离散型随机变量及其分布函数PPT课件

合集下载

二章离散型随机变量ppt课件

二章离散型随机变量ppt课件
定义 设 是试验E的样本空间, 若
按一定法则 实数 X ()
则称 X ( ) 为 上的 随机变量
简记 r.v. X .
r.v.一般用大写字母 X, Y , Z , 或小写
希腊字母 , , 表示.
随机变量 是 R 上的映射,
此映射具有如下特点 定义域 事件域
随机性 r.v. X 的可能取值不止一个,
二项分布的取值情况 设
X
~
B( 8,
1 3
)
P8 (k)
P( X
k)
C8k
(
1 3
)k
(1
)1 8k 3
,
k 0,1,,8
0 1 2 34 5 6 7 8
.039 .156 .273 .273 .179 .068 .017 .0024 .0000
P 0.273•
由图表可见 , 当 k 2或3 时, 分布取得最大值
设 A 为随机事件,则称
X
A
1, 0,
A 为事件A 的示性变量 A
在同一个样本空间可以同时定义多个
r.v., 例如
= {儿童的发育情况 } X() — 身高, Y() — 体重, Z() — 头围.
各 r.v.之间可能有一定的关系, 也可能没
有关系—— 即 相互独立
离散型
r.v. 分类 非离散型
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
点数 Xt ~ P ( t )

离散型随机变量及其分布函数_图文

离散型随机变量及其分布函数_图文

5.超几何分布
设X的分布律为
说明 超几何分布在关于废品率的计件检验中常用到.
三、内容小结
1.常见离散型随机变量的分布 两点分布 二项分布 泊松分布
几何分布 超几何分布
两点分布
二项分布
泊松分布
则 X 的取值范围为 (a, b) 内的任一值.
定义 说明
离散型随机变量的分布律也可表示为 或
例1 设一汽车在开往目的地的路上需经过四盏信号
灯.每盏灯以
的概率禁止汽车通过.以
表示汽车首次停下时已经过的信号灯盏数(信
号灯的工作是相互独立的),求 的分布律.
Байду номын сангаас
离散型随机变量的分布函数与其分布律之间的关系 :
也就是: 分布律
分布函数
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只取0与1两个值 , 它的分布律为
则称 X 服从 (0-1) 分布或两点分布或伯努利分布.
说明
两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
离散型随机变量及其分布函数_图文.ppt
一、离散型随机变量的分布函数
随机变量
离散型 非离散型
连续型 其它 (1)离散型 若随机变量所有可能的取值为有限个
或可列无穷个,则称其为离散型随机变量.
实例1 观察掷一个骰子出现的点数. 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6.
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
二十世纪初罗瑟福和盖克两位科学家在观察 与分析放射性物质放射出的 粒子个数的情况时, 他们做了2608 次观察(每次时间为7.5 秒),发现 放射性物质在规定的一段时间内, 其放射的粒子 数X 服从泊松分布.

高中数学选修2(新课标)课件2.1.1离散型随机变量及其分布列

高中数学选修2(新课标)课件2.1.1离散型随机变量及其分布列
2.1 离散型随机变量及其分布列
知识导图
学法指导
1.随机变量表示随机试验的结果. 2.类比函数来学习随机变量,它们之间既有联系又有区别.事 实上,本章的内容与《数学 1》中函数的内容具有一致性,都是先 一般性了解随机变量(函数)的概念和性质,然后将其具体化为两点 分布、超几何分布、二项分布、连续的正态分布(指数、对数、幂 函数、三角函数、数列),这样的学习有利于更好地认识随机变量.
【解析】 (1)A 的取值不具有随机性,C 是一个事件而非随机 变量,D 中概率值是一个定值而非随机变量,只有 B 满足要求.
【答案】 (1)B
(2)下列变量中,哪些是随机变量,哪些不是随机变量?并说明 理由.
①北京机场一年中每天运送乘客的数量; ②北京某中学办公室一天中接待家长来访人数; ③2018 年除夕收看春节联欢晚会的人数; ④2018 年 3 月 15 号,收看两会开幕式的人数.
A.①②③ B.①②④ C.①③④ D.②③④
解析:根据离散型随机变量的定义,判断一个随机变量是否是 离散型随机变量,就是看这一变量的所有取值是否可以一一列 出.①②④中的 X 可能取的值,可以一一列举出来,而③中的 X 可 以取某一区间内的一切值,属于连续型的.
答案:B
3.一木箱中装有 8 个同样大小的篮球,编号为 1,2,3,4,5,6,7,8, 现从中随机取出 3 个篮球,以 ξ 表示取出的篮球的最大号码,则 ξ =8 表示的试验结果有________种.
{Y=3}表示掷出的两枚骰子的点数相差 3,其包含的基本事件 有(1,4),(4,1)Y=4}表示掷出的两枚骰子的点数相差 4,其包含的基本事件 有(1,5),(5,1),(2,6),(6,2).
{Y=5}表示掷出的两枚骰子的点数相差 5,其包含的基本事件 有(1,6),(6,1).

7-2离散型随机变量及其分布列(教学课件)——高中数学人教A版(2019)选择性必修第三册

7-2离散型随机变量及其分布列(教学课件)——高中数学人教A版(2019)选择性必修第三册
4
10
5
X的分布列为:
X
1
2
3
4
5
P
1
10
1
4
3
10
1
5
3
20
例3 一批笔记本电脑共有10台,其中A品牌3台,B品牌7台.如果从中随机挑
选2台,求这2台电脑中A品牌台数的分布列.
解:设随机挑选的2台电脑中A品牌的台数为X,则X的可能取值为0, 1, 2.
根据古典概型的知识,可得
C30C72 3
C31C71 7
离散变量的分布列可以用表格表示,如下表所示.
X
x1
x2
‧‧‧
xn
P
p1
p2
‧‧‧
pn
分布列的构成
离散型随机变量的分布列的性质:
(1)列出了随机变量X的所有取值xi;
(1)Pi ≥0,i=1,2, …,n,
(2)求出了的每一个取值xi的概率pi .
(2) P1+P2+ … +Pn =1.
练习 某位同学求得一个离散型随机变量的分布列为
本点与一个实数对应. 即通过引人一个取值依赖
于样本点的变量X,来刻画样本点和实数的对应
关系,实现样本点的数量化.
试验1,从100个电子元件(至少含3个以上次品)中随机抽取三个进行检验
,变量X表示三个元件中的次品数;
用0表示“元件为合格品”,1表示“元件为次品”,用0和1构成的长
度为3的字符串表示样本点:
数集,随机变量的取值X(ω)随着试验结果ω的变化而变化,使得我们
可以利用数学工具研究随机事件。
随机变量的概念是俄国数学家切比雪夫
(Chebyshev,1821-1894)在19世纪中

随机变量的函数的分布ppt课件

随机变量的函数的分布ppt课件
布,且知一对夫妇有不超过1个孩子的概率为3e-2。求 任选一对夫妇,至少有3个孩子的概率。 解 由题意
X ~ p ( ) 且 P , X 1 P ( X 0 ) P ( X 1 ) 3 e 2
e e 3 e 2 2
P ( X 3 ) 1 P ( X 0 ) P ( X 1 ) P ( X 2 )
➢ k 阶中心矩:k = E[XE(X)]k , k = 1, 2, ….
注意: 2 = Var(X).
.
2.7.2 变异系数
方差(或标准差)反映了随机变量取值的 波动程度,但在比较两个随机变量大小时 会产生不合理的现象。 原因有二: (1)方差(或标准差)是有量纲的; (2)有一个相对性问题,取值较大的随机变量 的方差(或标准差)也允许大一些。
52051 60 2
.
例5 设有一项工程有甲、乙两家公司投标承包。甲公 司要求投资2.8亿元,但预算外开支波动较大,设实际 费用X~N(2.8,0.52)。乙公司要求投资3亿元,但预算外 开支波动较小,设实际费用Y~N(3,0.22)。现假定工程资 方掌握资金(1)3亿元,(2)3.4亿元,为了在这两种情况 下,不至造成资金赤字,选择哪家公司来承包较为合 理?
pY ( y)
pX [h( y)] | h( y) |
pX [ln
y]
1 y
1
y(1 ln 2 y)
由此得
pY ( y)
1 y(1 ln2
, y)
0,
y0 其它
.
正态变量的线性不变性
定理2.6.2 设 X ~N (, 2),则当a 0 时, Y = aX+b ~ N (a +b, a22).
习题
2、设随机变量 X 服从参数为的泊松分布,且 P{X 1} P{X 2},则 E(X)= ,D(X)=

7.2离散型随机变量及其分布列2-课件-数学人教A版选择性必修第三册

7.2离散型随机变量及其分布列2-课件-数学人教A版选择性必修第三册

m
P ( A)
n
2
学习新知
思考:抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少?
X可能的取值有1,2,3,4,5,6
P ( X m)
1
, m 1,2,3,4,5,6.
6
列成表的形式
X
P
1
2
3
1
1
1
1
1
1
6
6
6
6
6
6
4
5
6
该表不仅列出了随机变量X的所有取值而且列出了X的每一个取值的概率.
2、设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的
成功次数,则失败率p等于( C )
A.0







1
B.
2
1
C.
3
2
D.
3
16
例题讲评 例6.已知随机变量X的分布列如下:
X
-2
P
1
12
分别求出随机变量⑴Y1=
解:⑴由
-1
1
4
1
X
2
0
1
2
3
1
3
1
12
1
6
1
12
(2)Y2=
1
1 = 可得Y1的取值为 1 ,
0.3
1
0.8
2
-0.3
D
X
0
1
2
P
0
0.8
0.2
X
1
2
3
P
0.5
0.4
0.2
2.设随机变量ξ的分布列如下:

精品若离散型随机变量X的分布律为课件

精品若离散型随机变量X的分布律为课件
设随机变量x具有概率密度则称x在区间ab上服从均匀分布记为xuab均匀分布设连续型随机变量x的概率密度函数为x的分布函数为概率密度函数fx与分布函数fx的图形可用图示设连续型随机变量x具有概率密度则称x服从参数为的指数分布
第二章 随机变量
第一节 随机变量及其分布函数 第二节 离散型随机变量及其分布 第三节 连续型随机变量及其分布 第四节 随机变量函数的分布
确定最小的N,使得:P{X>N}<0.01 (λ=np=3)
查表可知,满足上式最小的N是8。 至少需配备8个工人才能满足要求。
泊松(Poisson)分布 设随机变量X的所有可能取值为0,1,2…,而取各值
的概率为
其中λ>0为常数,则称X服从参数为的泊松分布,记 为X~ ()。
上式给出的概率满足:pk=P{X=k} 0, 且
(2) Y=-2X2的分布律。
解:由X的分 布律可得
P 0.2 X -1 X-1 -2 -2X2 -2
由上表易得Y的 分布律 (1)Y=X-1的分布律为
Y -2 -1 0 1 2
P 0.2 0.1 0.1 0.3 0.3
0.1 0.1 0.3 0.3 0123 -1 0 1 2 0 -2 -8 -18
的分布函数表达。若X~
, X的分布函数F(x)

因此,对于任意的实数a,b(a<b),有
例2: 设X~(0,1),求P{1<X<2},P{
}.
例3: 某仪器需安装一个电子元件,要求电子元件的 使用寿命不低于1000小时即可。现有甲乙两厂的电子 元件可供选择,甲厂生产的电子元件的寿命服从正态 分布N(1100,502), 乙厂生产的电子元件的寿命分布服从 正态分布N(1150,802)。问应选择哪个厂生产的产品呢? 若要求元件的寿命不低于1050小时,又如何?

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

预习探究
[探究] 以下随机变量是离散型随机变
量的是
.
①某部手机一小时内收到短信的次数
ξ;
②电灯泡的寿命ξ; ③某超市一天中的顾客量ξ; ④将一颗骰子掷两次出现的点数之和
ξ.
⑤连续不断地射击,首次命中目标所需
要的射击次数ξ.
④将一颗骰子掷两次出现点数之和ξ的取
值为2,3,…,12,是离散型随机变量;
三维目标
3.情感、态度与价值观 使学生感悟数学与生活的和谐之美,学会合作探讨,体验成功,提 高学习数学的兴趣.
重点难点
[重点] (1)随机变量、离散型随机变量的意义; (2)离散型随机变量的分布列的概念.
[难点] (1)随机变量、离散型随机变量的意义; (2)求简单的离散型随机变量的分布列.
教学建议
例1 指出下列变量中,哪些是随机变量, 哪些不是随机变量,并说明理由. (1)任意掷一枚质地均匀的硬币5次,出 现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数 (最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰.
(3)属相是出生时便确定的,不随年龄的变化 而变化,不是随机变量. (4)标准状况下,水在0℃时结冰是必然事件, 不是随机变量.
P
分别求出随机变量η1=2ξ1,η2=ξ2的分布列.
当ξ取-1与1时,η2=ξ2取相同的值,故η2的分布 列为 η2 0 1 4 9
考点类析
例2 指出下列随机变量是不是离散型 随机变量,并说明理由. (1)从10张已编好号码的卡片(从1号到 10号)中任取1张,被取出的卡片的号数; (2)一个袋中装有5个白球和5个黑球,从 中任取3个,其中所含白球的个数; (3)某林场树木最高达30 m,则此林场中 树木的高度; (4)某加工厂加工的某种铜管的外径与 规定的外径尺寸之差.

随机变量及离散型分布PPT课件

随机变量及离散型分布PPT课件
例1. 已知随机变量X的概率分布为
pk P{X k} ak (k 1,2,3,4,5) , 求常数a.
解:由概率分布的性质知
5
pk
1,
k 1

15a= 1,
解得a
1 15
.
第4页/共17页 下页
例2. 在一个袋子中有10个球,其中6个白球,4个红球.从中 任取3个,求抽到红球数的概率分布.
或 P{X k} pkq1k (k 0,1) .
第7页/共17页 下页
2、二项分布 定义 如果随机变量X的概率分布为
P{X k} Cnk Pkqnk (k 0,1, , n)
则称 X 服从参数为 n,p的二项分布, 记作X~B(n, p).
n
显然,
Cnk pk qnk 1.
k 0
特别当 n=1时,二项分布为退化为0-1分布.
例7. 某厂有同类设备400台,各台工作是相互独立的,每台 发生故障的概率为0.01 . 求下列事件的概率:
① 若一人负责维修30台设备,求发生故障不能及时维修的 概率;② 若3人共同维修100台设备呢?③ 需配备多少工人才能 保证不能及时维修的概率不大于0.02 ?
解:设 X表示同时发生故障的台数,则X~B(n, 0.01),
服从泊松分布的相关概率, 可查表计算. 《泊松分布表》 的计算为
P{X x} r e . rx r!
第11页/共17页下页
例6.某电话交换台在一天内的收到的呼叫次数服从参数为3 的泊松分布,求下列事件的概率:
① 呼叫次数不小于6; ② 呼叫次数小于6; ③ 呼叫数恰好为2. 解:设X表示呼叫数,由题意知X~P(3),则
X的概率分布律为
X
0
1

离散型随机变量及其分布率.ppt

离散型随机变量及其分布率.ppt

(1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果
且P(A)=p ,P( A) 1 p ;
2019/11/13
(3)各次试验相互独立。 15
二项分布描述的是n重贝努里试验中出现“成功” 次数X的概率分布.
若X的分布律为:
P{X k} Cknpkqnk , k 0,1,2,n 则称随机变量X服从参数为n,p的二项分布。
现“4”点的次数。
不难求得,X的概率分布是:
P{
X
k}C
k 3
(
1 6
)k
(
5 6
)3
k
,
k0,1,2,3
2019/11/13
13
一般地,设在一次试验中只考虑两个互逆的结果, 或者形象地把两个互逆结果叫做“成功”和“失败”。
掷骰子:“掷出4点”,“未掷出4点”
新生儿:“是男孩”,“是女孩”
商场接待的顾客数 电话呼唤次数 交通事故次数
2019/11/13
27
上面我们提到 二项分布 n很大, p 很小 泊松分布
2019/11/13
28
例 有一繁忙的汽车站, 每天有大量汽车通过,设每 辆汽车,在一天的某段时间内出事故的概率0.0001, 在每天的该段时间内有1000 辆汽车通过,问出事故 的次数不小于2的概率是多少? 解 设1000 辆车通过,出事故的次 数为 X , 则 X ~ b(1000, 0.0001),
1, 若第 i 次试验成功 Xi 0, 若第 i 次试验失败,
(i 1,2,,n)
它们都服从 (0 1) 分布并且相互独立, 那末
X X1 X2 Xn 服从二项分布,参数为(n, p).

第五节离散型随机变量及其分布列课件共44张PPT

第五节离散型随机变量及其分布列课件共44张PPT

解:(1)P(A)=1-CC31340·123=223490, 所以随机选取3件产品,至少有一件通过检测的概率 为223490. (2)由题可知X可能取值为0,1,2,3. P(X=0)=CC34C13006=310,P(X=1)=CC24C13016=130, P(X=2)=CC14C13026=12,P(X=3)=CC04C13036=16. 所以随机变量X的分布列为
故X的分布列为
X 200
300
400
P
1 10
3 10
3 5
求离散型随机变量X的分布列的步骤 (1)找出随机变量X的所有可能取值xi(i=1,2, 3,…,n). (2)求出各取值的概率P(X=xi)=pi. (3)列成表格并用分布列的性质检验所求的分布列或 某事件的概率是否正确. 提醒:求离散型随机变量的分布列的关键是求随机 变量所有取值对应的概率,在求解时,要注意应用计数 原理、古典概型等知识.
6.一盒中有12个乒乓球,其中9个新的、3个旧的, 从盒中任取3个球来用,用完后装回盒中,此时盒中旧球 个数X是一个随机变量,则P(X=4)的值为________.
解析:由题意知取出的3个球必为2个旧球、1个新球, 故P(X=4)=CC23C13219=22270.
答案:22270
考点1 离散型随机变量的分布列的性质
1 3
k
,k=1,
2,3,则a的值为( )
A.1
B.193
C.1113
D.2173
解析:因为随机变量ξ的分布列为P(ξ=k)=a
1 3
k
(k=
1,2,3),
所以根据分布列的性质有a×13+a132+a133=1,
所以a13+19+217=a×1237=1.所以a=2173. 答案:D

7-2离散型随机变量及其分布列课件-高二下学期数学人教A版(2019)选择性必修第三册

7-2离散型随机变量及其分布列课件-高二下学期数学人教A版(2019)选择性必修第三册
试验 2 中随机变量 Y 的可能取值为 1, 2, 3, ⋯,有无限个取值,但可以
一一列举出来.
离散型随机变量的定义:
像这样,可能取值为有限个或可以一一列举的随机变量,我们称为
离散型随机变量(discrete random variable).
通常用大写英文字母表示随机变量,例如 X, Y, Z;用小写英文字母
7.2 离散型随机变量
及其分布列
复习引入
1.随机试验的概念
一般地,一个试验如果满足下列条件:
①试验可以在相同的情形下重复进行;
②试验的所有可能结果是明确可知的,并且不只一个;
③每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能
肯定这次试验会出现哪一个结果;
这种试验就是一个随机试验,为了方便起见,也简称试验.
验的结果:
(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数X;
X =1, 2, 3, ···, 10
离 (2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球数X;
X=0, 1, 2, 3

型 (3)抛掷两个骰子,所得点数之和X;
X=2, 3, 4, ···, 12
th
tth
ttth
1
2
3
4


t
t
概念形成
在上面两个随机试验中,每个样本点都有唯一的一个实数与之对应.
变量X,Y 有如下共同点:
(1)取值依赖于样本点;
(2)所有可能取值是明确的.
随机变量的定义:
一般地,对于随机试验样本空间 Ω 中的每个样本点 ω,都有唯
一的实数X(ω)与之对应,我们称 X 为随机变量(random variable).

离散型随机变量ppt课件

离散型随机变量ppt课件

ξ的概率分布列,简称为ξ的分布列.
也可将①用表的形式来表示
ξ X1 X2 … Xi …

P1
P2

Pi

上表称为随机变量ξ的概率分布表, 它和①都叫做随机变量ξ的概率分布.
2.分布列的构成: ⑴列出随机变量ξ的所有取值; ⑵给出ξ的每一个取值的概率. 3.分布列的性质:
(1) pi 0, i 1,2, ; (2) p1 p2 1.
,则a的为

课堂小结
1. 随机变量
如果随机试验的结果可以用一个变量来表示,那么这样 的变量叫做随机变量.
课堂小结
1. 随机变量
2.离散型随机变量
对于随机变量可能取的值,我们可以按一定次序一一列出,这 样的随机变量叫做离散型随机变量. 随机变量ξ 的线性组合η =aξ +b(其中a、b是常数) 也是随机变量.
课堂小结
1. 随机变量 2.离散型随机变量
3.离散型随机变量的分布列
ξ P X1 P1 X2 P2 … … Xi Pi … …
知识回顾
一.随机事件:在一定条件下可能发 生也可能不发生 的事件
二、随机事件的概率 一般地,在大量重复进行同一试验时, m 事件A发生的频率 总是接近于某个常 n 数,在它附近摆动,这时就把这个常数叫 做事件A的概率,记作P(A)
几点说明: (1)求一个事件的概率的基本方法是通过大量的重复 试验 (2)概率可看作频率在理论上的期望值,它从数 量 上反映了随机事件发 生的可能性的大小,频率在 大量重复试验的前提下可近似地作为这个事件的 概率 (3)必然事件的概率为1,不可能事件的概率为0,因 此 0 p( A) 1
例2.从装有6只白球和4只红球的口 袋中任取一只球,用X表示“取到的白 球个数”,即 1• • •(当取到白球) X • •(当取到红球) 0•

教育12.2离散型随机变量及其分布列均值和方差ppt课件

教育12.2离散型随机变量及其分布列均值和方差ppt课件

解析 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,1 1的概率分别为0.2,0.4,0.2,0.2.从而 P(X=16)=0.2×0.2=0.04; P(X=17)=2×0.2×0.4=0.16; P(X=18)=2×0.2×0.2+0.4×0.4=0.24; P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24; P(X=20)=2×0.2×0.4+0.2×0.2=0.2; P(X=21)=2×0.2×0.2=0.08; P(X=22)=0.2×0.2=0.04. (4分) 所以X的分布列为
解法一:∵E(ξ1)=0×(1-p1)+1×p1=p1, 同理,E(ξ2)=p2,又0<p1<p2,∴E(ξ1)<E(ξ2).
D(ξ1)=(0-p1)2(1-p1)+(1-p1)2·p1=p1- p12 , 同理,D(ξ2)=p2- p22 . D(ξ1)-D(ξ2)=p1-p2-( p12 - p22 )=(p1-p2)(1-p1-p2). ∵0<p1<p2< 1 ,∴1-p1-p2>0,∴(p1-p2)(1-p1-p2)<0.
解析 本题考查随机变量的分布列,数学期望.
(1)由题意知,X所有可能取值为200,300,500,由表格数据知
P(X=200)= 2 16 =0.2,P(X=300)= 36 =0.4,P(X=500)= 25 7 4 =0.4.
90
90
90
因此X的分布列为
X
200
300
500
P
0.2
0.4
0.4
最高气温
[10,15)
[15,20)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{ X k} 0.001, 当 k 11时
图示概率分布
例3 某人进行射击,设每次射击的命中率为0.02, 独立射击 400 次,试求至少击中两次的概率.
解 设击中的次数为 X ,
则 X ~ B(400,0.02). X 的分布律为
P{ X k} 400(0.02)k (0.98)400k , k 0,1,,400. k
说明
两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
2.二项分布
若X的分布律为:
P{X k} Cknpkqnk , k 0,1,2,n 则 称随机变量X服从参数为n,p的二项分布。记为

(2) pk 1. k 1
离散型随机变量的分布律也可表示为
X ~ x1 x2 xn p1 p2 pn

X
x1 x2 xn
pk
p1 p2 pn
例1 设一汽车在开往目的地的路上需经过四盏信号 灯.每盏灯以 (p 0 p 1) 的概率禁止汽车通过.以
在生物学、医学、工业统计、保险科学及
公用事业的排队等问题中 , 泊松分布是常见的.
例如地震、火山爆发、特大洪水、交换台的电
话呼唤次数等都服从泊松分布.
地震
火山爆发
特大洪水
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
1, 2, 3, . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”, 则 X 的所有可能取值为:
0, 1, 2, 3, , 30.
(2)连续型 若随机变量所有可能的取值可以连续 地充满某个区间,则称其为连续型随机变量. 实例1 随机变量 X 为“灯泡的寿命”. 则 X 的取值范围为 [0, ). 实例2 随机变量 X 为“测量某零件尺寸时的测误差”.
因此 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
3. 泊松分布
设随机变 k} ke , k 0,1, 2, ,
k!
其中 0是常数.则称 X 服从参数为的泊松分 布,记为 X ~ ().
泊松分布的背景及应用
二十世纪初罗瑟福和盖克两位科学家在观察
与分析放射性物质放射出的 粒子个数的情况时,
他们做了2608 次观察(每次时间为7.5 秒),发现 放射性物质在规定的一段时间内, 其放射的粒子 数X 服从泊松分布.
X表示汽车首次停下时已经过的信号灯盏数(信 号灯的工作是相互独立的),求 X 的分布律.
解:X的分布律为
X0
1
2
3
4
pk
p
(1 p) p (1 p)2 p (1 p)3 p (1 p)4
离散型随机变量的分布函数与其分布律之间的关系:
F ( x ) P{ X x} pk P ( X xk ).
商场接待的顾客数 电话呼唤次数 交通事故次数
泊松定理 设 X ~ B(n, pn )
把检查一只元件看它是否为一级品看成是一次 试验,检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数,
则 X ~ B(20, 0.2), 因此所求概率为 P{X k} 2k0(0.2)k (0.8)20k , k 0,1,,20.
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
xk x
xk x
也就是:
分布律
pk P{X xk }
分布函数 F ( x) P{ X x} pk
xk x
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只取0与1两个值 , 它的分布律为
X
0
1
pk 1 p
p
则称 X 服从 (0-1) 分布或两点分布或伯努利分布.
X ~ B(n , p) ,其中q=1-p
二项分布 n 1 两点分布
例2 按规定,某种型号电子元件的使用寿命超过 1500 小时的为一级品.已知某一大批产品的一级 品率为0.2, 现在从中随机地抽查20只.问20只元件 中恰有 k 只(k 0,1,,20) 一级品的概率是多少?
分析 这是不放回抽样.但由于这批元件的总数很 大, 且抽查元件的数量相对于元件的总数来说又很 小,因而此抽样可近似当作放回抽样来处理.
则 X 的取值范围为 (a, b) 内的任一值.
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率,为
P{ X xk } pk , k 1,2,. 称此式为离散型随机变量 X 的分布律.
说明
(1) pk 0, k 1,2,;
第2.2节 离散型随机变量 及其分布函数
一、离散型随机变量的分布函数 二、几种常见的离散型随机变量 三、小结
一、离散型随机变量的分布函数
随机变量
离散型 非离散型
连续型 其它 (1)离散型 若随机变量所有可能的取值为有限个
或可列无穷个,则称其为离散型随机变量.
实例1 观察掷一个骰子出现的点数. 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6.
相关文档
最新文档