,y ,zz ,xyz};{01,100,011,00,111,1010,1011,1101},对上面列出的编码分别回答下述问题:(1)此码码长是否满足Kraft-McMillan 不等式? (2)此码是否是即时码?如果不是,请给出反例。

(3)此码是否是唯一可译码?如果不是,请给出反例。

解:(1)此码不满足克劳夫特不等式:233234441722222222116--------+++++++=≥; (2) 因为此码不满足克劳夫特不等式,此码不是即时码;(3) 因为此码不满足克劳夫特不等式,此码不是唯一可译码。

(完整word版)信息论与编码试卷及答案分解

(完整word版)信息论与编码试卷及答案分解

-、(11'填空题(1) 1948年,美国数学家香农_________ 发表了题为"通信的数学理论”的长篇论文,从而创立了信息论。

(2) 必然事件的自信息是_0 ________ 。

(3) 离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍 _________ 。

(4) 对于离散无记忆信源,当信源熵有最大值时,满足条件为「信源符号等概分布_(5) 若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为」________ 。

(6) 对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。

(7) 已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2 _________ 个码元错误,最多能纠正1__个码元错误。

(8) 设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R _小于_ C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。

(9) 平均错误概率不仅与信道本身的统计特性有关,还与—译码规则_______________ 和_编码方法___有关三、(5 )居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的, 而女孩中身高1.6米以上的占总数的一半。

假如我们得知“身高 1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示"大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0.25 p(B)=0.5 p(B|A)=0.75 ( 2 分)故p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 ( 2分) I(A|B)=-Iog0.375=1.42bit ( 1 分)四、(5)证明:平均互信息量同信息熵之间满足l(X;Y)=H(X)+H(Y)-H(XY)证明:< p(x yj )l(X;Y) = Z 送pgy j )og ----------- -----X Y p(x )=-Z Z p(xy j )og pg )—」—E Z p(xy j Jog p(x y ji (2分)X Y X Y=H X -H XY同理I X;Y =HY -HYX (1分)则HYX 二H Y -I X;Y因为H(XY )=H(X )+H(Y|X ) (1 分)故H XY =HX H Y -I X;Y即I X;Y = H X H Y - H XY (1 分)五、(18' •黑白气象传真图的消息只有黑色和白色两种,求:X的数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概念简答题(每题5分,共40分)
1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?
平均自信息为:表示信源的平均不确定度,表示平均每个信源消息所提供的信息量。

平均互信息:表示从Y获得的关于每个X的平均信息量;表示发X前后Y的平均不确定性减少的量;表示通信前后整个系统不确定性减少的量。

2.简述最大离散熵定理。

对于一个有m个符号的离散信源,其最大熵是多少?
最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

最大熵值为
3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?
信息传输率R指信道中平均每个符号所能传送的信息量。

信道容量是一个信道所能达到的最大信息传输率。

信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。

平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U型凸函数。

4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。

数据处理定理为:串联信道的输入输出X、Y、Z组成一个马尔可夫链,且有
,。

说明经数据处理后,一般只会增加信息的损失。

5.写出香农公式,并说明其物理意义。

当信道带宽为5000Hz,信噪比为30dB时求信道容量。

香农公式为
,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于信噪比和带宽。

由得
,则
6.解释无失真变长信源编码定理。

只要,当N足够长时,一定存在一种无失真编码。

7.解释有噪信道编码定理。

答:当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8.什么是保真度准则?对二元信源,其失真矩阵
,求a>0时率失真函数的

?答:1)保真度准则为:平均失真度不大于允许的
失真度。

2)因为失真矩阵中每行都有一个0,所以有,而。

二、综合题(每题10分,共60分)
1.黑白气象传真图的消息只有黑色和白色两种,求:
1)黑色出现的概率为0.3,白色出现的概率为0.7。

给出这个只有两个符号的信源X的数学模型。

假设图
上黑白消息出现前后没有关联,求熵;
2)假设黑白消息出现前后有关联,其依赖关系为:,


,求其熵;
答:1)信源模型为
2)由得则
2.二元对称信道如右图。

1)若,
,求

;2)求该信道的信道容量和最佳输入分布。

答:1)
2),最佳输入概率分布为等概率分布。

3.信源空间为
试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率。

答:1)二元码的码字依序为:10,11,010,011,1010,1011,1000,1001。

平均码长,编码效率
2)三元码的码字依序为:1,00,02,20,21,22,010,011。

平均码长,编码效率
4.设有一离散信道,其信道传递矩阵为,并设
,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。

答:1)最小似然译码准则下,有,2)最大错误概率准则下,有,
5.已知一(8,5)线性分组码的生成矩阵为。

求:1)输入为全00011和10100时该码的码字;2)最小码距。

答:1)输入为00011时,码字为00011110;输入为10100时,码字为10100101。

2)
6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。

试求:
(1)无差错传输需要的最小输入功率是多少?
(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。

7.答:1)无错传输时,有即

2)在时,最大熵对应的输入概率密度函数为
2)最大错误概率准则下,有,
5.答:1)输入为00011时,码字为00011110;输入为10100时,码字为10100101。

2)
6.答:1)无错传输时,有即

2)在时,最大熵对应的输入概率密度函数为。

相关文档
最新文档