2019年浙江省温州中学提前招生考试数学试卷(含答案)

合集下载

2019年浙江省温州市重点中学招生模拟数学试题含答案

2019年浙江省温州市重点中学招生模拟数学试题含答案

2019年浙江省温州市重点中学招生模拟数学试题含答案2019年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23错误!未找到引用源。

, 则a 的值是( )A 、22错误!未找到引用源。

B 、22+错误!未找到引用源。

C 、23+2错误!未找到引用源。

D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,32D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ).A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处B /y xMOBA二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.A 3A 2A 1BAO图1ba16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <700 700≤w <900 … 获得奖券的金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019年温州市重点中学自主招生模拟数学试题含答案

2019年温州市重点中学自主招生模拟数学试题含答案

2019年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23, 则a 的值是( )A 、22B 、22+C 、23+2D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,32D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________.12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的B /y xMOB AA 3A 2A 1BAO那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个 底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少? 18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <700 700≤w <900 … 获得奖券的金额(元)30 60 100 130 …图1baA BDCEO根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019年温州瓯海中学提前自主招生模拟考试数学试题及参考答案(含详解)

2019年温州瓯海中学提前自主招生模拟考试数学试题及参考答案(含详解)

2019年温州瓯海中学提前招生模拟考试数学试题(时间:120分钟满分150分)一、选择题(共8小题,满分48分,每小题6分)1.(2017•奉化中学自主招生)实数a,b,c满足2a=5,2b=10,2c=80,则代数式2006a﹣3344b+1338c的值为()A.2007B.2008C.2009D.2010 2.(2015•乐清中学自主招生)若﹣1<a<0,则一定是()A.最小,a3最大B.最小,a最大C.最小,a最大D.最小,最大3.一列数b0,b1,b2,…,具有下面的规律,b2n+1=b n,b2n+2=b n+b n+1,若b0=1,则b2015的值是()A.1B.6C.9D.194.如图所示,正三角形ABC的边长为2,=2,=,BD交CE于点F,则△AEF的外接圆半径长为()A.B.C.D.第4题第6题5.已知抛物线y=ax2+bx+c与x轴负半轴交于A(m,0),与x正半轴交于B(n,0),4<n<5,与y轴负半轴交于C,且OA=OC,则a的取值范围是()A.0<a<B.<a<C.D.<a<16.如图,等腰△ABC内接于圆O,底边AB是直径,E为AC的中点,点D在BC上,且CD=3BD,AD与BE相交于点F,则∠AFE的正切值为()A.B.C.D.7.(2015•黄冈中学自主招生)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.8.如图所示,扇形AOB中,∠AOB=60°,AO=R,圆O1与AO,BO和弧AB 都相切;圆O2和圆O1,AO,BO都相切;圆O3和圆O2;AO,BO都相切;则圆O3的面积为()A.B.C.D.第8题第10题二、填空题(共6小题,满分42分,每小题7分)9.(2017•芜湖一中自主招生)已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是.10.如图,一次函数y=x+1的图象交x轴于点E、交反比例函数的图象于点F(点F在第一象限),过线段EF上异于E、F的动点A作x轴的平行线交的图象于点B,过点A、B作x轴的垂线段,垂足分别是点D、C,则矩形ABCD 的面积最大值为.11.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y 轴的正半轴上.OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为.第11题第12题12.(2014•宁波重点高中自主招生)如图,在同一平面内,圆O和直线AB相切,P是圆O上一个定点,初始位置圆O和AB相切于点A(此时点P与点A重合),从A处开始圆O在直线AB上以每3分钟1圈的速度匀速向右无滑动地滚动,1分钟到达点E(圆O与AB相切于点E),此时,tan∠PAE的值为.13.(2015•黄冈中学自主招生)若直线y=b(b为实数)与函数y=|x2﹣4x+3|的图象至少有三个公共点,则实数b的取值范围是.14.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)第14题三、解答题(共5小题,满分60分)15.(10分)已知关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0的两个根均为整数,求所有满足条件的实数k的值.16.(10分)(2017•启东中学自主招生)已知:关于x的方程①x2﹣(m+2)x+m ﹣2=0有两个符号不同的实数根x1,x2,且x1>|x2|>0;关于x的方程②mx2+(n ﹣2)x+m2﹣3=0有两个有理数根且两根之积等于2.求整数n的值.17.(10分)如图,已知锐角△ABC及其外接圆⊙O,AM是BC边的中线.分别过点B,C作⊙O的切线,两条切线相交于点X,连接AX.求证:.第17题18.(14分)如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.第18题19.(16分)如图,在△ABC中,∠A=90°,∠ABC=45°,BC=20,点D在线段BC上,BD=4,点M、N以相同的速度从D点同时出发,点M沿DC方向运动,点N沿DB方向运动到点B后立刻以原速返回向点C运动,以MN为直径构造⊙O,过点M作⊙O的切线交折线BA﹣AC于点E,将线段EM绕点E顺时针旋转45°得到EF,过F点作FG⊥EM于G,当M运动到点C时,N也停止运动,设DM=m.(1)当m=时,点N与点B重合,此时MN=.当4<m≤16时,BM=,BN=(用含有m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点M,N运动过程中,①当为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长.(提示:当直角三角形的两直角边之比为定值时,这个直角三角形的两个锐角度数为定值)第19题2019年温州瓯海中学提前招生模拟考试数学试题参考答案与试题解析一、选择题(共8小题,满分48分,每小题6分)1.【解析】∵2b÷2a=2,∴b﹣a=1,则a=b﹣1,∵2c÷2b=8,∴c﹣b=3,则c=b+3,∴2006a﹣3344b+1338c=2006(b﹣1)﹣3344b+1338(b+3)=2008.故选:B.2.【解析】∵若﹣1<a<0,∴a可取﹣0.001,那么a3=﹣0.000 000 001,=﹣0.1,=﹣1000,∴最小,a3最大,故选:A.3.【解析】∵b2n+1=b n,b2n+2=b n+b n+1,∴b2015=b1007=b503=b251=b125=b62=b30+b31=b14+b15+b15=b6+b7+2b7=3b3+b2+b3=4b3+b0+b1=5b1+b0 =6b0,∵b0=1,∴b2015的值是6.故选:B.4.【解析】作DH⊥AB于H,如图所示:∵正三角形ABC的边长为2,=2,=,∴BE=AD=AB=,AB=BC=AC,∠EBC=∠BAD=60°,∴AE=,在△BCE和△ABD中,,∴△BCE≌△ABD(SAS),∴∠1=∠2,∴∠DFC=∠3+∠2=∠3+∠1=60°,∴∠DFC=∠EAD=60°,∴A、D、F、E四点共圆,作DH⊥AB于H,则∠ADH=30°,∴AH=AD=,DH=AH=,∴EH=AE﹣AH=1,∴sin∠DEH==,∴∠DEH=30°,∴∠ADE=90°,∴∠AFE=∠ADE=90°,∴AE为△AEF的外接圆的直径,∴△AEF的外接圆半径长为AE=.故选:A.5.【解析】∵OA=OC,A(m,0),∴C(0,m),即c=m,则抛物线解析式为y=ax2+bx+m,根据题意知抛物线对称轴x=﹣=,可得b=﹣am﹣an ①,将点A(m,0)代入y=ax2+bx+m,得:am2+bm+m=0,即am+b+1=0,∴b=﹣am﹣1 ②,由①、②可得﹣am﹣1=﹣am﹣an,即an=1,a=,∵4<n<5,∴<a<,故选:B.6.【解析】作EH⊥AD于H,EG∥AD交BC于G,如图,设BD=a,则CD=3a,∴CA=CB=4a,∵E为AC的中点,∴AE=CE=2a,∵AB为直径,∴∠ACB=90°,在Rt△ACD中,AD==5a,在Rt△BCE中,BE==2a,∵∠EAH=∠DAC,∴Rt△AEH≌Rt△ADC,∴=,即=,解得EH=a,∵EG∥AD,∴CG:DG=CE:AE=1:1,∴CG=DG=a,∵DF∥EG,∴===,∴EF=BE=a,∴HF==a,∴tan∠EFH===.故选:B.7.【解析】∵△=a2﹣4(a2﹣3)=12﹣3a2(1)当方程有两个相等的正根时,△=0,此时a=±2,若a=2,此时方程x2﹣2x+1=0的根x=1符合条件,若a=﹣2,此时方程x2+2x+1=0的根x=﹣1不符舍去,(2)当方程有两个根时,△>0可得﹣2<a<2,①若方程的两个根中只有一个正根,一个负根或零根,则有a2﹣3≤0,解可得﹣≤a≤,而a=﹣时不合题意,舍去.所以﹣<a≤符合条件,②若方程有两个正根,则,解可得a>,综上可得,﹣<a≤2.故选:C.8.【解析】如图所示:连接各切线与对应圆的圆心.∵OA、OB是⊙O1的切线,∴∠AOO1=∠BOO1=30°.∵圆O1与AO相切,∴∠OCO1=90°.∴OO1=2O1C.∴OA=3r11.∴r1=.∴OE=O1E=r1=.同理:可知:r2=,r3=.∴r3=.由圆的面积公式可知圆O3的面积==.故选:C.二、填空题(共6小题,满分42分,每小题7分)9.【解析】由x2+xy+y2﹣2=0得:x2+2xy+y2﹣2﹣xy=0,即(x+y)2=2+xy≥0,所以xy≥﹣2;由x2+xy+y2﹣2=0得:x2﹣2xy+y2﹣2+3xy=0,即(x﹣y)2=2﹣3xy≥0,所以xy≤,∴﹣2≤xy≤,∴不等式两边同时乘以﹣2得:(﹣2)×(﹣2)≥﹣2xy≥×(﹣2),即﹣≤﹣2xy≤4,两边同时加上2得:﹣+2≤2﹣2xy≤4+2,即≤2﹣2xy≤6,∵x2+xy+y2﹣2=0,∴x2+y2=2﹣xy,∴M=x2﹣xy+y2=2﹣2xy,则M的取值范围是≤M≤6.故答案为:≤M≤610.【解析】设A(a,a+1),则B(,a+1),∴AB=﹣a,AD=a+1,∴S矩形ABCD=(a+1)(﹣a)=2﹣a(a+1)=﹣(a+)2+,∴当a=﹣时,矩形ABCD的面积最大值为,故答案为:.11.【解析】过B作BM⊥x轴于M.在Rt△ABM中,∵AB=3,∠BAM=45°,∴AM=BM=,∴BC=OA﹣AM=4﹣=,CD=BC﹣BD=,∴D(,).连接OD,则点D在∠COA的平分线上,所以∠DOE=∠COD=45°.又∵在梯形DOAB中,∠BAO=45°,∴由三角形外角定理得:∠1=∠DEA﹣45°,又∠2=∠DEA﹣45°,∴∠1=∠2,∴△ODE∽△AEF,∴=,即:=,∴y与x的解析式为:y=﹣x2+x.故答案为y=﹣x2+x.12.【解析】如图所示,过点P作PC⊥AB,垂足为C,过点O作OD⊥PC,垂足为D.根据题意可知∠POE==120°,AE=劣弧PE的弧长.∴AE=2πR×=.∵AB是圆O的切线,∴∠OEC=90°.∵PC⊥AB,OD⊥PC,∴∠DCE=∠ODC=90°.∴∠OEC=∠DCE=∠ODC=90°.∴四边形ODCE为矩形.∴DC=OE=R,OD=CE.∵∠POD=30°,∠PDO=90°,∴PD=,DO==.∴PC=PD+DC=,AC=AE﹣EC=﹣.∴tan∠PAE====.故答案为:.13.【解析】∵当x2﹣4x+3=0时,x=1或x=3,∴当x<1或x>3时,x2﹣4x+3>0,即:y=|x2﹣4x+3|,函数值大于0,当1<x<3时,﹣1≤x2﹣4x+3<0,即:y=|﹣x2+4x﹣3|,函数最大值为1,故符合条件的实数b的取值范围是0<b≤1.14.【解析】∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当⊙P于AC切于C点时,连接P′C,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图3,当⊙P切BC于N′时,连接PN′则PN′=cm,∠PN′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;注意:由于对称性可知,当P点运动到AB右侧时也存在⊙P切AB,此时PM也是为2,即P点为N点,同理可得P点在M点时,⊙P切BC.这两点都在第二种情况运动时间内.故答案为:t=2或3≤t≤7或t=8.三、解答题(共5小题,满分60分)15.【解析】原方程可化为:[(6﹣k)x﹣9][(9﹣k)x﹣6]=0.因为此方程是关于x的一元二次方程,所以,k≠6,k≠9,于是有:x1=①,x2=②.由①得k=,由②得k=,∴=,整理得x1x2﹣2x1+3x2=0,有(x1+3)(x2﹣2)=﹣6.∵x1、x2均为整数,∴.故x1=﹣9,﹣6,﹣5,﹣4,﹣2,﹣1,0,3.又k==6﹣,将x1=﹣9,﹣6,﹣5,﹣4,﹣2,﹣1,3分别代入,得k=7,,,,,15,3.16.【解析】由方程①知:∵x1•x2<0,x1>|x2|>0,∴x1>0,x2<0,∵△=(m﹣2)2+8>0,∴x1+x2=m+2>0,x1•x2=m﹣2<0,∴﹣2<m<2,由方程②知:,∴m2﹣2m﹣3=0,∴m=3(舍去),m=﹣1(2分)代入②得:x2﹣(n﹣2)x+2=0,∵方程的两根为有理数,∴△=(n﹣2)2﹣8=k2,∴(n﹣2)2﹣k2=8,(n﹣2+k)(n﹣2﹣k)=8,∵n﹣2+k和n﹣2﹣k奇偶性相同,∴或或或,解得n=5或n=﹣1.17.【解析】证明:设AX与⊙O相交于点A1,连接OB,OC,OA1.又M为BC的中点,所以,连接OX,它过点M.∵OB⊥BX,OX⊥BC,∴XB2=XM•XO.①又由切割线定理得XB2=XA1•XA.②由①,②得,∴△XMA∽△XA1O,∴.又∵∠BOC=2∠BAC,∴∠BOX=∠BAC,∴.18.【解析】(1)∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,∴c=0,﹣=2,则b=﹣4、c=0,∴抛物线解析式为y=x2﹣4x;(2)设点B(a,a2﹣4a),∵y=x2﹣4x=(x﹣2)2﹣4,∴点A(2,﹣4),则OA2=22+42=20、OB2=a2+(a2﹣4a)2、AB2=(a﹣2)2+(a2﹣4a+4)2,①若OB2=OA2+AB2,则a2+(a2﹣4a)2=20+(a﹣2)2+(a2﹣4a+4)2,解得a=2(舍)或a=,∴B(,﹣),则直线OB解析式为y=﹣x,当x=2时,y=﹣3,即P(2,﹣3),∴t=(﹣3+4)÷1=1;②若AB2=OA2+OB2,则(a﹣2)2+(a2﹣4a+4)2=20+a2+(a2﹣4a)2,解得a=0(舍)或a=,∴B(,),则直线OB解析式为y=x,当x=2时,y=1,即P(2,1),∴t=[1﹣(﹣4)]÷1=5;③若OA2=AB2+OB2,则20=(a﹣2)2+(a2﹣4a+4)2+a2+(a2﹣4a)2,整理,得:a3﹣8a2+21a﹣18=0,a3﹣3a2﹣5a2+15a+6a﹣18=0,a2(a﹣3)﹣5a(a﹣3)+6(a﹣3)=0,(a﹣3)(a2﹣5a+6)=0,(a﹣3)2(a﹣2)=0,则a=3或a=2(舍),∴B(3,﹣3),∴直线OB解析式为y=﹣x,当x=2时,y=﹣2,即P(2,﹣2),∴t=[﹣2﹣(﹣4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5.(3)∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(,﹣),∴M(,﹣);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(,)、A(2,﹣4),∴M(,﹣);当t=2时,如图3,由(2)知,∠OBA=90°,∴此时Rt△OAB的外接圆圆心M是OA的中点,∵A(2,﹣4),∴M(1,﹣2);则点M经过的路径长度为=.19.【解析】(1)当点N从点D向点B运动时,根据题意可得BM=4+m,BN=4﹣m,当点N与点B重合,BN=0,∴4﹣m=0,∴m=4,MN=2DN=2BD=8;当4<m≤16时,此段内,点M,N以相同的速度向点C运动,∴MN=8,∴BM=4+m,BN=BM﹣MN=m+4﹣8=m﹣4,故答案为4;8;4+m;m﹣4;(2)如图1中,∵EM是⊙O的切线∴∠BME=90°,∵∠B=45°,∴∠BEM=45°=∠B,∴BM=EM∴FG⊥EM,∴∠FGE=90°=∠EFG,∴FG∥BC,∴∠EFG=∠B=45°,∴∠FEG=45°=∠EFG,∴FG=EG,∴FG=EF,由旋转知,EF=EM,当点E与点A重合时,ME的值最大,∵△ABC是等腰直角三角形,EM是底边的高,∴EM=BC=10,∵BM=EM,∴10=4+m,∴m=6;(3)①当0<m≤4(N在往B运动)时,如图2中,设⊙O切AB于H,连接OH.∴∠BHD=90°,∵∠B=45°,∴DH=BD=4×=2,∴ND=m=DH=2,即m=2.当4<m≤16(N从B向C运动)时,则MN=(4+m)﹣(m﹣4)=8,如图3中,设⊙O切AB于H.连接OH.∴OH=MN=4,则BO=OH=4,∴BM=BO+OM=4+4,即4+m=4+4,∴m=4.如图4中,设⊙O切AC于H,连接OH.在等腰直角三角形OHC中,OC=OH=4,则CM=OC﹣OM=4﹣4,∵BM=BC﹣CM,∴BM=20﹣(4﹣4)=24﹣4=4+m,∴m=24﹣4﹣4=20﹣4.综上所述,当m=2或4或20﹣4时,⊙O与△ABC的边相切.②如图5中,Ⅰ、当E在AB上时,点F的运动轨迹是F1→F2→F3.当点M和点D重合时,E1F1=BM1=E1M1=BD=4,∴BE1=BM1=4,∴BF1=BE1﹣BF1=4﹣4当点N和点B重合时,同理可得BF2=8﹣8,当点E和点A重合时,同理可得,BF3=10﹣10,∴F1F3=BF3﹣BF1=6﹣6,Ⅱ、当点E在AC上时,点F的轨迹为F3→C,在Rt△ACF3中,AF3=AM3=10,∴CF3==10,∴点F所经过的路径为F1F3+CF3=6﹣6+10.第21页(共21页)。

2019年浙江省温州市重点中学提前招生数学试卷及答案

2019年浙江省温州市重点中学提前招生数学试卷及答案

2019年浙江省温州市重点中学提前招生数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)(下面每小题给出的四个选项中,只有一个是正确的。

) 1.下列计算正确的是().A.32a a a -=B.22(2)4a a -= C.326x x x --⋅= D.623x x x ÷= 2.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列 式子中成立的是( ).A .-m <-nB . |m |-|n |>0C .m -1<n -1D .m +n <03. 用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确..的是( ). A .三角形中最少有一个角是直角或钝角 B .三角形中没有一个角是直角或钝角 C .三角形中三个角全是直角或钝角 D .三角形中有两个或三个角是直角或钝角4. 若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( ).A .m<lB .m=1C . m>lD .m ≤15. 已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是().A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数6.已知四边形ABCD 的两条对角线AC 与BD 相等,则下列结论正确的个数是(). ①.当AC ⊥BD 时,四边形ABCD 一定是菱形②.当AB=AD ,CB=CD 时,四边形ABCD 一定是正方形 ③.当AB=AD=BC 时,四边形ABCD 一定是正方形④.当AC ⊥BD ,AD=AB 时,四边形ABCD 有可能是正方形 A. 1个 B. 2个 C. 3个 D. 4个 7.对于反比例函数ky x =,如果当2-≤x ≤1-时有最大值4=y ,则当x ≥8时,有(). A .最小值y =21- B .最小值1-=y C .最大值y =21- D .最大值1-=y8.七个正整数的中位数是4, 唯一众数是6, 则这七个正整数的和最小值为().A .32 B. 31 C.29 D.269. 如图,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k+4与⊙O 交于B 、C两点,则弦BC 长的最小值为( ). A.22B.105C.24D.123(第9题图) (第10题图)10.如图,正方形ABCD 的边长为4,点E 是AB 上的一点,将△BCE 沿CE 折叠至△FCE ,若CF 、CE 恰好与以正方形ABCD 的中心为圆心的圆O 相切,则圆O 的半径为( ).A. 1B.21- C. 31- D.312+ 二.认真填一填(本题有6个小题,每小题4分,共24分) 11. 计算:()222)4(160sin 4-+---πo =____________.12.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=.(第12题图) (第13题图) (第16题图)13. 如图,在5×5的正方形网格中,△ABC 为格点三角形(顶点都在格点上),则图中与△ABC 相似(但不全等)的最小的三角形与最大的三角形的面积比值为__________.14.已知函数()31()y k x x k =+-,下列说法:①方程()31()3k x x k+-=-必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x<-1时,y 随着x 的增大而增大.其中正确的序号是.15.用18根火柴棒搭一个三角形,火柴棒不允许剩余、折断,则搭出的所有三角形中,属于锐角三角形的概率是________.16.如图,在四边形ABDC 中,AD=4,CD=32,∠ABC=∠ACB=∠ADC=045,则BD 的长是_________.三.全面答一答(本题有6个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:以下为备用图,只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)18.(本小题满分10分)对x ,y 定义一种新运算▲,规定:x ▲y =by ax +(其中a ,b 均为非零常数), 例如:1▲0=a .已知1▲1=3,1-▲1=1-. (1)求a ,b 的值;(2)若关于m 的不等式组⎩⎨⎧>≤-p m m m m ▲▲24)21(3恰有3个整数解,求实数p 的取值范围.19. (本小题满分10分)记3(3)(43)(3)z x y x x y x y =---+.(1)若,x y 均为整数,求证:当x 是3的倍数时,z 能被9整除; (2)若1y x =+,求z 的最小值.小杰到学校食堂买饭,看到A ,B 两个窗口前排队的人一样多(设为a 人,8>a ),就站到A 窗口队伍的后面,观察了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人。

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已纠错)

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已纠错)

2019届温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为, 则a 的值是( )A 、B 、2+C 、错误!未找到引用源。

6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O图1ba切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019年温州乐清中学提前自主招生选拔模拟考试数学试题及参考答案(含详..

2019年温州乐清中学提前自主招生选拔模拟考试数学试题及参考答案(含详..

第1页(共23页)页)2019年温州乐清中学提前自主招生选拔模拟考试年温州乐清中学提前自主招生选拔模拟考试数学试题考试时间:120分钟 满分:150分一、选择题(共8小题,满分48分,每小题6分) 1.方程(x 2+x ﹣1)x+3=1的所有整数解的个数是( ) A .5个 B .4个C .3个D .2个2.如果,p ,q 是正整数,则p 的最小值是( )A .15B .17C .72D .1443.如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y = (x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3 A 2B 2,顶点P 3在反比例函数y = (x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为( ) A .(,) B .(,) C .(,)D .(,)第3题第5题4.将四个编号为1,2,3,4的小球随机放入4个编号为1,2,3,4的盒子中.记f (i )为第i 个盒子中小球的编号与盒子编号的差的绝对值.则f (1)+f (2)+f (3)+f (4)=4的概率为( ) A . B . C .D .5.(2017•余姚中学自主招生)如图,在Rt△ABC 中,∠C =90°,AC =3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,且OC =4,那么BC 的长等于( ) A .3B .5C .2D .6.(2017•黄冈中学自主招生)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( ) A .B .C .D .7.(2017•黄冈中学自主招生)设关于x 的方程ax 2+(a+2)x+9a =0,有两个不相等的实数根x 1、x 2,且x 1<1<x 2,那么实数a 的取值范围是( ) A .B .C .D .8.(2016•温州中学自主招生)如图,正方形ABCD 内接于⊙O ,P 为劣弧上一点,P A 交BD 于点M ,PB 交AC 于点N ,记∠PBD =θ.若MN⊥PB ,则2cos 2θ﹣tan tanθθ的值( )A .B .1C .D .第8题第10题二、填空题(共7小题,满分42分,每小题6分)9.(2014•乐清中学自主招生)设非零实数a ,b ,c 满足,则的值为 .10.如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2;P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形APEF 和正方形PBGH ,点O 1和O 2是这两个正方形的中心,连接O 1O 2,设O 1O 2的中点为Q ;当点P 从点C 运动到点D 时,则点Q 移动路径的长是 .11.(2016•黄冈中学自主招生)已知y =x 2+mx ﹣6,当1≤m≤3时,y <0恒成立,那么实数x 的取值范围是 . 12.(2018•四川绵阳中学自主招生)如图,已知∠AOB =60°,点P 在边OA 上,OP =10,点M ,N 在边OB 上,PM =PN ,点C 为线段OP 上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为 .第12题第15题 13.(2018•山东枣庄八中自主招生)已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab= .14.方程7x2﹣(m+13)x+m2﹣m﹣2=0的两根为x1,x2,且满足0<x1<1,1<x2<2,则m的取值范围为 .15.(2017•浙江诸暨中学自主招生)在平面直角坐标系xOy中,抛物线y=﹣x2+4x与x轴的正半轴交于点A,其顶点为M,点P是该抛物线上位于A、M 两点之间的部分上的动点,过点P作PB⊥x轴于点B,PC⊥y轴于点C,且交抛物线于点D,连接BC,AD,OP,当四边形ABCD被OP分成的两部分面积比为1:2时,点P的坐标为 .三、解答题(共4小题,满分60分)16.(12分)已知实数a、b、c满足:(1);(2)a=bc.请你求出所有满足上述条件的c的值.17.(12分)二元二次方程组有两个实数解和,其中y1=2,且,求常数n,t的值.18.(18分)如图,在锐角三角形ABC中,AB上的高CE与AC上的高BD相交于点H,以DE为直径的圆分别交AB、AC于F、G两点,FG与AH相交于点K,已知BC=25,BD=20,BE=7,求AK的长.第18题19.(18分)如图1,点A、B分别在x轴的原点左、右两边,点C在y轴正半轴,点F(0,﹣1),S=15,抛物线y=ax2﹣2ax+4经过点A、B、C.四边形AFBC(1)求抛物线的解析式.(2)点P是抛物线上一点,且tan∠PCA=,求出点P的坐标.(3)如图2,过A、B、C三点作⊙O′交抛物线的对称轴于N,点M为弧BC上一动点(异于B、C),E为MN上一点,且∠EAB=∠MNB,ES⊥x轴于S,当M点运动时,问的值是否发生变化?若不变,求其值;若变化,请说明理由.第19题2019年温州乐清中学提前自主招生选拔模拟考试年温州乐清中学提前自主招生选拔模拟考试数学试题参考答案与试题解析一.选择题(共8小题,满分48分,每小题6分)1.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个 B.4个 C.3个 D.2个【解析】(1)当x+3=0,x2+x﹣1≠0时,解得x=﹣3;(2)当x2+x﹣1=1时,解得x=﹣2或1.(3)当x2+x﹣1=﹣1,x+3为偶数时,解得x=﹣1因而原方程所有整数解是﹣3,﹣2,1,﹣1共4个.故选:B.2.如果,p,q是正整数,则p的最小值是( ) A.15 B.17 C.72 D.144【解析】由题意得,p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.3.如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3 A2B2,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为( )A.(,) B.(,) C.(,) D.(,)【解析】作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥x轴于E,P3F⊥P2D于F,如图所示:设P1(a,),则CP1=a,OC=,∵四边形A1B1P1P2为正方形,∴∠A1B1P1=90°,∴∠CB1P1+∠OB1A1=90°,∵∠CB1P1+∠CP1B1=90°,∠OB1A1+∠OA1B1=90°,∴∠CB1P1=∠OA1B1,在△P1B1C和△B1A1O中,,∴△P1B1C≌△B1A1O(AAS),同理:△B1A1O≌△A1P2D,∴OB1=P1C=A1D=a,∴OA1=B1C=P2D=﹣a,∴OD=a+﹣a=,∴P2的坐标为(,﹣a),把P2的坐标代入y=(x>0)得:(﹣a)•=2,解得:a=﹣1(舍去)或a=1,∴P2(2,1),设P3的坐标为(b,),又∵四边形P2P3A2B2为正方形,同上:△P2P3F≌△A2P3E,∴P3E=P3F=DE,∴OE=OD+DE=2+,∴2+=b,解得:b=1﹣(舍去),b=1+,∴==﹣1,∴点P3的坐标为 (+1,﹣1).故选:A.4.将四个编号为1,2,3,4的小球随机放入4个编号为1,2,3,4的盒子中.记f(i)为第i个盒子中小球的编号与盒子编号的差的绝对值.则f(1)+f(2)+f(3)+f(4)=4的概率为( )A. B. C. D.【解析】共有24种情况,满足f(1)+f(2)+f(3)+f(4)=4的有7种,则概率为:,故选:D.5.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形A.3 B.5 C.2 D.【解析】如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC C=∠EBQ,∴∠BA在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=4,则BC=5.故选:B.6.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是( )A. B. C. D.【解析】设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选:B.7.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是( )A. B. C. D. 【解析】方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,110x210那么(x 1﹣1)(x 2﹣1)<0, ∴x 1x 2﹣(x 1+x 2)+1<0, 即9++1<0, 解得<a <0,最后a 的取值范围为:<a <0.故选D .方法2、由题意知,a≠0,令y =ax 2+(a+2)x+9a , 由于方程的两根一个大于1,一个小于1, ∴抛物线与x 轴的交点分别在1两侧, 当a >0时,x =1时,y <0, ∴a+(a+2)+9a <0, ∴a <﹣(不符合题意,舍去),当a <0时,x =1时,y >0, ∴a+(a+2)+9a >0,∴a >﹣, ∴﹣<a <0,故选:D .8.如图,正方形ABCD 内接于⊙O ,P 为劣弧上一点,P A 交BD 于点M ,PB交AC 于点N ,记∠PBD =θ.若MN⊥PB ,则2cos 2θ﹣tan tanθθ的值( )A .B .1C .D .【解析】设⊙O 的半径为1,则BD =2.连结PD ,则∠BPD =90°.2cosθθ.在Rt△BPD中,PB=BD•cosθ=2cos在Rt△BON中,BN==,在Rt△BMN中,MN=BN•tanθ=,在Rt△PMN中,∵∠MPN=∠APB=∠ADB=45°,∴PN=MN=.∵BN+PN=PB,2cosθθ,∴+=2cos∴1+tanθ=2cos2θ,tanθθ=1.∴2cos2θ﹣tan故选:B.二.填空题(共7小题,满分42分,每小题6分)9.设非零实数a,b,c满足,则的值为 ﹣ . 【解析】∵,∴a+b+c=0,∴(a+b+c)2=0,∴a2+b2+c2+2ab+2bc+2ac=0,∴a2+b2+c2=﹣2(ab+bc+ac),∴原式==﹣;10.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形APEF和正方形PBGH,点O1和O2是这两个正方形的中心,连接O1O2,设O1O2的中点为Q;当点P从点C运动到点D时,则点Q移动路径的长是 3 .【解析】如图,分别延长AO1、BO2交于点K,∵∠KAP=∠O2PB=45°,∴AK∥PO2,∵∠KBA=∠O1P A=45°,∴BK∥PO1,∴四边形O1PO2K为平行四边形,∴O1O2与KP互相平分.∵Q为O1O2的中点,∴Q正好为PK中点,所以Q的运行的中点,所以中点,即在即在P的运动过程中,Q始终为PK的中点,轨迹为三角形KCD的中位线,∵AB=10,AC=DB=2,∴CD=10﹣2﹣2=6,∴Q的移动路径长=×6=3.故答案为:3.11.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是 ﹣3<x< .【解析】∵1≤m≤3,y<0,∴当m=3时,x2+3x﹣6<0,由y=x2+3x﹣6<0,得<x<; 当m=1时,x2+x﹣6<0,由y=x2+x﹣6<0,得﹣3<x<2.∴实数x的取值范围为:﹣3<x<.故本题答案为:﹣3<x<.12.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为 .【解析】过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=,在Rt△OPQ中,OP=10,∠AOB=60°,∴∠OPQ=30°,∴OQ=5,则OM=OQ﹣QM=,∵CD∥ON,∴,∴==,故答案为;.13.已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab= 5 .【解析】解不等式:不等式两边同时乘以6得:3(3x﹣1)﹣14≥6x﹣2(5+2x)去括号得:9x﹣3﹣14≥6x﹣10﹣4x移项得:9x﹣14﹣6x+4x≥3﹣10即7x≥7∴x≥1∴x+2>0,当1≤x≤3时,x+2>0,则|3﹣x|﹣|x+2|=3﹣x﹣(x+2)=﹣2x+1则最大值是﹣1,最小值是﹣5;当x>3时,x+2>0,则|3﹣x|﹣|x+2|=x﹣3﹣(x+2)=x﹣3﹣x﹣2=﹣5,是一定值.总之,a=﹣5,b=﹣1,∴ab=5故答案是:5.14.方程7x 2﹣(m+13)x+m2﹣m﹣2=0的两根为x1,x2,且满足0<x1<1,1<x2<2,则m的取值范围为 ﹣2<m<﹣1或3<m<4 .【解析】设f(x)=7x2﹣(m+13)x+m2﹣m﹣2,则f(x)=0的根满足0<x1<1,1<x2<2,需要:f(0)>0,则m2﹣m﹣2>0,解得m>2或m<﹣1;f(1)<0,则7﹣(m+13)+m2﹣m﹣2<0,解得﹣2<m<4;f(2)>0,则28﹣2(m+13)+m2﹣m﹣2>0,解得m>3或m<0.则m的范围是:﹣2<m<﹣1或3<m<4. 故答案为:﹣2<m<﹣1或3<m<4.15.在平面直角坐标系xOy中,抛物线y=﹣x 2+4x与x轴的正半轴交于点A,其顶点为M,点P是该抛物线上位于A、M两点之间的部分上的动点,过点P作PB⊥x轴于点B,PC⊥y轴于点C,且交抛物线于点D,连接BC,AD,OP,当四边形ABCD被OP分成的两部分面积比为1:2时,点P的坐标为 (,) .【解析】如图,连接OP交BC于E,交AD于F.∵∠PCO=∠COB=∠PBO=90°,∴四边形OCPB是矩形,∴EC=EB,PC∥OB,根据对称性可知,CD=AB,四边形ABCD是平行四边形,∴BC=AD,设EC=EB=a,DF=x,平行四边形BC边上的高为h,则BC=AD =2a,AF=2a﹣x,由题意,(a+x)h:(a+2a﹣x)h=2:1或(a+x)h:(a+2a﹣x)h=1:2,∴x=或a,∴DF:AF=1:5或5:1∵DP∥OA,∴==或5,∵OA=4,∴DP=或20(舍弃),设C(0,m),由消去y得到,x2﹣4x+m=0,设两根为x1,x2,∴|x1﹣x2|=,∴(x1+x2)2﹣4x1x2=,∴16﹣4m=,∴m=,∴x2﹣4x+=0,∴x1=或,∴点P坐标(,),故答案为(,).三.解答题(共4小题,满分60分)16.(12分)已知实数a、b、c满足:(1);(2)a=bc.请你求出所有满足上述条件的c的值.【解析】∵∴+2=2+3b,∴|a|=3b,∵≥0,∴a=3b,∵a=bc,∴3b=bc,∴c=3.17.(12分)二元二次方程组有两个实数解和,其中y1=2,且,求常数n,t的值.【解析】∵y1=2,∴,将x1=4n,y1=2代入,得化简,得,解得由方程组,消去x,得(n 2+4)y 2+4n 2y+4(n 2﹣t )=0, 由韦达定理,得,解得.18.(18分)如图,在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC =25,BD =20,BE =7,求AK 的长.【解析】延长AH 交BC 于P ,连接DF ,如图. 由题知∠ADB =∠CDB =∠CEB =∠AEC =90°, ∵BC =25,BD =20,BE =7, ∴CD =15,CE =24.又∵∠D ∵∠DABAB =∠EAC ,∠ADB =∠AEC , ∴△ADB∽△AEC , ∴==,①由①得:,解得,∵∠AEC =90°,AD =CD =15, ∴DE =AC =15.∵点F在以DE为直径的圆上,∴∠DFE=90°,∵DA=DE,∴AF=EF=AE=9.∵∠CDB=∠CEB=90°,∴D、E、B、C四点共圆,∴∠ADE=∠ABC.∵G、F、E、D四点共圆,∴∠AFG=∠ADE,∴∠AFG=∠ABC,∴GF∥BC.∴=.②∵H是△ABC的垂心,∴AP⊥BC,∴S△ABC=AB•CE=BC•AP,AB•CE∵BA=BC=25,∴AP=CE=24,由②得AK===8.64.19.(18分)如图1,点A、B分别在x轴的原点左、右两边,点C在y轴正半轴,点F(0,﹣1),S四边形AFBC=15,抛物线y=ax2﹣2ax+4经过点A、B、C. (1)求抛物线的解析式.(2)点P是抛物线上一点,且tan∠PCA=,求出点P的坐标.(3)如图2,过A、B、C三点作⊙O′交抛物线的对称轴于N,点M为弧BC上一动点(异于B、C),E为MN上一点,且∠EAB=∠MNB,ES⊥x轴于S,当M点运动时,问的值是否发生变化?若不变,求其值;若变化,请说明理由.【解析】(1)由抛物线y=ax2﹣2ax+4知:对称轴x=1,C(0,4);∵S=S△ABC+S△ABF=AB(OC+OF)=AB(4+1)=15, 四边形AFBC∴AB=6;又∵A、B两点关于x=1对称,且AB=6,∴A(﹣2,0)、B(4,0);将B(4,0)代入y=ax2﹣2ax+4中,得:16a﹣8a+4=0,解得:a=﹣∴抛物线的解析式:y=﹣x2+x+4.(2)在△ACF中,OA=2、OF=1、OC=4,即:=,又∵∠COA=∠AOF,∴△AOC∽△FOA,∴∠CAO=∠AFO,∠CAF=∠CAO+∠FAO=∠AFO+∠FAO=90°;延长AF交直线CP于D,如右图1;在Rt△ADC中,AC==2,tan∠DCA=,则:AD=3;又∵tan∠OAF ==, ∴sin∠OAF =,cos∠OAF =; 由AD =3可解得:D (4,﹣3);设直线CD :y =kx+4,代入D 点的坐标可得:k =﹣;联立直线CD 和抛物线的解析式,得:,解得、∴P (,﹣).(3)设圆心O′的坐标为(1,y ),则:O′A 2=9+y 2、O′C 2=1+(y ﹣4)2=y 2﹣8y+17,∵O′A =O′C ,∴9+y 2=y 2﹣8y+17,解得:y =1,∴⊙O′的半径R =;延长AE ,交⊙O′于点G ,如右图2;∵∠EAB =∠MNB ,∴G 是的中点,即:=;过G 作⊙O′的直径GH ,连接GH 、HM 、MG ,则△HMG 是直角三角形,且∠HMG=90°;∵∠MAG =∠EAS (=),∠HMG =∠ESA =90°,∴△HMG∽△ASE ,得:=,即:=HG =2R…①; 连接AM 、AN ;∵=、=,∴∠GAB=∠MAE,∠AME=∠BAN;对于△AEM有:∠GEM=∠MAE+∠AME;又∵∠GMN=∠GAB+∠BAN,∴∠GEM =∠GMN,即MG=GE,代入①式,得:=2R=2; 由相交弦定理得:ME•NE=AE•EG,∴=2;综上,值不会发生变化,且值为2.。

2019年浙江省温州中学中考自主招生数学试卷解析版

2019年浙江省温州中学中考自主招生数学试卷解析版

2019年浙江省温州中学自主招生数学试卷解析版
一、选择题(共8小题,每小题5分,共40分.每道小题均给出了代号为A、B、C、D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.(5分)设,则代数式x(x+1)(x+2)(x+3)的值为()A.0B.1C.﹣1D.2
【解答】解:∵x =,
∴2x =﹣3,
2x+3=
(2x+3)2=()2,
4x2+12x+9=5,
∴x2+3x=﹣1,
∴原式=(x2+3x)(x2+3x+2)
=﹣1×(﹣1+2)
=﹣1;
故选:C.
2.(5分)对于任意实数a,b,c,d,定义有序实数对(a,b)与(c,d)之间的运算“△”
为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u,v,都有(u,v)△(x,y)=(u,v),那么(x,y)为()
A.(0,1)B.(1,0)C.(﹣1,0)D.(0,﹣1)
【解答】解:∵(u,v)△(x,y)=(ux+vy,uy+vx)=(u,v),
∴ux+vy=u,uy+vx=v,
∵对于任意实数u,v都成立,
∴x=1,y=0,
∴(x,y)为(1,0).
故选:B.
3.(5分)已知A,B 是两个锐角,且满足,,则实数t所有可能值的和为()
第1 页共13 页。

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已审阅)

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已审阅)

2019届温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为, 则a 的值是( )A 、B 、2+C 、错误!未找到引用源。

6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O图1ba切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019年温州市高中提前招生考试数学试卷及答案

2019年温州市高中提前招生考试数学试卷及答案

2019年温州市高中提前招生考试数 学 试 卷考生须知:1.试卷分为试题和答题卡两部分,所有试题均在答题卡上......作答,在试卷上作答无效。

2.答在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

4.不能使用计算器。

5.请保持卡面清洁,不要折叠。

一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1、9-的相反数是( ▲ ) A .B .C .D .2、使x +1 有意义的x 的取值范围是( ▲ )A .x >-1B .x ≥-1C .x ≠-1D .x ≤-13、方程 x 2+ x – 1 = 0的一个根是 ( ▲ ) A. 1 – B.C. –1+D. 4、如图,某种牙膏上部圆的直径为3cm ,下部底边的长度为4.8cm,现 要制作长方体牙膏盒,牙膏盒的上面是正方形,以下列数据作为正方形边长制作牙膏盒,既节省材料又方便取放的是( ▲ )2(取1.4) A 2.4cm B 3cm C 3.6cm D 4.8cm5、如下图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y 轴对称。

AB//x 轴,AB=4cm ,最低点C 在x 轴上,高CH=1cm ,BD=2cm 。

则右轮廓线DFE 的函数解析式为( ▲)A.21(3)4y x =+B.21(3)4y x =-+C. 21(3)4y x =-D. 21(4)4y x =-1919-9-95251-5251+-第4题图DNK 6、一只蚂蚁在如图所示的树枝上寻找食物,蚂蚁在每个岔路 口都会随机地选择一条路径,则它获得食物的概率是( ▲ ) A . 1 2 B . 13C . 1 4D . 1 67、一组数据10,10,12,x ,8A .12 B .10 C .9 D .88、如果2m 、m 、1-m 这三个实数在数轴上所对应的点从左到右依次排 列,那么m 的取值范围是 ( ▲ ) A m >0 B m >21 C m <0 D 0<m <219、如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,如果⊙O 则O 点到BE 的距离OM =________.( ▲ )A 12B 2510、正方形ABCD 、正方形BEFG 和正方形DMNK 的位置如图所示,点A 在线段NF 上,AE=8,则NFP △的面积为( ▲ )A 30B 32C 34D 36二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、如果点P(2,k)在直线22y x =+上,那么点P 到y 轴的距离为____▲______.12、将一块弧长为π 的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为____▲___第10题图第9题图实数对转换器13、如图所示为一实数对转换器。

2019年温州中学自主招生选拔考试数学试题

2019年温州中学自主招生选拔考试数学试题

温州中学自主招生选拔考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的的四个选项中,只有一项是符合题目要求的.请将你认为正确的答案填在答题卷的相应位置.1、设函数⎩⎨⎧>≤++=)0(2)0(2x x c bx x y ,当x=-4和0时,函数值相等,且当x=-2时,y=-2,则方程x y =的解的个数有( ▲ )个A 、1B 、2C 、3D 、42、有一个长方体的箱子,它的十二条棱长之和是140,并且从箱子的一角到最远的一角的距离是21,那么这个箱子的表面积是( ▲ )A 、776B 、784C 、798D 、8003、若a 、b 和c 是三个两两不同的奇质数,且方程0225152=++++x a x c b )()(有两个相等的实根,则a 的最小值是( ▲ ) A 、41B 、47C 、53D 、594、某中学从初一到高三年级学生中挑选学生会成员,至少要满足以下一个条件: ①初一年级至多选1人;②初二年级至多选2人;③初三年级至多选3人;④高一年级至多选4人;⑤高二年级至多选5人;⑥高三年级至多选6人.则至多要选出( ▲ )名同学才能做到. A 、21 B 、22 C 、26 D 、285、如图,ABC ∆中,︒=∠=40,ABC AC AB ,BD 是ABC ∠的平分线,延长BD 至E ,使DE=AD ,则=∠ECA ( ▲ )A 、500B 、350C 、400D 、450第5题图 第6题图 第7题图6、如图所示,△ABC 的边长为6、8、10,一个以点P 为圆心且半径为1的圆在其内滚动,且总是与△ABC 的边相切。

当P 第一次回到它原来的位置时,点P 走过的长度是( ▲ ) A 、10 B 、12 C 、14 D 、15班级____________________ 姓名____________________………………密………………………………………………封………………………………………………线………………7、如图,在Rt △ABC 中,∠ACB=090,内切圆⊙I 切AC,BC 于E,F ,射线BI 、AI 交直线EF 于点M 、N ,设S △AIB =S 1,S △MIN =S 2 ,则21S S 的值为( ▲ ) A 、 23 B 、2 C 、25D 、38、将20个乒乓球(不加区分)装入5个不同的盒子里,要求不同的盒子中的球数互不相同,且盒子都不空,一共有( ▲ )种不同装法。

【新】2019-2020浙江温州中学初升高自主招生数学【4套】模拟试卷【含解析】

【新】2019-2020浙江温州中学初升高自主招生数学【4套】模拟试卷【含解析】

第一套:满分120分2020-2021年浙江温州中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(解析答案)

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(解析答案)

第 12页(共 15页)
15.【解析】∵实数 a、b、c、d 满足:一元二次方程 x2+cx+d=0 的两根为 a、b,一元二次 方程 x2+ax+b=0 的两根为 c、d,

解得

(a 为任意实数).
故答案为:(1,﹣2,1,﹣2)或(a,0,﹣a,0)(a 为任意实数). 16.【解析】设 x,y 分别表示已经卖出的铅笔和圆珠笔的支数,则
AD BD CD2 10r ①,而 AD BD 2r ②
第 13页(共 15页)
令 AD x, BD y ,①/②即 xy 10r 5 y y 1,显然有 0 y x ,则
x y 2r
x5
0 y 1 ,即 0 y 1 1 5 y 10 , y 为正整数,故 y 6,7,8,9 ,又 x 也为正整数,
若这次跳动在 1999 次后,则 a2000 =7+1999=2006.
(3)因为这个 (n 1) 次跳动的情形,能同时满足如下两个条件:
① a1 2 ,② a1 + a2 + a3 + an =2.
经过 (k 1) 步跳动到达 ak ,假设这 (k 1) 步中向右跳了 xk 步,向左跳了 yk 步,
∴ SEHC CH CH 1 3 .故 C 正确; SAEH AH EH tan 30
④设 EH=a,则 AH=EH=a,CH= EH= a, ∴AC=a+ a, 根据等腰直角三角形的性质,AE= EH= a,
AB= AC= (a+ a)=

∴BE=AB﹣AE=
﹣ a=

∴=

≠2,故 D 错误;
重点高中提前自主招生选拔考试

2019年温州市高中提前招生考试数学试卷及答案

2019年温州市高中提前招生考试数学试卷及答案

2019年温州市高中招生文化考试试卷数 学考生须知:1.本试卷份试题卷和答题卷两部分,满分120分,考试时间100分钟. 2.答题时,必须在答题卷密封区内写明校名,姓名和准考证号.3.所有答案都必须坐在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.下列计算结果为负数的是A .(-3)0B .-|-3|C .(-3)2D .(-3)-22.下列关于12的说法中,错误..的是A .12是无理数B .3<12<4C .12是12的算术平方根D .12不能再化简3.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+17by ax by ax 的解,则a b -的值为A .-1B .1C .2D .3 4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有A .3个B .4个C .5个D .6个 5. 如图,如果从半径为3cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A .2cmB .5 cmC .4cmD .3cm6. 一元二次方程)2()2(--=-x x x 的根是A .1-=xB .2=xC .1=x 或2=xD .1-=x 或2=x7. 张大伯在中国银行存入了10000元人民币,并在存单上留下了6位数的密码,每个数学都是0-9这十个数字中的一个,但由于年龄的缘故,张大伯忘了密码中间的两个数字,(第5题)那么张大伯最多可能实验多少次,才能正确输入密码A.1次B.50次C.100次D. 200次 8. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为 A .18 B .36 C .48 D .729. 如图,在锐角△ABC 中,AB =6,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最 小值是A.62B. 6C. 32D.310. 从1,2,3,4,5这五个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有 A .7对B .9对C .11对D .13对二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.实数a ,b 在数轴上的位置如图所示,那么化简|a -b |-2a 的结果是 .12. 分解因式a a a 24223-+-= .13. 已知点B (1,-2)是⊙O 上一点,过点B 作⊙O 的切线交x 轴于点A ,则BAO ∠tan = .14. 某班英语老师布置了10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这35名学生答对题数组成的样本的中位数是 题,众数是 题. 答对题数 7 8 9 10 人数413126(第8题)(第9题)(第11题)(第13题)15. 若抛物线c x x y ++=22与坐标轴有2个交点,则字母c 应满足的条件是 . 16. 如图,由24个边长为1的正方形组成4×6的网格.若△A′B′C′ ∽△ABC (相似比不是1),且△A′B′C′,△ABC 的顶点都是网格内正方形的顶点,则△A′B′C′的面积是 .三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(本小题满分6分)当()0130sin 4--︒=x ,︒=60tan 3y 时,求y x y xy x y x x 2222122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值.18.(本小题满分8分)为了加强食品安全管理,有关部门对某大型超市的甲乙两种品牌食用油共抽取20瓶进行检测,检测结果分成“优秀”,“合格”,“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.⑴甲乙两种品牌食用油各被抽取了多少瓶用于检测?⑵在该超市购买一瓶甲品牌食用油,请估计能买到“优秀”等级的概率是多少?19.(本小题满分8分)某海防哨所O 发现在它的北偏西︒60,距离哨所400m 的A 处有一艘船向正东方向航行,经过2分时间后到达哨所东北方向的B 处. 问船从A 处到B 处的航速是多少千米/小时(精确到1千米/小时)?(参考数据414.12≈,732.13≈,236.25≈)(第16题)(第18题)20.(本小题满分10分)如图,在△ABC 中,AD ⊥BC ,垂足为D .(1)尺规作图(不写作法,保留作图痕迹):作△ABC 的外接圆⊙O ,作直径AE ,连接BE ; (2)若AB =10,AC =8,AD =6,求BE 的长.21.(本小题满分10分)如图,△ABC 的面积为1,分别取AC ,BC 两边的中点A 1,B 1,记四边形A 1ABB 1的面积为S 1;再分别取A 1C ,B 1C 的中点A 2,B 2,记四边形A 2A 1B 1B 2的面积为S 2;再分别取A 2C ,B 2C 的中点A 3,B 3,依次类推… (1)由已知,可求得S 1= ,S 2= , S 100 = ; (2)利用这一图形,计算20010210110043434343+⋅⋅⋅+++.22.(本小题满分12分)如图,已知二次函数y =223212-+x x 的图象与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),其对称轴与x 轴交于点D ,连接AC .(1)点C 的坐标为 ,点A 的坐标为 ;(2)抛物线上是否存在点E ,使得△EOA 为等边三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴下方的抛物线上的一个动点,连接PA ,PC ,记△PAC 的面积为S ,问S取何值时,相应的点P 有且只有2个? 23.(本小题满分12分)已知,矩形ABCD 内接于圆O ,将矩形ABCD 绕圆心O 按顺时针方向旋转角α (0o<α≤90o),得到的矩形D C B A ''''仍然内接于圆O . 设旋转后的矩形与弓形AD 的重叠部分(图中阴影部分)周长为L . 已知AB =6,AD =8. (1)当α=90o时,L = ;(2)如图(1),当旋转后的矩形与弓形AD 的重叠部分是梯形时,求梯形EF B A ''的周长;(3)如图(2),当旋转角α为何值时,旋转后的矩形与弓形AD 的重叠部分是等腰三角形?并求出这个等腰三角形的周长.(第20题)(第21题)(第22题)数学评分标准及参考答案一、选择题(每题3分,共30分)题号1234567891答案BDACBDCBCA二、填空题(每题4分,共24分)11. b ; 12. 2)1(2--a a ; 13. 21; 14. 9, 8; 15. 0=c 或81=c (每对一个,得2分); 16. 3,6,215,12 (每对1个得1分).三、解答题17.(满分6分)由已知,得1=x ,3=y ………………2分(第23题).O.Oy x y xy x y x x 2222122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++=))(()()()(22y x y x y x x y x y x y x x y -+++-+⋅+-y x x --=2….3分 把1=x ,3=y 代入得原式=21…………….1分18.(满分8分)(1)1÷10%=10(瓶),20—10=10(瓶)∴甲乙各取10瓶…………………………….4分 (2)(10—10×60%)÷10=0.4∴买到优秀甲品牌酱油的概率为0.4…………………..4分19.(满分8分)如图:∵在Rt △AOC 中,OA=400,∠AOC=60°, ∴AC=3200,OC=200……………….3分 ∵在Rt △BOC 中,OC=200,∠BOC=45° ∴BC=200…………………………2分 ∴v=(200+3200)÷2100060⨯≈16.392≈16千米/小时…….3分20.(满分10分)(1)作图略 ………………4分(含结论1分) (2)∵AE 是直径,∴∠ABE=Rt ∠=∠ADC 又∵∠C=∠E ,∴△ABE ∽△ADC ………………….2分 ∴AC ADAE AB = ∴1068AE =∴AE =403……………………………..2分∴BE=222240()103AE AB -=-=1073…………………..2分21.(满分10分)(1)S 1=43 ,S 2=243,S 100=10043;………………………6分 (2)∵99992411434343-=+⋅⋅⋅++, 2002002411434343-=+⋅⋅⋅++∴20010210110043434343+⋅⋅⋅+++=20099992004141)411()411(-=---…………………4分OABCE(101200414-也同样给分)22.(满分12分)(1)点C 的坐标为 (0,—2) ,点A 的坐标为 (—4,0) .-----------4分 (2)若在x 轴的下方存在点E ,使△EOA 为等边三角形,则因为OA=4,所以点E 的坐标为(-2,32-) 但当x=-2时,y=2)2(23)2(212--⨯+-⨯=-3≠32- 所以点E 不在抛物线上, 所以不存在符合要求的点E. --------------------4分(3)过点B,点O 分别作AC 的平行线,记为L 1,L 2. 与AC 平行且与抛物线y=223212-+x x 只有一个交点 的直线记为L 3 ,设此唯一交点为T.可求得直线AC 的解析式为y=221--x直线L 3的解析式为y=421--x .设直线L 3与y 轴的交点为H, 直线L 2与抛物线在x 轴的下方的交点为E.则H(0,-4).作CM ⊥直线L 3于点M.则△CMH ∽△AOC,∴CM AOCH AC =,∴4225CM =, CM=554. ∴直线L 3与AC 之间的距离为554.∵CH=CO=2,∴直线L 2与AC 的距离也是554. ∴S △TAC =S △EAC =14255425⋅⋅=. ∴S=4时,相应的点P 有且只有2个,就是点T 和点E.在直线L 2与L 3之间,对于每一条与AC 平行的直线L ,在AC 的另一侧,有且只有一条直线L ′,使得L ′∥AC ∥L ,且这三条平行线之间的距离相等.直线L 与L ′与抛物线共有三个交点,这三个点分别与AC 构成的三角形面积相等,即此时S 的值对应的点P 有三个.------1分在直线L 1与L 2之间,平行于AC 的直线与抛物线在x 轴下方只有一个交点,∴此时S 的值对应的点P 只有一个.-------1分∴只有当S=4时,相应的点P 有且只有2个.-------------2分23.(满分12分)L 1 TH E -4 -2M-4L 2L 3(1)L = 14 ;…………………3分 (2)连结D A ',可得AD ='D A ',则 = ∴ = , ∴∠DF A '=∠F A D '∴F A '=DF ,同理可得E B '=AE ,…………….3分 ∴L=14''=+AD B A ……………………….1分 (3)如图(2),设b AM a M A ==',,当旋转45o时,△M A N '是等腰三角形. ………………….1分由∠A '=90o,得△M A N '和△MAP 都是等腰直角三角形.由(2)得P B AP DN N A '==',.故82=++=++=a a b ND MN AM AD ①62=++='++'=''b b a B P MP M A B A ②①-②,得222=-b a 2a b -= ③①+③得 2282a a +=+所以△MN A '的周长=22a a +82=+.………….4分 (其它方法酌情给分)AA'DD'AD A'D'P。

2019年温州市高中提前招生文化考试数学测试(附答案)

2019年温州市高中提前招生文化考试数学测试(附答案)

ACD(第6题图)B2019年温州市高中提前招生文化考试测试数学试题卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应位置上答题,写在其它地方无效. 答题方式详见答题纸上的说明.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 199的平方根是( ) A .133 B .±133C .823D .±8232. 下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .347()a a =D .632a a a ÷=3. 用反证法证明命题“如果AB ∥CD ,AB ∥EF ,那么CD ∥EF ”时,应先假设( )A .AB 与CD 不平行 B .AB 与EF 不平行C .CD 与EF 不平行 D .CD 与EF 互相垂直4.为了解九年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图。

那么关于该班45名同学一周参加体育锻炼时间的说法错误的是( ) A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人 5.2012年第30届夏季奥运会将于2012年7月27日在伦敦 开幕,如图奥运五环中,圆与圆之间的位置关系有( ) A .外离与相交 B .外切与相交 C .外切与外离 D .内切与内含6. 如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于21AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形 B .菱形 C .正方形 D .等腰梯形7. 如图两个圈中的数对分别是两个关于x 、y 的二元一次方程的若干个解,则“?”是它们组成的方程组的解,图中的“?”应填写( )A. 31x y =⎧⎨=-⎩B. 24x y =⎧⎨=-⎩C. 11x y =⎧⎨=⎩D. 00x y =⎧⎨=⎩8. 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A .11.5米B .11.75米C .11.8米D .12.25米 9.如图是一个由正方形ABCD 和半圆O 组成的封闭图形,点O 是圆心.点P 从点A 出发,沿线段AB 、弧BC 和线段CD 匀速运动,到达终点D .运动过程中OP 扫过的面积(s )随时间(t )变化的图象大致是( )10.如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H , BD 、AF 交于M ,且A ,M ,H ,F 在同一直线上,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③ GD=2AM ;④ 若正方形ABCD 的面积为4,且BE 平分∠DBC ,则HE·HB =422-。

【2019年中考数学】浙江省温州市2019年重点中学自主招生模拟数学试题(含答案)

【2019年中考数学】浙江省温州市2019年重点中学自主招生模拟数学试题(含答案)

2019年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 19+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23错误!未找到引用源。

, 则a 的值是( )A 、22错误!未找到引用源。

B 、22+错误!未找到引用源。

C 、23+2错误!未找到引用源。

D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,32D 、60,3 9.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n9.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为90米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________.12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为9),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .B /y xMOB AA 3A 2A 1BAO14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为9,10,10,10,12,14分,共64分) 19.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少? 19.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的90%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:图1baA BD CEO消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <900 900≤w <900 … 获得奖券的金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019年温州市高中提前招生文化考试数学试卷及答案

2019年温州市高中提前招生文化考试数学试卷及答案

2019年温州市高中提前招生文化考试数学试卷( 本试卷满分120分, 考试时间100分钟.) 姓名: 得分: 一、仔细选一选(本题有10个小题, 每小题3分, 共30分)(下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案) 1.要使算式“554-”的结果最小,在“”中应填的运算符号是( )A. 加号B. 减号C. 乘号 D . 除号2.某红外线遥控器发出的红外线长为0.000 00094m ,用科学记数法表示这个数是( )A. 79.410m -⨯ B. 79.410m ⨯ C. 89.410m -⨯ D. 89.410m ⨯ 3.右图所示是一个三棱柱纸盒,在下面四个图形,只有一个是纸盒的展开图,那么这个展开图是( )A. B. C. D .4.已知x 是实数,且(2)(31-0x x x --=) ,则21x x ++的值为( )A. 13B. 7 C . 3 D. 13或7或35.右图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A. 28 B . 27 C. 21 D. 20 6.2008年爆发的世界金融危机,是自上世纪三十年以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是( )A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1487.酒店厨房的桌子上摆放着若干碟子,小辉分别从三个方向上看,把他们的三视图画下来(如左图所示),则桌子上共有碟子( ) A . 17个 B. 12个 C. 10个 D. 7个8.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc >0;②a ﹣b+c <0;③3a+c <0;④当﹣1<x <3时,y >0. 其中正确的是( )A. ① ②B. ①④C. ②③D.②③④9. 如图所示的方格纸中,每个方格都是边长为1的正方形,点A是方格纸中的一个格点(小正方形的顶点).在这个5×5的方格纸中,以A 为其中一个顶点,面积等于25的格点等腰直角三角形(三角形的三个顶点都是格点)的个数为( ) A. 10个 B. 12个 C. 14个 D. 16个第5题图10.已知两直线121(1)y kx k y k x k =+-=++、(k 为整数),设这两条直线与x 轴所围成的三角形的面积为k s ,则1232013s s s s +++⋅⋅⋅+ 的值是() A.20132012 B. 20134024 C. 20132014 D. 20134028二.认真填一填(本题有6个小题,每小题4分,共24分)(要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.)11.在一组数据1,0,4,5,8中插入一个数据x ,使该组数据的中位数为3,则x= .12.计算:()22214sin 6042π-⎛⎫︒--+- ⎪⎝⎭= .13.已知点A 为双曲线ky x=图象上的点,点O 为坐标原点,过点A 作AB ⊥x 轴于点B ,连接OA ,若△AOB 的面积为5,则k 的值为 .14.如图,一方形花坛分成编号为①、②、③、④四块,现有红、黄、蓝、紫四种颜色的花供选种.要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,如果编号为①的已经种上红色花,那么其余三块不同的种法有 种.15.已知△ABC 是半径为2的圆内接三角形,若AB= 23,则∠C 的度数为 .16.如图,半径为1的半圆O 上有两个动点A 、B.若AB=1,则四边形ABCD 的面积的最大值是 .三、全面答一答(本题有8个小题,共66分)(解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.)17.(本题6分)已知()()(1931)(131713171123x x x x ----)-可因式分解成()()8ax b x c -+,其中a 、b 、c 均为整数,求a +b+c 的值。

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(Word版含解析答案)

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(Word版含解析答案)

B .+重点高中提前自主招生选拔考试数 学 试 题(时间:100 分钟满分 120分)2019 年 1 月一、选择题(共 8 小题,每小题 4 分,共 32 分)1.对正整数 n ,记 n !=1×2×3×…×n ,则 1!+2!+3!+…+10!的末位数为( )A .0B .1C .3D .52.在分别标有号码 2、3、4、…10 的 9 个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .3.已知关于 x 的方程 为( ) C. D .= 恰有一个实根,则满足条件的实数 a 的值的个数A .1B .2C .3D .4 4.函数 y =ax +1 与 y =ax 2+bx +1(a ≠0)的图象可能是()A.B.C.D . 5.十进制数 278,记作 278(10),其实 278(10)=2×102+7×101+8×100,二进制数 101(2)=1×22+0×21+1×20.有一个 k (0<k ≤10 为整数)进制数 165(k ),把它的三个数字顺序颠倒得到的 k 进制数 561(k )是原数的 3 倍,则 k =( ) A .10B .9C .8D .76.正方形 ABCD ,正方形 BEFG 和正方形 PKRF 的位置如图所示,点 G 在线段 DK 上,正方形 BEFG 的边长为 2,则△DEK 的面积为( ) A .4 B .2C .3D .第6 第7 题7.两个等腰直角△ABC、△ADE 如图放置,AE=AD,AB=BC,∠ABC=∠DAB=90°,DE 与AC 交于点H,连接BH,若∠BCE=15°,下列结论错误的是()3∆EHC S 1 1 113 A .△ACD ≌△ACE B .△CDE 为等边三角形 C . = D . S ∆AEH 8.如图,在圆内接四边形 ABCD 中,∠A =52°,∠B =98°,∠AOB =120°(O 为圆心),AB=a ,BC =b ,CD =c ,DA =d ,则此四边形的面积为( )(用含 a 、b 、c 、d表示四边形ABCD 的面积)A . (ab + cd )B .(ac + bd ) C . (ad + bc )D . (ab + bc + cd + ad ) 2 2 2 4第8 题 第 11 题 第14 题二、填空题(共 8 小题,每小题 4 分,共 32 分) 9.已知 a 是 64 的立方根, 2b - 3 是 a 的平方根,则11a - 4b 的算术平方根为 .410.关于 x 的函数 f (x )符合以下条件:(1)函数 f (x )在 x =0 处无意义;(2)当 x 取非零 实数时都有 如当 x =1 时,有 f (1)+ 2 f (1) = 3 ,可以求得 f (1) = 1.则f (x )的函数表达式是 f (x )=.11.如图,在“镖形”ABCD 中,AB = 8,BC=16,∠A =∠B =∠C = 30 ,则点 D到 AB 的距离为 .12.已知正整数 a 、b 、c 满足 a +b 2-2c-2=0,3a 2-8b +c =0,则 abc 的最大值为 . 13.AB 为半圆 O 的直径,C 为半圆弧的一个三等分点,过 B ,C 两点的半圆 O 的切线交于 PA 点 P ,则 PC=.14.矩形 ABCD 的边长 AD =3,AB =2,E 为 AB 的中点,F 在线段 BC 上,F 在线段 BC 上, 且 BF :FC =1:2,AF 分别与 DE ,DB 交于点 M ,N ,则 MN =.15.实数a、b、c、d 满足:一元二次方程x2+cx+d=0 的两根为a、b,一元二次方程x2+ax+b=0 的两根为c、d,则所有满足条件的数组(a、b、c、d)为.16.小明某天在文具店做志愿者卖笔,铅笔每支售4 元,圆珠笔每支售7 元.开始时他有铅笔和圆珠笔共350 支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013 元.则他至少卖出了支圆珠笔.三、解答题(共4 小题,共56 分)的图象交于点C 和点D(-1,a). (1)试求这两个函数的表达式;(2)当x 取何值时,有y1 y2;(3)将△OBC 绕点O 逆时针方向旋转,得到△OB′C′,当点B′第一次落在直线AB 上时,求点C 经过的路线长.第17 题18.(12分)如图,已知AB为圆O的直径,C为圆周上一点,D为线段OB内一点(不是端点),满足CD⊥AB,DE⊥CO,E 为垂足,若CE=10,且AD 与DB 的长均为正整数,求线段AD 的长.第18 题19.(14 分)如图,抛物线 y 1 = ax 2 + bx + c (a ≠ 0)与 x 轴交于点 A 、B ,与 y 轴交于点 C , 有 OB=3OA ,抛物线顶点 D 的坐标为( 3,4).(1)求该抛物线的解析式;(2)构造新函数 y 2 = - y 1 交 y 轴于点 E.①若直线 y =x +t 与构造的新函数 y 2 有且只有三个交点,试求 t 的值; ②是否存在到直线 BC ,BE ,CE 距离都相等的点?若存在,求出该点的坐标;若不存在, 试说明理由.第 19 题20.(18 分)一只青蛙,位于数轴上的点 a k ,跳动一次后到达 a k +1 ,且 a k +1 - a k= 1( k 为任意正整数),青蛙从 a 1 开始,经过(n - 1) 次跳动的位置依次为 a 1 , a 2 , a 3 ,……, a n . (1)写出一种跳动 4 次的情况,使 a 1 = a 5 = 0 ,且 a 1 + a 2 + + a 5 > 0;(2)若 a 1 = 7 , a 2016 = 2020 ,求 a 2000 ;(3)对于整数 n (n ≥ 2),如果存在一种跳动(n - 1) 次的情形,能同时满足如下两个条件:① a 1 = 2 ,② a 1 + a 2 + a 3 + + a n =2. 求整数 n 被 4 除的余数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温州中学提前招生数学考试模拟卷
一、选择题(共8小题,每小题5分,共40分。

每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1、设x =
,则代数式(1)(2)(3)x x x x +++的值为( ) A .0 B .1 C .-1 D .2
2、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:
(,)(,)(,)a b c d ac bd ad bc ∆=++。

如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那
么(,)x y 为( )。

A .(0,1)
B .(1,0)
C .(1,0)-
D .(0,1)- 3、已知,A B 是两个锐角,且满足2
2
5sin cos 4A B t +=,2223
cos sin 4
A B t +=,则实数t 所有可能值的和为( )
A .8
3- B .53- C .1 D .113
4、设 3
3332017
1
......312111s ++++=
,则4S 的整数部分等于( ) A .4 B .5 C .6 D .7
5.方程2
2
2334x xy y ++=的整数解(,)x y 的组数为 ( )
A .3
B .4
C .5
D .6
6.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )
A .
3 B .3 C .3
D .3 7.已知实数,a b 满足221a b +=,则44
a a
b b ++的最小值为 ( )
A .18-
B .0
C .1
D .
98
8.若方程2
2320x px p +--=的两个不相等的实数根12,x x 满足2323
11224()x x x x +=-+,则
实数p 的所有可能的值之和为 ( )
A .0
B .34-
C .1-
D .54
-
二、填空题(共8小题,每小题5分,共40分) 9.已知互不相等的实数,,a b c 满足111
a b c t b c a
+
=+=+=,则t =_________. 10.使得521m ⨯+是完全平方数的整数m 的个数为 .
11.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC
AP
= . 12.已知实数,,a b c 满足1abc =-,4a b c ++=,2224
3131319
a b c a a b b c c ++=------,
则222a b c ++= .
13、两条直角边长分别是整数,a b (其中2017b ),斜边长是1b +的直角三角形的个数为____。

14、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8。

同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是____。

15、如图,双曲线2
(0)y x x
=
>与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连接EF ,则△OEF 的面积为_____;
16、设四位数abcd 满足3
3
3
3
110a b c d c d ++++=+,则这样的四位数的个数为___。

三、解答题(共4题,17、18每题15分,19、20每题20分,共70分)
17、如图,△ABC 中,∠BAC =60°,AB =2AC 。

点P 在△ABC 内,且P A
,PB =5,PC =2,求△ABC 的面积。

A
C
P
B
18、已知抛物线2
16
y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3
(0,)2
-,若AM //BC ,求抛物线的解析
式.
17、如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.
19、若从1,2,3,…,n中任取5个两两互素的不同的整数1a,2a,3a,4a,5a,其中总有一个整数是素数,求n的最大值。

参考答案
一、选择题(共8小题,每小题5分,共40分。


二、填空题(共8小题,每小题5分,共40分)
9 1± 10 1
12
233
13 31 14
9
1
15
2
3
16 5 三、解答题(共4题,17、18每题15分,19、20每题20分,共70分) 17、解:如图,作△ABQ ,使得:∠QAB =∠P AC ,∠ABQ =∠ACP ,
则△ABQ ∽△ ACP ,由于AB =2AC ,∴相似比为
2
于是,AQ =2 AP =23,BQ =2CP =4
∠QAP =∠QAB +∠BAP =∠P AC +∠BAP =∠BAC =60° 由AQ :AP =2:1知,∠APQ =900 于是,PQ =3AP =3
∴BP 2=25=BQ 2+PQ 2 从而∠BQP =900 作AM ⊥BQ 于M ,由∠BQA =1200,知 ∠AQM =600,QM =3,AM =3,于是,
∴AB 2
=BM 2
+AM 2
=(4+3) 2
+32
=28+83 故S △ABC =21
AB •ACsin 600=
83AB 2=2
376+
18、解 易求得点P 2
3
(3,)2
b b
c +,点C (0,)c .
设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为
(3,)b m .
A
C
P
B Q
M
显然,12,x x 是一元二次方程2
106
x bx c -
++=的两根,所
以13x b =
,23x b =,又AB 的中点E 的坐标为(3,0)b ,所以AE

因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅
,即
223
()||2
b c m =+⋅,
又易知0m <,所以可得6m =-. ……………………10分
又由DA =DC 得2
2
DA DC =
,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).
又因为AM //BC ,所以OA OM
OB OC =
3||
2|6|
-=-. 把6c =-代入解得52b =(另一解5
2
b =-舍去). 因此,抛物线的解析式为215
662
y x x =-+-. …………15分
19、证明:连接OA ,OB ,OC .
∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2
PA PD PO =⋅,2
AD PD OD =⋅. ………5分 又由切割线定理可得2
PA P B PC =⋅,∴PB PC PD PO ⋅=⋅, ∴D 、B 、C 、O 四点共圆,………10分
∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ………15分 ∴PD BD CD OD
=,∴ 2
AD PD OD BD CD =⋅=⋅. ………………20分
20、解:若n ≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有
一个整数是素数,∴n ≤48,在1,2,3,┉┉,48中任取5个两两互素的不同的整数1a ,2a ,
3a ,4a ,5a ,
若1a ,2a ,3a ,4a ,5a 都不是素数,则1a ,2a ,3a ,4a ,5a 中至少有四个数是合数,不妨假设1a ,2a ,3a ,4a 为合数,
设1a ,2a ,3a ,4a 的最小的素因数分别为p 1,p 2,p 3,p 4 由于1a ,2a ,3a ,4a 两两互素,∴p 1,p 2,p 3,p 4两两不同 设p 是p 1,p 2,p 3,p 4中的最大数,则p ≥7
因为1a ,2a ,3a ,4a 为合数,所以1a ,2a ,3a ,4a 中一定存在一个 a j ≥p 2≥72=49,与n ≥49矛盾,于是1a ,2a ,3a ,4a ,5a 中一定有一个是素数 综上所述,正整数n 的最大值为48。

相关文档
最新文档