专题7 希望杯 数学-2 初二

合集下载

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

八年级数学第15届“希望杯”第2试试题

八年级数学第15届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第 15届“希望杯”第2试试题一、选择题(每小题5分,共50分) 1. 方程|x+1|+|x-3|=4 的整数解有() (A)2个(B)3个 (C)5个 (D)无穷多个m [ 1 血2. 若等式对任意的x(x 丰± 3)恒成立,则 mn=()(A)8 (B)-8 (C)16 (D)-163. 若x > z y >z ,则下列各式中一定成 立的是() (A)x+y > 4z(B)x+y > 3z(C)x+y > 2z(D)x+y > z4. 规定[a ]表示不超过a 的最大整数,当x=-1时,代数式2mf-3nx+6的值为16,2则[」m-n]=()5. 如图1,在=ABCD 中, AC 与BD 相交于O, AEL BD 于E , CF 丄BD 于F ,那么图中的全等 三角形共有()(A)-4(B)-3(C)3 (D)4(C)7 对(D)8 对Hi6.如图2,在直角扇形ABC 内,分别以AB 和AC 为直径作半圆,两条半圆弧相交于点D,整个图形被分成 S 1, S, S 3, S 4四部分,贝y S 2和S 4的大小关系是((A)S 2V S 4(B)S 2=S(C)S 2> S 4(D)无法确定(B)6 对C027.Give n m is a real number, and |1-m|=|m|+1 , simplify an algebraic expression,then] £8. 二(1)班共有35名学生,其中]的男生和1的女生骑自行车上学, 那么该班骑自行车上学的学生的人数最少是() (A)9(B)10(C)11(D)129. 李编辑昨天按时间顺序先后收到 A B C 、D E 共5封电子邮件,如果他每次都是首先回复最 新收到的一封电子邮件,那么在下列顺序: ①BAECD ②CEDBA ③ACBED④DCABE 中,李编辑可能回复的邮件顺序是()(A)①和②(B)②和③(C)③和④(D)①和④10. 有A 、B 、C 三把刻度尺,它们的刻度都是从0到30个单位(单位长度各不相同),设三把尺子的0刻度和30刻度处到尺子边缘的长度可以忽略不计,现用其中的一把尺子量度另两 把尺子的长度.已知用C 尺量度,得A 尺比B 尺长6个单位;用A 尺量度,得B 尺比C 尺长 10个单位;则用B 尺量度,A 尺比C 尺()(A)长15个单位 (B)短15个单位 (C)长5个单位 (D)短5个单位二、填空题(每小题5分,共50分)11. 若方程 |1002x-1002 2|=1002 3 的根分别是 X 1 和 X 2,贝U X 1 +X 2= ___ . 12. 分解因式:a 4+2a 3b+3a 2b 2+2ab 3+b 4= ____ ._______________ 1 _______________13. 对于任意的自然数n ,有f(n)=: : ^ X 1' ,则f(1)+f(3)+f(5)+…+f(999)= _____ .(A)|m|-1 (B)-|m|+1(C)m-1(D)-m+1(英汉小词典simplify化简;algebraic expressi on:代数式))-314414.X 1, X 2, X 3, X 4, X 5, X 6 都是正数,且 =6,贝 VX 1X 2X 3X 4X 5X 6=15.(Figure 3)In a trapezoid ABCD AE 』DE CEL AD CE is a bisector to / BCD then the ratio of the area of a quadrilateral ABCE to that of a triangle CDE is _____ (英汉小词典trapezoid :梯形;bisector :平分线;ratio :比值; quadrilateral :四边形) b 4d-7 b -h 1 7(d -1) £ Figure 316.已知a ,b ,c ,d 为正整数,且•- - , - ,则-的值 是 ______ ; h 的值是 ________ 17. 一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是 18,那么另一条直 角边的长有 _______ 种可能,它的最大值是 ________ . 18. “神舟”飞船由返回舱、轨道舱和推进舱三个舱组成,已知三个舱中每两个舱的长度和 分别为4859mm 5000mm 5741mm 那么这r 三个舱中长度最大的是 ________ mm 长度最小的是 ____ mm. 19. 若(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36 ,贝U x+2y+3z 的最大值是 ____ ,最 小值是 _____ . 20.图4是某电台“市民热线”栏目一周内接到的热线电话的统计图,其中有关房产城建的 热线电话有30个,那么有关环境保护的电话有 _________ 个;如果每年按52周计算「,每周接到 的热线电话的数量相同,那么“市民热线” 一年内接到的热线电 话有 ___ 个. 唐产域淫道路 36■/环境保护三、解答题(每题10分,共30分)苴它方面21.民航规定:旅客可以免 费携带a 千克物品,若超过a 千克,则要收取一定的费用,当携带物品的质量为b千克(b > a)时,所交费用为Q=10b-200(单位: 元).(1) 小明携带了35千克物品,质量大于a千克,他应交多少费用?(2) 小王交了100元费用,他携带了多少千克物品?(3) 若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m 表示Q.22. 如图5, —张矩形纸片ABCD的边长分别为9cm和3cm,把顶点A和C叠合在一起,得到折痕EF.(1) 证明四边形AECF是菱形;⑵计算折痕EF的长;⑶求A CEH的面积.23. 如图6,用水平线与竖直线将平面分成若干个边长为1的正方形格子,点O A、B均在正方形格子的顶点(格点)处,其中点0与点A位于同一水平线上,相距a格,点0与点B 位于同一竖直线上,相距b格.(1) 若a=5, b=4,则厶OAB中(包括三条边)共有多少个格点?(2) 若a, b互质,则在线段AB上(不包括A、B两点)是否有格点?证明你的结论.⑶若a, b互质,且a> b>8,A OAB中(包括三条边)共有67个格点,求a, b的值.参考答案、1.C 2.D 3.C 4.A 5.C 6.B 7.D 8.D 9.B 10.A二、11.2004 12.(a 2+b2+ab)213.5 14.6 15.7:9 16.21 ; 7 17.2 ; 8018.2941 ; 2059 19.15 ; -6 20.45 ; 7800三、21.(1)Q=35 X 10 -200=150(元);(2) 设小王携带了x千克物品,则10x-200=100,解得x=30.(3) 已知最多可以免费携带a千克物品,则10a-200=0 ,解得a=20.所以m=b-a=b-20,即b=m+20.故所交费用Q=10b-200=10(m+20)-200=10m(元).22. (1)如图1,因为AB// CD所以AF// CE CF// HE根据对称性,知/ CEH M AED因为DE、C三点共线,所以A、E、H三点共线,所以AE//CF,所以四边形AECF是平行四边形.又AF=CF 所以四边形AECF是菱形.⑵设AF=x,则• 一ICF=x, BF=9-x.在厶BCF中,C F=B F+B C,所以x2=(9-x) 2+32,解得x=5,即卩CF=5 BF=4.过E作EM L AB交AB于M,则MF=BM-BF=CE-BF=CF-BF=1EM=3.所以EF 二J EM*十= JiF.(3) 根据对称性,知△ CEH^A AED£ ££所以S^CEH F S^AEE F 2 DE- AD=] (AF- MF) • AD< X 4X 3=6(cm2).23. (1)如图2, a=5, b=4,A OAB中(包括三条边)的格点的个数为1+2+3+4+6=16.(2)若a,b互质,假设线段AB上存在某一点P(恰为格点),可设点P到点O的水平距离为x,竖直距离为y(x,y均为整数),则£ £S^AOB F S △AOF+S^BOF F二ay+ 上bx,] ] ]所以-ab=二ay+ 亠bx,即ab=ay+bx,ay=b(a-x).因为a,b互质,所以a-x是a的倍数,它与a-x v a矛盾,因此,假设不正确,即线段AB上(除A、B两点外)不存在其它格点.⑶由⑵ 知,线段AB上(除A、B两点外)不存在其它的格点.以OA OB为边作一个矩形OACB则在△ CAB中格点的个数与厶OAB中格点的个数相同,且只有A、B两点是公共的,而矩形OAC沖格点的个数为(a+1)(b+1).因此,(a+1)(b+1)+2=2 X 67=134,(a+1)(b+1)=132=2 X 2X 3X 11.由a>b>8,得a+1=12,b+1=11,即a=11,b=10.。

第十八届“希望杯”全国数学邀请赛初二第2试及答案-

第十八届“希望杯”全国数学邀请赛初二第2试及答案-

第十八届“希望杯”全国数学邀请赛初二 第2试2007年4月15 上午8:30至10:30 得分________一、选择题(本大题共10小题,每小题4分,共40分),以下每题的四个选项中,•仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图?所示,红丝带重叠部分形成的图形是( ).(A )正方形 (B )矩形 (C )菱形 (D )梯形2.设a ,b ,c 是不为零的实数,那么x=||||||a b c a b c +-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3.△ABC 的边长分别是a=m 2-1,b=m 2+1,c=2m (m>0),则△ABC 是( )(A )等边三角形 (B )钝角三角形(C )直角三角形 (D )锐角三角形4.古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.•地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,•我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,•农历纪年来甲亥年的哪一个在公历中( )(A )是2019年 (B )是2031年(C )是2043年 (D )没有对应的年号5.实数a ,b ,m ,n 满足a<b ,-1<n<m ,若M=,11a mb a nb N m n++=++,则M 与N 的大小关系是( )(A )M>N (B )M=N (C )M<N (D )无法确定的6.若干个正方形和等腰直角三角形拼接成如图所示的图形,若最大的正方形的边长是7cm ,则正方形A ,B ,C ,D 的面积和是( )(A )14cm 2 (B )42cm 2(C )49cm 2 (D )64cm 27.已知关于x 的不等式组230,320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B )43≤a ≤32(C )43<a ≤32 (D )43≤a<328.The number of intersection point of the graths of function y=||k x •andfunction y=kx (k ≠0) is ( )(A )0 (B )1 (C )2 (D )0 or 29.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时,治疗有效,则服药一次治疗疾病有效的时间为(• )(A )16小时 (B )1578小时 (C )151516小时 (D )17小时 10.某公司组织员工到公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘,每只船坐10人,那么其余的船坐满后,•仅有一只船不空也不满.参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11.已知a ,b ,c 为△ABC 三边的长,则化简│a+b+c │+2()a b c --的结果是________.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,•这就是“纳米技术”.已知1毫米=1000微米,1微米=1000纳米,那么2007•纳米的长度用科学记数法表示为_________米. 13.若不等式组21,23x a x b -<⎧⎨->⎩中的未知数x 的取值范围是-1<x<1,那么(a+1)(•b-•1)•的值等于_______.14.已知a 1,a 2,a 3,…,a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),那么M•与N•的大小关系是M______N.15.a bc d叫做二阶行列式,它的算法是:ad-bc,将四个数2,3,4,5排成不同的二阶行列式.则不同的计算结果有______个,其中,数值最大的是________.16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米.•当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了_________米.17.Xiao Ming says to Xiao Hua that my age add yuor age.addyour •agewhen I was your agg is 48.The age of Xiao Huais______now.(英汉词典:age 年龄;add 加上;when 当……时)18.长方体的长、宽、高分别为正整数a,b,c,且满足a+b+c+ab+•bc+•ac+•abc=2006,那么这个长方体的体积为________.19.已知a为实数,且a+26与1a-26都是整数,则a的值是_________.20.为确保信息安全,信息传输需加密,发送方由明文→密文(加密),接收方由密文→明文(解密).现规定英文26个字母的加密规则是:26个字母按顺序分别对应整数0到25,例如:英文a,b,c,d,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为x1,x2,x3,x4)按x1+2x2,3x2,x3+2x4;3x4计算,得到密文,即a,b,c,d•四个字母对应的密文分别是2,3,8,9.现在接收方收到的密文为35,42,23,12,则解密得到的英文单词为_________.三、解答题(本大题共3小题,共40分),要求:写出推算过程.21.(本题满分10分)如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(•细实数)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形由12个相同的等边三角形拼接而成).22.(本题满分15分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A•地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/•小时的速度返回,请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?23.(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,•并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?第十八届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试一、选择题(每小题4分)1.C 2.B 3.C 4.D 5.A 6.C 7.B 8.D 9.C 10.A二、填空题(每小题4分,第15小题,每个空2分,第19小题,答对一个答案2分)11.2c 12.2.007×10-4 13.-6 14.> 15.6;14 16.2.5 17.16 •18.•888•19.5-26或-5-26 20.hope三、解答题21.(1)连结CO ,易知△AOC 是直角三角形,∠ACO=90°,∠AOC=30°,所以AO=2AC=2a . (3分)(2)如图,大六角星形的面积是等边△AMN 面积的12倍.因为AM 2=222()()22AM a , 解得23a . 所以大六角星形的面积是S=12×12×33a ×32. (7分) (3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O•的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以 大六角星形的面积:六个小六角星形的面积和=2:3 (10分)22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s=kt ,将(2.4,48)代入,解得k=20.所以 s=20t . (2分)由图2可知,在距A 地30千米处,乙车追上甲车,所以当s=30千米时, t=302020s ==1.5(小时). 即甲车出发1.5小时后被乙车追上. (5分)(2)由图知,可设乙车由A 地前往B 地的函数的解析式为s=pt+m ,将(1.0,0)和(1.5,30)代入,得0,60,30 1.5,60.p m p p m m =+=⎧⎧⎨⎨=+=-⎩⎩解得 所以s=60t-60. (7分)当乙车到达B 地时,s=48千米,代入s=60t-60,得t=1.8小时.又设乙车由B 地返回A 地的函数的解析式为s=-30t+n ,将(1.8,48)代入,得48=-30×1.8+n ,解得 n=102,所以 s=-30t+102. (9分)当甲车与乙车迎面相遇时,有-30t+102=20t ,解得 t=2.04小时,代入s=20t ,得s=40.8千米.即甲车与乙车在距离A 地40.8千米处迎面相遇. (12分)(3)当乙车返回A 地时,有-30t+102=0,解得 t=3.4小时.甲车要比乙车先回到A 地,速度应大于483.4 2.4-=48(千米/小时). (15分) 23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,•其中每个点可以与另外两组的6个点连接,共有线段692⨯=27(条). (5分) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段 12[2×(3+4)+3×(2+4)+4×(2+3)]=26(条). (10分)(3)设第一组有a个点,第二组有b个点,第三组有c个点,则平面上共有线段1[a(b+c)+b(a+c)+c(a+b)]=ab+bc+ca(条).2若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为(a-1)(b+1)+(b+1)c+(a-1)c=ab+bc+ca+a-b-1.与原来线段的条数的差是a-b-1,即当a>b时,a-b-1≥0时,此时平面上的线段条数不减少;当a≤b时,a-b-1<0,此时平面上的线段条数一定减少.由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多.(13分)设三组中都有x个点,则线段条数为3x2=192,解得x=8.所以平面上至少有24个点.(15分)。

希望杯-第十五届全国数学邀请赛初二第2试-

希望杯-第十五届全国数学邀请赛初二第2试-

第十五届“希望杯”全国数学邀请赛初二 第2试2004年4月18日 上午8:30至10:30 得分一、选择题:(每小题5分,共50分)以下每题的四个选项中,仅有一个是正确的,请将表示正确的英文字母填在每题后面的圆括号内。

1. 方程1+x +3-x = 4的整数解有( )(A )2个 (B )3个 (C )5个 (D )无穷多个2. 若等式3+x m - 3-x n =982-x x 对任意的 x (x ≠±3)恒成立,则mn =( ) (A )8 (B )-8 (C )16 (D )-163. 若x >z ,y >z ,则下列各式中一定成立的是( )(A )x +y >4z (B )x +y >3z (C )x +y >2z (D )x +y >z4. 规定[a]表示不超过a 的最大整数,当x =-1时,代数式2mx3-3nx +6值为16,则[32m -n]=( ) (A )-4 (B )-3 (C )3 (D )45. 如图1,在 □ ABCD 中,AC 与BD 相交于O ,AE ⊥BD 于E ,CF⊥BD 于F ,那么图中的全等三角形共有( )(A )5对 (B )6对 (C )7对 (D )8对6. 如图2,在直角扇形ABC 内,分别以AB 和AC 为直径作半圆,两条半圆弧相交于点D ,整个图形被分成S 1、S 2、S 3、S 4 四部分,则S 2和S 4的大小关系是( )(A )S 2<S 4 (B )S 2=S 4 (C )S 2>S 4 (D )无法确定7. Given m is a real number ,and m -1=m +1,simplifyan algebraic expression ,then 122+-m m =( )(A )m -1 (B)-m +1 (C) m -1 (D) -m +1 (英汉小词典simplify :化简;algebraic expression :代数式)8. 二(1)班共有35名学生,其中21的男生和31的女生骑自行车上学,那么该班骑自行车上学的学生的人数最少是( )(A )9 (B)10 (C)11 (D)129. 李编缉昨天按时间顺序先后收到A 、B 、C 、D 、E 共5封电子邮件,如果他每次都是首先回复最新收到的一封电子邮件,那么在下列顺序①BAECD ②CEDBA ③ACBED ④DCABE 中,李编缉可能回复的邮件顺序是( )(A )①和② (B )②和③ (C )③和④ (D )①和④10. 有A 、B 、C 三把刻度尺,它们的刻度都是从0到30 个单位(单位长度各不相同),设三把尺子的0刻度和30 刻度处到尺子边缘的长度可以忽略不计,现用其中的一把尺子量度另两把尺子的长度。

第二十四届希望杯初二第2试试题及答案解析

第二十四届希望杯初二第2试试题及答案解析

第二十四届“希望杯”全国数学邀请赛初二 第2试试题2013年4月14日 上午9:00至11:00竞赛结束时,只交答题卡,试卷可带走。

答案于今日11:00在以下网站和微博公布:“希望杯”官方网站:http ://www .hopecup .org “希望杯”微博:http ://e .weibo .com /xiwangbei 《数理天地》官方网站:http ://www .mpw 《数理天地》微博:http ://e .weibo .com /shulitiandi 未经“希望杯”组委会授权,任何单位和个人均不准翻印或销售此试卷,也不准以任何形式(包括网络)转载。

一、选择题(每小题4分,共40分)1.在无理数5、6、7、8中,介于8+12与26+12之间的数有( ) (A )1个. (B )2个. (C )3个.(D )4个. 2.已知x +1x =6(0<x <1),则x -1x的值是( ) (A )-5. (B )-2. (C )5. (D )2.3.有3个正整数a ,b ,c ,并且a >b >c ,从中任取2个,有3种不同的取法,将每一种取法取出的2个数分别作和及作差,得到如下6个数:42,45,64,87,109,151,则a 2+b 2+c 2的值是( )(A )12532 . (B )12533. (C )12534 . (D )12535.4.已知有理数a ,b ,x ,y 满足ax +by =3,ay -bx =5,那么(a 2+b 2)(x 2+y 2)的值是( )(A )225. (B )75. (C )54. (D )34.5.Among all the following points ,which one is on the graph of function y =x 2-2x -3?( )(A )(1,-3) (B )(0,3) (C )(-1,0) (D )(-2,1)6.下列命题中,正确的是( )(A )如果三角形三个内角的度数比是3:4:5,那么这个三角形是直角三角形.(B )如果直角三角形的两条直角边的长分别是a 和b ,那么斜边的长是a 2+b 2.(C )如果三角形三条边长的比是1:2:3,那么这个三角形是直角三角形.(D )如果直角三角形的两条直角边的长分别是a 和b ,斜边长是c ,那么斜边上的高的长是ab c. 7.甲、乙、丙、丁4名跑步运动员的速度依次是v 1,v 2,v 3,v 4 ,且v 1>v 2>v 3>v 4>0,他们沿直跑道进行追逐赛,规则如下:①4人在同一起跑线上,同时同向出发;②经过一段时间后,甲、乙、丙同时反向,谁先遇到丁谁就是冠军.则( )(A )冠军是甲. (B )冠军是乙. (C )冠军是丙. (D )甲、乙、丙同时遇到丁.8.已知直线y =kx +b (k ≠0)与x 轴的交点在x 的正半轴上,则( )(A )k >0,b >0. (B )k <0,b <0. (C )kb >0. (D )kb <0.9.如图1,函数y 1=k 1x +b 和y 2=k 2x 的图象交于点(-1,-2),则关于x 的不等式k 1x +b >k 2x 的解集是( )(A )x >-1. (B )x <-1. (C )x <-2. (D )x >-2.10.设q =mn ,p =q +n +q -m ,其中m ,n 是两个连续的自然数(m <n ).则p ( )(A )总是奇数. (B )总是偶数.(C )有时是奇数,有时是偶数. (D )有时是有理数,有时是无理数.二、填空题(每小题4分,共40分) 11.已知a =5+2,b =5-2,则a 2+b 2+7的平方根的值是 .12.60名学生参加英语测试,若优秀的学生占45%,则在统计图中,表示优秀的扇形的圆心角是 图1度;若表示良好的扇形的圆心角是120°,则良好的学生有 人.13.若x 1,x 2都满足|2x -1|+|2x +3|=4,且x 1<x 2,则x 1-x 2的取值范围是 .14.若直线y =2x +b 与坐标轴围成的三角形的面积是4,则b = .15.已知a ,b 都是有理数,若不等式(2a -b )x +3a -b <0的解集是x >14,则不等式(a +3b )x +a -2b >0的解集是 .16.如图2,点P 在正方形ABCD 内,△PBC 是正三角形,若△BPD 的面积是3-1,则正方形ABCD 的边长是 . 17.直线y =x -1与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,△ABC 是等腰三角形,则满足条件的点C 有 个.18.已知x 2-x -1=0,则x 3+x +1x 4= . 19.如图3,矩形纸片ABCO 平放在xOy 坐标系中,将纸片沿对角线CA向左翻折,点B 落在点D 处,CD 交x 轴于点E .若CE =5,直线AC 的解析式为y =-12x +m ,则点D 的坐标的坐标是 . 20.已知正整数x ,y 满足59<y x <35,则x -y 的最小值是 . 三、解答题每题都要写出推算过程.21.(本题满分10分)已知m 2=n +2,n 2=m +2(m ≠n ),求m 3-2mn +n 3的值.22.(本题满分15分)As in Figure 4 ,both ∠D =∠E =90° in trapezoid ABCD .△ABC is an equilateraltriangle with C on DE .If AD =7 and BE =11,find the area of △ABC .(英汉词典:trapezoid 梯形;equilateral 等边三角形;area 面积)23.(本题满分15分)有n (n ≥2)个整数a 1<a 2<a 3<…<a n ,它们满足下列条件:①如果对于其中的任意一个整数a m 都有-a m 不在这n 个整数中,则称这n 个整数满足性质P ; ②若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i +a j 也在这n 个整数中,则这样的整数对为“和整数对”;③若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i -a j 也在这n 个整数中,则这样的整数对为“差整数对”.回答下列问题:⑴3个整数-1,2,3是否满足性质P ?如果满足性质P ,请写出其中所有的“和整数对”和“差整数对”;⑵若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“差整数对”有k 个,试证明k ≤12n (n -1); ⑶若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“和整数对”有l 个,“差整数对”有k 个,试证明l =k图2图3Fig .4第二十四届“希望杯”全国数学邀请赛初二第2试答案与解析一、选择题(每小题4分,共40分)1.选:D ;【解析】8+12<9+12=2与26+12>25+12=3 2.选:B ;【解析】∵0<x <1,则x -1x <0,(x -1x )2= x +1x -2=4,x -1x =-2 3.选:C ;【解析】分析大小可得a +b 最大,即a +b =151,a +c 第二大,即a +c =109,而a -b 和b -c 都可能最小,由于a -b 与a +b 具有相同的奇偶性,所以a -b =45,可解得,a =98,b =53,c =114.选:D ;【解析】(ax +by )2=9,(ay -bx )2=25,两式相加得:a 2x 2+b 2y 2+ a 2y 2+b 2x 2=34,而(a 2+b 2)(x 2+y 2)= a 2x 2+b 2y 2+ a 2y 2+b 2x 2.5.选:C ; 6.选:D ;7.选:C ;【解析】同时反向跑的时候,从前向后依次是丙、乙、甲,而它们三人应该同时相遇于出发地.所以在遇上丁时,丙还在前面.8.选:D ;【解析】-b k>0,kb <0;9.选:B ; 10.选:A ;【解析】p =q +n +q -m =mn +n +mn -m = n (m +1)+m (n -1) = n 2+m 2=m +n ,连续整数的和一定是奇数.二、填空题(第小题4分,共40分)11.±5; 12.162,20;13.-2≤x 1-x 2<0;【解析】|x -12|+|x +32|=2,|x -12|+|x +32|可以表示数轴上表示x 的点与12和-32的两点距离的和.而12和-32的距离是2,所以-32≤x ≤12,所以,x ≥-32-12=-2,又因为x 1<x 2,x 1-x 2<0,所以-2≤x 1-x 2<014.±4;【解析】与两轴的交点为(0,b ),(,0),12×|b |×|-12b |=4,14b 2=4,b =±4 15.x >2347;【解析】由题意得,2a -b <0,b -3a 2a -b =14,b =145a ,2a -145a <0,a >0, (a +3b )x +a -2b >0,475ax -235a >0,x >234716.2;【解析】设正方形的边长为a ,S △BDP = S △BCP + S △CDP -S △BCD =34a 2+14a 2-12a 2=3-1,a 2=4,a =2 17.7;18.1;【解析】x 2= x +1,x 3+x +1x 4 = x (x +1)+x +1(x +1)2 = (x +1)2(x +1)2= 1 19.(245,-125);【解析】OC =m ,OA =2m ,AE =CE =5,由m 2+(2m -5)2=52,得m =4,AD =OC =4,DE =EO =3,可得D (245,-125) 20.3;【解析】59x <y <35x ,当x =1时,59<y <35,y 无整数解;当x =2时,119<y <115,y 无整数解;当x =3时,123<y <145,y 无整数解;当x =4时,229<y <225,y 无整数解;当x =5时,279<y <3,y 无整数解;当x =6时,313<y <335,y 无整数解;当x =7时,379<y <415, y =4,x -y =3 三、解答题每题都要写出推算过程.21.(本题满分10分)解:⎩⎨⎧m 2=n +2……①n 2=m +2……② ①-②=(m -n )(m +n )=n -m ,∵m ≠n ,∴m +n =-1 m 3-2mn +n 3=m (n +2)-2mn +n (m +2)=2m +2n =-222.(本题满分15分)解:作AF ⊥BE 于F ,DC =x ,CE =y .∵AB =AC =BC ,根据勾股定理:x 2+72=y 2+112=(x +y )2+42 ⎩⎨⎧2xy +y 2=33……①2xy +x 2=105……② ①×35-②×11得:35x 2+48xy -11y 2=0,(5y -x )(7y +11x )=0,∵x >0,y >0∴x =5y 代入:得y 2=3,y =3,x =53,AB 2=(63)2+42=124,S △ABC =34AB 2=31 3 23.(本题满分15分)解:⑴ -1,2,3的相反数分别是1,-2,-3,它们都不在这3个整数中,所以满足性质P .其中“和整数对”为(-1,3)和(3,-1);“差整数对”为(2,-1)和(2,3)⑵ 设a m 是这n 个整数中的任意一个,(a m ,a p )是一个有序数对,其中p ≠m ,这样的数对共有n -1个.所以,这n 个数一共有n (n -1)个有序数对.若(a m ,a p )是一个差整数对,则(a p ,a m )一定不是差整数对,否则不满足性质P .所以,差整数对至多有12 n (n -1),即k ≤12n (n -1) ⑶ 若任意a m 、a n 、a p 是这n 个整数中的三个,且满足a m +a n =a p ,则(a m ,a n )、(a n ,a m )是两个和整数对记为一组,而(a p ,a m )、(a p ,a n )是对应的两个差整数对也记为一组,那么每一组和整数对都对应着一组差整数对,若和整数对有x 组,l =2x ,则差整数对也一定有x 组,k =2x ,所以l =k 图5。

八年级数学第11届“希望杯”第2试试题

八年级数学第11届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第11届“希望杯”第2试试题一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是 (AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形3.已知25x=2000, 80y=2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是(A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )个 (B )个 (C )2001000个 (D )2001999个 一.8.如图1,梯形ABCD 中,AB23215+215-3cm 4cm 5cm 15162161521617217162xy z r zx y q yz x p 222-=-=-zy x rzqy px ++++23246623+--1n 1m 23-+222c 2a 2x 13x 116n 6n 10n 3n 22-+-+3a 2a 3c 5a 7c a b a 1b 12)1b a (--3图1AB C D EF 345ABCDE F 图2AB CD E58°图3A B CD E 图4A BCD E F图5AD F875118 332 a b a 1b 12)1b a (--a 1b 1)]b a (1[ab a b ---① 若a 、b 同为正数,由ab<1,得a >b , ∴ a -b =ab , a 2-ab =b , 解得b =1a a 2+,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b -(1-ab )=-2a 1·a ba -=-4ab=-)1a (a 12+.② 若a 、b 同为负数,由ab<1,得b >a , ∴ a -b =-ab , a 2-ab =-b , 解得b =1a a 2-,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b(1+ab )=3a b a +=32a 1a a a -+=)1a (a 1a 22--.综上所述,当a 、b 同为正数时,原式的结果为-)1a (a 12+;当a 、b 同为负数时,原式的结果为)1a (a 1a 22--22.将△ADF 绕A 点顺时针方向旋转90°到△ABG 的位置, ∴ AG =AF ,∠GAB =∠FAD =15°, ∠GAE =15°+30°=45°,∠EAF =90°-(30°+15°) =45°, ∴∠GAE =∠FAE ,又AE =AE , ∴△AEF ≌△AEG , ∴EF =EG ,∠AEF =∠AEG =60°,在Rt △ABE 中,AB =3,∠BAE =30°,∴∠AEB =60°,BE =1,在Rt △EFC 中,∠FEC =180°-(60°+60°)=60°,EC =BC -BE =3-1,EF =2(3-1),∴EG =2(3-1),S △AEG =21EG ·AB =3-3, ∴S △AEF =S △AEG =3-3.23.① 将第一个球先放入,有5种不同的的方法,再放第二个球,这时以4种不同的放法,依此类推,放入第三、四、五个球,分别有3、2、1种放法,所以总共有5×4×3×2×1=120种不同的放法。

八年级数学第3届“希望杯”第2试试题

八年级数学第3届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第3届“希望杯”第2试试题一、选择题(:每题1分,共10分)1.73282-73252= [ ]A .47249B .45829.C .43959D .449692.长方形如图43.已知AB=2,BC=1,则长方形的内接三角形的面积总比数( )小或相等. [ ] A.47; B.1; C.23; D.13. 3.当x=6,y=8时,x 6+y 6+2x 4y 2+2x 2y 4的值是[ ] A .1200000-254000. B .1020000-250400C .1200000-250400.D .1020000-2540004.等腰三角形的周长为a(cm).一腰的中线将周长分成5∶3,则三角形的底边长为[ ]A.6a ;B.35a ;C. 6a 或85a ;D.45a . 5.适合方程222x xy y -++3x 2+6xz+2y+y 2+3z 2+1=0的x 、y 、z 的值适合[ ]A.230200x y z x y z x y z ++=⎧⎪-+=⎨⎪++=⎩;B.3260232x y z x y z x y z +-=-⎧⎪++=⎨⎪-+=⎩;C.32620232x y z x y z x y z +-=-⎧⎪-+=⎨⎪-+=⎩;D.00232x y z x y z x y z -+=⎧⎪-++=⎨⎪-+=⎩6.四边形如图44,AB=32,BC=1, ∠A=∠B=∠C=300,则D 点到AB 的距离是[ ] A.1; B.12; C.14; D.18. 7.在式子|x+1|+|x+2|+|x+3|+|x+4|中,用不同的x 值代入,得到对应的值,在这些对应值中,最小的值是 [ ]A .1B .2.C .3D .48.一个等腰三角形如图45.顶角为A,作∠A 的三等三分线AD ,AE (即∠1=∠2=∠3),若BD=x ,DE=y ,EC=z ,则有 [ ]A .x >y >zB .x=z >y.C .x=z <yD .x=y=z9.已知方程(a+1)x 2+(|a+2|-|a-10|)x+a=5有两个不同的实根,则a 可以是[ ]A .5B .9.C .10D .1110.正方形如图46,AB=1,BD 和AC 都是以1为半径的圆弧,则无阴影的两部分的面积的差是[ ] A.12π-; B.14π-; C.13π-; D.16π-.二、填空题(每题1分,共10分)1.方程3361x x=+的所有根的和的值是______________. 2.已知a+b=19921991+,a-b=19921991-,那么ab=________.3.如图47,在△ABC 中,∠ACB=60°,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD=______.4.已知x=121+,那么32355424x x x +++1的值是______. 5.如图48,已知边长为a 的正方形ABCD ,E 为AD 的中点,P 为CE 的中点,那么△BPD 的面积的值是______.6. 已知x+y=4,xy=-4, 那么3333x y x y +-=________. 7.在正△AB C 中(如图49),D 为AC 上一点,E 为AB 上一点,BD ,CE 相交于P ,若四边形ADPE 与△BPC 的面积相等,那么∠BPE=______.8.已知方程x 2-19x-150=0的一个正根为a,那么1a a +++12a a ++++23a a ++++┉+19992000a a +++=____. 9.某校男生若干名住校,若每间宿舍住4名,则还剩20名未住下;若每间宿舍住8名,则一部分宿舍未住满,且无空房,该校共有住校男生______名.10.n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,则d=______.三、解答题(写出推理、运算的过程及最后结果,每题5分,共10分)1. 若a ,b ,c ,d >0,证明:在方程21202x a d x cd +++=,21202x b cx da +++=,21202x a bx ab +++=21202x d ax bc +++=中,至少有两个方程有不相等的实数根.2.(1)能否把1,2,…,1992这1992个数分成八组,使得第二组各数之和比第一组各数之和多10,第三组各数之和比第二组各数之和多10,…,最后第八组各数之和比第七组各数之和也多10?请加以说明.(2)把上题中的“分成八组”改为“分成四组”,结论如何?请加以说明.如果能够,请给出一种分组法.答案与提示一、选择题提示:5.等式2x+x 2+x 2y 2+2=-2xy 化简为(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由2x 2+197xy+2y 2=1993,得2(x+y)2+193xy=1993.将xy=1,x+y=4n+2代入上式得:(4n+2)2=900,即4n+2=30.∴n=7.∴应选(A).7.由∠A=36°,AB=AC ,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴AD=BD=BC .由题意,1=(AB+AD+BD)-(BD+BC+CD)=AB-CD=AC-CD=AD=BD .∴应选(B).8.原方程化为(x 2-2x+1)-5|x-1|+6=0.即|x-1|2-5|x-1|+6=0.∴|x-1|=2,或|x-1|=3.∴x 1=-1,x 2=3,x 3=-2,x 4=4.则x 1+x 2+x 3+x 4=4.∴应选(D).9.连结CB ',∵AB=BB ',∴S △BB 'C =S △ABC =1,又CC '=2BC ∴S △B 'CC '=2S △BB 'C =2.∴S △BB 'C '=3.同理可得S △A 'CC '=8,S △A 'B 'A =6.∴S △A 'B 'C '=3+8+6+1=17.∴应选(D).10.原方程为|3x|=ax+1.(1)若a=3,则|3x|=3x+1.当x ≥0时,3x=3x+1,不成立.(2)若a >3.综上所述,a ≥3时,原方程的根是负数.∴应选(B).另解:(图象解法)设y1=|3x|,y2=ax+1。

第希望杯初二第2试试题及答案

第希望杯初二第2试试题及答案

第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。

初中数学竞赛17届希望杯数学竞赛初二第二试试题(含答案)

初中数学竞赛17届希望杯数学竞赛初二第二试试题(含答案)

第十七届“希望杯’’全国数学邀请赛初二第2试2018年4月16日上午8:30至lO:30 得分___________一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内.1.下列四组根式中,是同类二次根式的一组是( )2.要使代数式有意义,那么实数x的取值范围是( )3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形的两底,这样的梯形( ) (A)能作一个. (B)能作两个. (C)能作无数个. (D)一个也不能作.(英汉词典:Fig.figure的缩写,图;quadrilateral四边形;diagonal对角线;value 数值;variable变量;to depend on取决于;position位置)(A)是完全平方数,还是奇数. (B)是完全平方数,还是偶数.(C)不是完全平方数,但是奇数. (D)不是完全平方数,但是偶数.6.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合的部分后展开,此时纸片的形状是( )(A)正方形. (B)长方形. (C)菱形. (D)等腰梯形.7.若a,b,c都是大于l的自然数,且c a=252b,则n的最小值是( )(A)42. (B)24. (C)21 (D)15(英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square 完全平方(数);total总的,总数)9.下表是某电台本星期的流行歌曲排行榜,其中歌曲J 是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是( )(A)D ,E ,H . (B)C ,F ,I . (C)C ,E ,I . (D)C ,F ,H .10.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则( )(A)P 一定是奇数. (B)P 一定是偶数.(C)当n 是奇数时,P 是偶数. (D)当”是偶数时,P 是奇数. 二、填空题(每小题4分,共40分.)11.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是______米.15.从凸n 边形的一个顶点引出的所有对角线把这个凸n 边形分成了m 个小三角形,若m 等于这个凸n 边形对角线条数的94,那么此n 边形的内角和为_____. 16.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过_______分钟,就会感到不适.(1米=109纳米)19.如图2,等腰△ABC 中,AB=AC ,P 点在BC 边上的高AD 上,且21=PD AP ,BP 的延长线交AC 于E ,若ABC S ∆=10,则ABE S ∆=______,DEC S ∆=_______.20.一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余的两个号码的差的绝对值是______或_______. 三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分) 如图3,正方形ABCD 的边长为a ,点E 、F 、G 、H 分别在正方形的四条边上,已知EF ∥GH .EF=GH .(1)若AE=AH=a 31,求四边形EFGH 的周长和面积; (2)求四边形EFGH 的周长的最小值.22.(本小题满分15分)已知A 港在B 港的上游,小船于凌晨3:00从A 港出发开往B 港,到达后立即返回,来回穿梭于A 、B 港之间,若小船在静水中的速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO 时,有人看见小船在距离A 港80千米处行驶.求A 、B 两个港口之间的距离.23.(本小题满分15分) 在2,3两个数之间,第一次写上5132=+,第二次在2,5之间和5,3之间分别写上27252=+和4235=+,如下所示:第k 次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的k1. (1)请写出第3次操作后所得到的9个数,并求出它们的和;(2)经过k 次操作后所有数的和记为k S ,第k+1次操作后所有数的和记为1+k S ,写出1+k S 与k S 之间的关系式; (3)求6S 的值.第十七届“希望杯”全国数学邀请赛参考答案及评分标准(初中二年级 第2试)一.选择题(每小题4分)二.填空题(每小题4分)三、解答题21.(1)如图1,连结HF .由题知四边形EFGH 是平行四边形,所以又所以所以(3分)所以△AHE 和△DHG 都是等腰直角三角形,故∠EHG=090,四边形EFGH 是矩形.易求得所以四边形EFGH 的周长 为2a 2,面积为294a .(5分)(2)如图2,作点H 关于AB 边的对称点H ',连结H F ',交AB 于E ',连结E 'H .显然,点E 选在E '处时.EH+EF 的值最小,最小值等于H F '. (7分) 仿(1)可知当AE≠AH 时,亦有(8分)所以2.因此,四边形EFGH周长的最小值为2a(10分)22.设A、B两个港口之间的距离为L,显然(1分)(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用即19:00时小船在A港,那么在3:00到19:00的时间段内,小船顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以解得 t=6 (5分)即顺流行驶了由于所以A、B两个港口之间的距离是120千米.(7分)(2)若小船在23:00时正逆流而上,则小船到达A港需再用即小船在内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t 小时,则逆流行驶用了小时,所以解得 (12分)即顺流行驶了由于所以A 、B 两个港口之间的距离可能是100千米或200千米. (14分)综上所述,A 、B 两港口之间的距离可能是100千米或120千米或200千米.(15分) 23.(1)第3次操作后所得到的9个数为它们的和为255(4分) (2)由题设知0S =5,则(10分)(3)因为所以(15分)。

第十六届希望杯初二第二试试题及答案详解

第十六届希望杯初二第二试试题及答案详解

2005年第16届“希望杯”全国数学邀请赛试卷(初二第2试)一、选择题(共10小题,每小题5分,满分50分)2.(5分)设b<a<0,,则等于()B3c4.(5分)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支5.(5分)计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数(1101)2转换成十进制数是1×23+1×22+0×21+1×20=13,那么二进制数转换成十进制数是()6.(5分)已知△ABC的三个内角的比是m:(m+1):(m+2),其中是m大于1的正整数,那么△ABC是8.(5分)已知两位数能被3整除,它的十位数字与个位数字的乘积等于它的个位数字,且它的任意次9.(5分)放成一排的2005个盒子中共有4010个小球,其中最左端的盒子中放了a个小球,最右端的盒10.(5分)已知整数x,y,z满足x≤y<z,且,那么x2+y2+z2的值等于()二、填空题(共10小题,每小题5分,满分50分)11.(5分)如果|a|=3,|b|=5,那么|a+b|﹣|a﹣b|的绝对值等于_________.12.(5分)已知,则=_________.13.(5分)某汽车从A地驶向B地,若每分钟行驶a千米,则11点到达,若每分钟行驶a千米,则11:20时距离B地还有10千米;如果改变出发时间,若每分钟行驶a千米,则11点到达,若每分钟行驶a千米,则11:20时已经超过B地30千米.A、B两地的路程是_________千米.14.(5分)若是一个六位数,其中a,b,c是三个互异的数字,且都不等于0,1,2,3,又M 是7的倍数,那么M的最小值是_________.15.(5分)分解因式:(x+1)(x+2)(x+3)(x+6)+x2=_________.16.(5分)若在凸n(n为大于3的自然数)边形的内角中,最多有M个锐角,最少有m个锐角,则M= _________;m=_________.17.(5分)如图,等腰Rt△ABC的直角边长为32,从直角顶点A作斜边BC的垂线交BC于D1,再从D1作D1D2⊥AC交AC于D2,再从D2作D2D3⊥BC交BC于D3,…,则AD1+D2D3+D4D5+D6D7+D8D9= _________;D1D2+D3D4+D5D6+D7D8+D9D10=_________.18.(5分)如图,将三角形纸片ABC沿EF折叠可得图2(其中EF∥BC),已知图2的面积与原三角形的面积之比为3:4,且阴影部分的面积为8平方厘米,则原三角形面积为_________平方厘米.19.(5分)如图,△ABC中,BC:AC=3:5,四边形BDEC和ACFG均为正方形,已知△ABC与正方形BDEC的面积比是3:5,那么△CEF与整个图形的面积比等于_________.20.(5分)如果正整数n有以下性质:n的八分之一是平方数,n的九分之一是立方数,它的二十五分之一是五次方数,那么n就称为“希望数”,则最小的希望数是_________.三、解答题(共3小题,满分30分)21.(10分)如图是一个长为400米的环形跑道,其中A、B为跑道对称轴上的两点,且A、B之间有一条50米的直线通道.甲、乙两人同时从A点出发,甲按逆时针方向以速度v1沿跑道跑步,当跑到B点处时继续沿跑道前进,乙按顺时针方向以速度v2沿跑道跑步,当跑到B点处时沿直线通道跑回A点处.假设两人跑步时间足够长.求:(1)如果v1:v2=3:2,那么甲跑了多少路程后,两人首次在A点处相遇?(2)如果v1:v2=5:6,那么乙跑了多少路程后,两人首次在B点处相遇?22.(10分)(1)如果a是小于20的质数,且可化为一个循环小数,那么a的取值有哪几个?(2)如果a是小于20的合数,且可化为一个循环小数,那么a的取值有哪几个?23.(10分)如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.2005年第16届“希望杯”全国数学邀请赛试卷(初二第2试)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2.(5分)设b<a<0,,则等于()B对已知条件的值,然后代入,2ab+ab﹣b==3c4.(5分)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支,解方程组求出则由题意得5.(5分)计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数(1101)2转换成十进制数是1×23+1×22+0×21+1×20=13,那么二进制数转换成十进制数是()根据二进制与十进制的换算关系,可得6.(5分)已知△ABC的三个内角的比是m:(m+1):(m+2),其中是m大于1的正整数,那么△ABC是,运用三角形面积公式得到Xa==可得:XaYa Za8.(5分)已知两位数能被3整除,它的十位数字与个位数字的乘积等于它的个位数字,且它的任意次9.(5分)放成一排的2005个盒子中共有4010个小球,其中最左端的盒子中放了a个小球,最右端的盒10.(5分)已知整数x,y,z满足x≤y<z,且,那么x2+y2+z2的值等于()根据条件,得到﹣二、填空题(共10小题,每小题5分,满分50分)11.(5分)如果|a|=3,|b|=5,那么|a+b|﹣|a﹣b|的绝对值等于6.12.(5分)已知,则=1.解:由于=5==13.(5分)某汽车从A地驶向B地,若每分钟行驶a千米,则11点到达,若每分钟行驶a千米,则11:20时距离B地还有10千米;如果改变出发时间,若每分钟行驶a千米,则11点到达,若每分钟行驶a千米,则11:20时已经超过B地30千米.A、B两地的路程是54千米.a每分钟行驶a10=11+﹣(11+由①②得=由③④得=﹣=﹣﹣14.(5分)若是一个六位数,其中a,b,c是三个互异的数字,且都不等于0,1,2,3,又M 是7的倍数,那么M的最小值是468321.是一个六位数,其中是一个六位数,其中15.(5分)分解因式:(x+1)(x+2)(x+3)(x+6)+x2=(x2+6x+6)2.16.(5分)若在凸n(n为大于3的自然数)边形的内角中,最多有M个锐角,最少有m个锐角,则M= 3;m=0.17.(5分)如图,等腰Rt△ABC的直角边长为32,从直角顶点A作斜边BC的垂线交BC于D1,再从D1作D1D2⊥AC交AC于D2,再从D2作D2D3⊥BC交BC于D3,…,则AD1+D2D3+D4D5+D6D7+D8D9= 31;D1D2+D3D4+D5D6+D7D8+D9D10=31.=++),的中点,且++)=;第二个空填故答案为18.(5分)如图,将三角形纸片ABC沿EF折叠可得图2(其中EF∥BC),已知图2的面积与原三角形的面积之比为3:4,且阴影部分的面积为8平方厘米,则原三角形面积为16平方厘米.+8=,求出的面积为+8=,由题意得19.(5分)如图,△ABC中,BC:AC=3:5,四边形BDEC和ACFG均为正方形,已知△ABC与正方形BDEC的面积比是3:5,那么△CEF与整个图形的面积比等于.的面积为BC的面积为×=×=,故答案为:.20.(5分)如果正整数n有以下性质:n的八分之一是平方数,n的九分之一是立方数,它的二十五分之一是五次方数,那么n就称为“希望数”,则最小的希望数是215•320•512.三、解答题(共3小题,满分30分)21.(10分)如图是一个长为400米的环形跑道,其中A、B为跑道对称轴上的两点,且A、B之间有一条50米的直线通道.甲、乙两人同时从A点出发,甲按逆时针方向以速度v1沿跑道跑步,当跑到B点处时继续沿跑道前进,乙按顺时针方向以速度v2沿跑道跑步,当跑到B点处时沿直线通道跑回A点处.假设两人跑步时间足够长.求:(1)如果v1:v2=3:2,那么甲跑了多少路程后,两人首次在A点处相遇?(2)如果v1:v2=5:6,那么乙跑了多少路程后,两人首次在B点处相遇?处相遇时,他们跑步的时间是(应是,由题意可得22.(10分)(1)如果a是小于20的质数,且可化为一个循环小数,那么a的取值有哪几个?(2)如果a是小于20的合数,且可化为一个循环小数,那么a的取值有哪几个?23.(10分)如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.BP=DP=BD=),,所以BE=2a ,所以,,的周长的最小值是。

第二十届希望杯全国邀请赛八年级数学试题第二试

第二十届希望杯全国邀请赛八年级数学试题第二试

第二十届“希望杯”全国数学邀请赛初二试题第二试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xy x y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )14.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108°(C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( )(A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection point ofthe lines k x y -= and 2+=kx y are integers for imteger k ,then the number of the possible values of k is ( )(A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形8.若不等式组⎩⎨⎧>++<+-m x x m x 1104的解集是4>x ,则( ) (A )29≤m (B )5≤m (C )29=m (D )5=m 9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定q p n F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个二、填空题(每小题4分,共40分)11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a ,b ,c 都是大于1的自然数),需要 分钟.12.给机器人下一个指令[s ,A ](0≥s ,1800<≤A ),它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离. 现机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向,要想让机器人移动到点(5-,5)处,应下指令: . 13.已知实数x ,y ,z 满足3321z y x z z y y x x ++=+=+=+,则_________或=++z y x . 14.已知实数x ,y 满足432=-y x ,并且0≥x ,1≤y ,则y x -的最大值是 ,最小值是 .15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百公里耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的1l 、2l 所示,则1l 与2l 的交点的横坐标=m .(不考虑除养路费和燃油费以外的其它费用)16.Given d cx bx ax x f +++=23)(,if when x takes the value of its inverse number ,the corresponding value of )(x f is also the inverse number,and 0)2(=f ,then =++ba d c .(英汉小词典:inverse number 相反数) 17.8人参加象棋循环赛,规定胜1局得2分.平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得 分.18.若正整数a ,b 使等式20092)1)((=-+++b a b a a 成立,则=a ,=b . 19.如图6,长为2的三条线段'AA 、'BB 、'CC 交于O 点,并且OB C OA B ''∠=∠=∠=OC A '60°,则这三个三角形的面积的和21S S S ++.(填“<”、“=”、“>”)20.已知正整数x ,y 满足2492y x =+,则=x ,=y .三、解答题(每题都要写出推算过程) 21.(本题满分10分)在分母小于15的最简分数中,求不等于52但与52最接近的那个分数.22.(本题满分15分)如图7,一次函数33+-=x y 的函数图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作Rt △ABC ,且使∠ABC=30°.(1)求△ABC 的面积;(2)如果在第二象限内有一点P (m ,23),试用含m 的代数式表示四边形AOPB 的面积,并求当△APB 与△ABC 面积相等时m 的值;(3)是否存在使△QAB 是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.(本题满分15分)点A (4,0),B (0,3)与点C 构成边长分别为3,4,5的直角三角形,如果点C 在反比例函数xk y的图象上,求k 可能取的一切值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题7 希望杯 数学-2 初二一、选择题:(每小题5分,共50分)以下每题的四个选项中,仅有一个是正确的.1.若a ≠,(A)都是有理数. (B)一个是有理数,另一个是无理数. (C)都是无理数. (D)是有理数还是无理数不能确定.2.已知a>b>c,M=a 2b+b 2c+c 2a,N=ab 2+bc 2+ca 2,则M 与N 的大小关系是( ). (A)M<N (B)M>N (C)M=N (D)不确定的3.上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是( ).(A)9时30分 (B)10时5分; (C)10时5511分 (D)9时32811分 4.有理数a 、b 、c 满足下列条件:a+b+c=0且abc<0,那么111a b c++的值是( ).(A)是正数 (B)是零(C)是负数 (D)不能确定是正数、负数或05.已知a b c ===,其中m>0,那么a,b,c 的大小关系是( ). (A)a>b>c (B)c>a>b; (C)a>c>b (D)b>c>a6.已知△ABC 中,∠A=60°,BC=a,AC=b,AB=c,AP 是BC 边上的中线,则AP 的长是( ).7.(Figure 1) In the parallelogram ABCD,AD=2AB,a point M is mid- point of segment AD,CE ⊥AB,if ∠CEM=40°,then the value of ∠DME it( ). (A)150° (B)140° (C)135° (D)130°8.如图,在四边形ABCD 中,E 、F 分别是两组对边延长线的交点,EG 、FG 分别平分∠BEC 、∠DFC,若∠ADC=60°,∠ABC=80°,则∠EGF 的大小是( ). (A)140° (B)130° (C)120° (D)110°40︒EMCBA80︒60︒GFEDCBA9.设a i =1989+i,当i 取1,2,3,…,100时,得到100个分式iia (如i=5,则i ia =55198951994=+),在这100个分式中,最简分式的个数是( ).(A)50 (B)58 (C)63 (D)6510.一个长方体的棱长都是正整数,体积是2014, 若对应棱长相等的长方体算作同一种长方体,那么这样的长方体( )(A)有6种 (B)有12种 (C)有14种 (D)多于16种二、填空题:(每小题6分,共60分)11.某储蓄所每年工资支出10万元,其他固定支出每年17万元. 对于吸收的存款每年应付2.25%的利息,吸收来的存款全部存到上级银行,可得年利率4.05%的内部核算收入,那么该储蓄所为使内部核算没有亏损, 每年至少应吸收存款_____________________万元.12.最后得_________.13.设x,y 都是有理数,且满足方程11402332x y πππ⎛⎫⎛⎫+++--= ⎪ ⎪⎝⎭⎝⎭,那么x-y 的值是________.14. 1516与3313的大小关系是1516________3313. (填“>”,“<”或“=”)15.If N is natural number,and 61N N <<+,then the value of N is______.( natural number 自然数) 16.如果1111a b a b+-=-+,那么(2+a)(2+b)+b 2=__________. 17.如图所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点处的数字的平均数,则代数式:1()2()3a b c d e f g h a b c d e f g h +++-++++++-+++=_____.18.2007年某种进口轿车每辆标价40万元人民币,买此种车时还需另外交纳汽车标价的80%的关税,我国加入WTO 后,进口车的关税将逐渐下降.预计到2014年7月1日,关税降到25%,又因为科技的发展使成本降低,到2014年7月1日,该种车的标价降到2007年的65%,那么2014年7月1日后买一辆该种轿车将比2007 年少付人民币______万元.19.在△ABC 中,∠A=40°,H 是△ABC 的垂心,且H 不与B 、C 重合,则∠BHC 的大小等于_______.20.如图,正九边形ABCDEFGHI 中,AE=1,那么AB+AC 的长是_______.三、解答题:(21题16分,22、23题各12分)要求:写出推算过程.21.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F, BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立? 请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.PQ FED C BA22.已知在等式ax bscx d+=+中,a,b,c,d都是有理数,x是无理数,解答:(1)当a,b,c,d满足什么条件时,s是有理数;(2)当a,b,c,d满足什么条件时,s是无理数.23.在线段AB上,先在A点标注0,在B点标注2002,这称为第一次操作; 然后在AB的中点C处标注020022+=1001,称为第二次操作;又分别在得到的线段AC、BC的中点D、E处标注对应线段两端所标注的数字和的一半,即010012+与100120022+,称为第三次操作;照此下去,那么经过11次操作之后,在线段AB上所有标注的数字的和是多少?初二第二试“希望杯”全国数学邀请赛答案:一、1.当两数不等时,两数的差为有理数,说明这两数都是有理数,,选(A).2.M-N=(a2b+b2c+c2a)-(ab2+bc2+ca2)= a2b+b2c+c2a-ab2-bc2-ca2=a2(b-c)+b2(c-a)+c2(a-b)∵ a>b>c ∴ b-c>0,c-a<0,a-b>0∵a2(b-c)≥0,b2(c-a)≤0,c2(a-b) ≥0∴a2(b-c)+c2(a-b)> b2(c-a)∴ M-N>0.选(B).3.把时针转动速度以“度/分钟”为单位,360112602=⨯(度/分钟)分针转动速度是36060=6(度/分钟)再成直角所用时间为18180(6)32211÷-=(分钟)所以下一次时针与分针成直角时间是83211分,选(D).4.由abc<0知a、b、c均不为0.∴(ab+c)2=a2+b2+c2+2(ab+bc+ca)=0ab+bc+ca=-12(a2+b2+c+2)<0∴111bc ac aba b c abc++++=>,选(A)5.∵1ab=<,∴a>b;1bc=<, ∴c>b1ac=>,∴a>c ∴ a>c>b.选(C).6.如图延长中线AP到E,使PE=AP,连接EB,可得△ABC≌△APC,∴∠E=∠PAC, BE=AC=b.∴∠PAB+∠E=∠CAB=60°∴∠ABE=120°;作EF⊥AB延长线于F,∴∠EBF=180°-120°=60°∴∠BEF=300∴BF=12BE=12b.在Rt△BEF中,根据勾股定理:EF2=b2+22324b b⎛⎫=⎪⎝⎭.PFECBA在Rt △AEF 中,根据勾股定理=. ∴ PA=12AE=12选(B)7.如图,连接CM,作MN ⊥EC 于N.∵ AB ⊥CE ∴MN ∥AB,且MN ∥CD,从N 为梯形AECD 的中位数. 由MN ⊥CE,MN 是EC 边中线,∴△EMC 为等腰△,∴∠ECM=∠MEC=40° ∠EMC=180°-2×40°=100° ∵ ∠ECD=∠AEC=90°,∴∠MCD=90°-40°=50°, 又∵ DC=12AD=DM,∴∠MCD=∠DMC=50°,∴ ∠EMD=∠EMC+∠CMD=100°+50°=150°.选(A) 8. 2∠4=360°-(60°-∠E)-(180°-∠F) =220°+∠E+∠F∵ ∠4=110°+12∠E+12∠F,0011260,38022E F ∠=-∠∠=-∠, ∴∠C=3600-(∠4+∠2+∠3)=3600-1100-12∠E-12∠F-600+12∠E-800+12∠F=360°-110°-60°-80°=110°选(D).9.当i=3n(n ≤33);i=13n(n ≤7);i=17n(n ≤5)这些数时;iia 不是质数, 这样的数共有: 33+7+5=45(个)其中i=13×3=39,i=13×6=78与i=17×3=51时,与i=3n 中的39,78,51重复, 所以不是质数的数共有 45-3=42个.所以100个分式中最简分式的个数是100-42=58个. 选(B).10.∵ x 3=2002=1×2×7×11×13,把1、2、7、11、13组成三数的乘积. 有如下14种: 1×1×2002 1×2×1001 1×7×286 1×11×182 1×13×154 1×14×143 1×22×91 1×26×77 2×7×143 7×11×26 11×2×91 13×2×77 14×11×13 22×7×13 选(C). 二、11.设每年至少应吸收存款x 万元,4.05 2.251017100100x x =++ x=1500万元 应填1500.432180︒60︒GFEDCBA12.原式=.13.1142332x x y yπππ+++=+,3223246x x y yπππ+++=+(32)(23)246x y x yππ+++=+∴3224236x yx y+=⎧⎨+=⎩,得126xy y=⎧⎨==-⎩∴x-y=18.14.1516-3313=316·516-313·1113=313(35·56-1113)=313(33·53·513-1113)=313(153·53-1113)显然,153·513-1113<0, ∴1516-3313<0, 填<.15.6233](5===53+3×52××3×232.449时,原式=969.9,N=969.16.由原已知得 (1+a)(1+b)=(1-a)(1-b)∴ a+b=0原式=4+2a+2b+ab+b2=4+2(a+b)+ab+b2=4+ab+b2=4+b(a+b)=4.应填417. 因为,33d b c a c fa b++++==,,33b d g ac hc d++++==, ∴2()()3a b c d e f g ha b c+++++++++=,设a+b+c+d=m,e+f+g+h=n,∴a+b+c+d=23m n+,∴m=23m n+,∴m=n,即a+b+c+d=e+f+g+h∴11()2211()33a b c d e f g h m na b c d e f g h m n+++-+++-=+++-+++-=2323323234m n m mm n m m--⨯=⨯=--.18.根据题意,得 80652540140139.5100100100⎛⎫⎛⎫+-⨯+= ⎪ ⎪⎝⎭⎝⎭应填39.519.分锐角三角形和钝角三角形两种情况,如图:(1)αHCBAγβ(2)HCBA如图1.由∠A=40°,得∠ABH=50° ∴∠α=40°,∠BHC=180°-α=140°如图2.由∠A=40°,得∠β=50° ∴∠r=∠β=50 ∴ ∠BHC=90°-∠r=90°-50°=40° 应填140°或40°.20.正九边形内角和为(9-2)×1800=12600,每个内角为1400, ∠CAB=(1800-1400)÷2=20连接AH,作HM,GN 分别垂直AE 于M,N.∴ ∠HAM=140°-2 ×20°-40°=60°,∴∠AHM=30° 设AM=EN=x,MN=y四边形HGNM 是矩形,所以HG=y,即正九边形边长为y, 在Rt △AHM 中,∠AHM=∠30°∴ AH=2AM=2x ∴ AB+AC=y+2x而x+y+x=1 ∴ 2x+y=1 ∴ AB+AC=1, 应填1.三、解答题(按参考答案,酌情给分) 21.证明(1)连接PD 、PE 、QD 、QE. 因为 CE ⊥AB,P 是BF 的中点, 所以 △BEF 是直角三角形,且 PE 是Rt △BEF 斜边的中线, 所以 PE=12BF. 又因为 AD ⊥BC,所以 △BDF 是直角三角形,且PD 是Rt △BDF 斜边的中线, 所以 PD=12BF=PE, 所以 点P 在线段DE 的垂直平分线上.同理可证,QD 、QE 分别是Rt △ADC 和Rt △AEC 斜边上的中线,所以 QD=12AC=QE,PQFEBA所以 点Q 也在线段DE 的垂直平分线上. 所以 直线PQ 垂直平分线段DE.(2)当△ABC 为钝角三角形时,(1)中的结论仍成立. 如右图,△ABC 是钝角三角形,∠BAC>90°.原题改写为:如右图,在钝角△ABC 中,AD 、CE 分别是BC 、AB 边上的高,DA 与CE 的延长线交于点F,BF 的中点为P,AC 的中点为Q,连接PQ 、DE. 求证:直线PQ 垂直且平分线段DE.证明 连接PD,PE,QD,QE,则PD 、PE 分别是Rt △BDF 和Rt △BEF 的中线, 所以 PD=12BF, PE=12BF, 所以 PD=PE, 点P 在线段DE 的垂直平分线上. 同理可证 QD=QE,所以 点Q 在线段DE 的垂直平分线上. 所以 直线PQ 垂直平分线段DE.22.(1)当a=c=0,d ≠0时, s=bd 是有理数. 当c ≠0时,s=()a ad ad cx d b b ax b a c c c cx d cx d c cx d ++--+==++++, 其中:a c 是有理数,cx+d 是无理数,adb c-是有理数.要使s 为有理数,只有adb c-=0,即 bc=ad.综上知,当a=c=0且d ≠0或c ≠0且ac=bd 时,s 是有理数. (2)当c=0,d ≠0,且a ≠0时,s 是无理数.当c ≠0时,s=()a ad ad cx d b b ax b a c c c cx d cx d c cx d ++--+==++++ 其中: a c 是有理数,cx+d 是无理数,adb c-是有理数.所以 当adb c-≠0,即bc ≠ad,s 为无理数.综上知,当c=0,a ≠0,d ≠0或c ≠0,ac ≠bd 时,s 是无理数. 23.设第n 次操作后,线段AB 上所标注的数字和是a n ,那么第n+1次操作后,使得除A 、B 两点外,其他的数字都再加上一次(两边各加上一半),而A 、B 两点的数字, 则再加上它们的一半,即 102002(2002)21001(1)22n n n n a a a a n +=+-++=-≥ 又因为 a 1=2002+0=2002所以 a 2=2a 1-1001=3003所以 a 11=2a 10-1001=2(2a 9-1001)-1001=22·a 9-(2+1)·1001=…=210·a 1-(29+28+27+…+2+1)·1001 =1024.2002-(1024-1).1001 =1026025.答:经过11次操作后,在线段AB 上标注的所有数字的和为1026025.。

相关文档
最新文档