自动控制原理第三章习题参考答案
自动控制原理第三章课后习题答案
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理 第三章答案
3-1 解 该线圈的微分方程为 u =+diiR L dt对上式两边取拉氏变换,并令初始条件为零,可得传递函数为()1=()(+)+1I s RU s L R 时间常数+0.005T L R s ==,过渡时间=30.015s t T s =。
3-2 解 如图2-3-2所示系统的闭环传递函数为010()=(s)0.2+1+10+1H K C s KR S K Ts =其中0101+10H K K K =,0.21+10HT K =原系统的时间常数为0.2s ,放大系数为10,为了满足题目的要求,令0.02T s =和10K =,有0.9H K =和010K =。
3-3 解 设为温度计的输入,表示实际水温,设为温度计的输出,表示温度计的指示值,若实际水温为R (常值),则输入为幅值为R 的阶跃函数,输出为(t)=R(1-e )T c τ根据所给条件,有则时间常数。
3-4 解:所给传递函数的闭环极点为21,2=-1-n n s j ζωωζ±根据上式表达式,可以确定图2-3-3中的阴影部分为闭环极点可能位于的区域(考虑到对称性,只绘出s 平面的上半平面)。
图2-3-3 闭环极点可能位于的区域3-5解:典型二阶系统的传递函数为由如图2-3-4所示的响应曲线,可知峰值时间,超调量,根据二阶系统的性能指标计算公式和可以确定和,根据如图2-3-4所示曲线的终值,可以确定。
3-6 解:如图2-3-5所示系统的传递函数为是一个典型的二阶系统,其自然振荡频率为,令阻尼比可以确定,性能指标及分别为3-7 解:系统为典型二阶系统,自然振荡频率,阻尼比。
单位阶跃响应的表达式为(t>0)单位斜坡响应的表达式为3-8 解:当时,系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量峰值时间和过度过程时间分别为16.3%、0,36s和0.7s当,时系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量、峰值时间和过渡过程时间分别为30.9%、0.24s和0.7s。
自动控制原理第三章习题解答
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −
自动控制原理课后习题答案,第三章(西科技大学)
c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2
s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50
自动控制原理第三章课后习题答案(最新)汇总
3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。
若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。
解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。
已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
自动控制原理第3章习题解答
−
−
ω n (ξ − ξ 2 − 1)
1 10
2
T2 = 1 60
1
ω n (ξ + ξ 2 − 1)
显然: T1 =
T2 =
ξ2 T1 ξ + ξ − 1 = =6= T2 ξ − ξ 2 − 1 1 1− 1− 2 ξ
由 T1 =
1+ 1−
1
解方程得 ξ =
7 2 6
1
ω n (ξ − ξ − 1)
试求系统在单位阶跃输入下的动态性能。 解:闭环传递函数
0.4 s + 1 G( s) 0.4 s + 1 s ( s + 0.6) GB ( s) = = = 2 s + s +1 1 + G ( s ) 1 + 0.4 s + 1 s( s + 0.6) C ( s ) = GB ( s ) R( s ) = 1 0.4 s + 1 0.4 1 = 2 + 2 2 s s + s + 1 s + s + 1 s( s + s + 1) s +1 s + 0.6 0.4 1 1 = 2 + − 2 = − 2 s + s +1 s s + s +1 s s + s +1
3.5 = 7s 0.5
3-6 已知控制系统的单位阶跃响应为
h(t ) = 1 + 0.2e −60t − 1.2e −10t
试确定系统的阻尼比ζ和自然频率ωn。 解: 求拉氏变换得
H (s) =
1 0.2 1.2 ( s + 60)( s + 10) 0.2s ( s + 10) 1.2s ( s + 60) + − = + − s s + 60 s + 10 s ( s + 60)( s + 10) s ( s + 60)( s + 10) s ( s + 60)( s + 10)
自动控制原理习题及其解答 第三章
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
《自动控制原理》课后习题解答第三章
第三章习题及答案3-1 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。
t e t k 25.10125.0)(-=解 Φ()()./(.)s L k t s ==+001251253-2 设某高阶系统可用下列一阶微分方程近似描述T c t c t r t r t ••+=+()()()()τ其中,0<(T-τ)<1。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从0.1到0.9所需时间) 当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ∴=--t T T T s [ln ln .]τ005=-+T T T[ln ln ]τ20=+-T T T [ln]3τ3-3 一阶系统结构图如题3-3图所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t (s ),试确定参数21,K K 的值。
自动控制原理(孟华)第3章习题解答
自动控制原理(孟华)第3章习题解答自动控制原理(孟华)的习题答案。
3.1.已知系统的单位阶跃响应为c(t) 1 0.2e 60t 1.2e 10t试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn=?解:(1)由c(t)得系统的单位脉冲响应为g(t) 12e 60t 12e 10t (t 0)(s) L[g(t)] 12__12 2 s 10s 60s 70s 6002n(2)与标准(s) 2对比得:2s 2 n nn 600 24.5,702 6001.4293.2.设图3.36 (a)所示系统的单位阶跃响应如图3.36 (b)所示。
试确定系统参数K1,K2和a。
(a) (b)图3.36 习题3.2图解:系统的传递函数为K12 nK1K2s(s a)W(s) K2 2 K2 2K1s as K1s 2 n n1s(s a)又由图可知:超调量Mp4 3133峰值时间tp 0.1 s自动控制原理(孟华)的习题答案。
代入得2n K1 1 21e30.1 2 n K K2解得:ln32;0.33,n10 2233.3,K1 n 1108.89,a 2 n 2 0.33 33.3 21.98,K2 K 3。
3.3. 给定典型二阶系统的设计性能指标:超调量p 5%,调节时间ts 3s,峰值时间tp 1s,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为2nG sss 2 n 20.05 p e33 则满足上述设计性能指标:ts nt 1 p2n得:0.69,n 1 n2由上述各不等式得系统极点配置的区域如下图阴影部分所示:自动控制原理(孟华)的习题答案。
3.4.设一系统如图3.37所示。
(a)求闭环传递函数C(s)/R(s),并在S平面上画出零极点分布图;(b)当r(t)为单位阶跃函数时,求c(t)并做出c(t)与t的关系曲线。
图3.37 习题3.4图解:(a)系统框图化简之后有C(s)2 s2 R(s)s 0.5s 2.252 s(s35j)(s j)22z1 2,s1,2零极点分布图如下:35j 2自动控制原理(孟华)的习题答案。
自动控制原理参考答案-第3章
×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为
自动控制原理第三章课后习题 答案(最新)
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
自动控制原理课后习题答案,第三章(西科技大学).
G( s) 0.5Ks 1 ( s ) 4 3 2 1 G( s) 0.5s 1.5s 2s (1 0.5K ) s K
系统特征方程:2D(s)=s4+3s3+4s2+(2+K)s+2K=0
2D(s)=s4+3s3+4s2+(2+K)s+2K=0
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G ( s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
2
tp 3.63s d n 1 2
s% e
3
1 2
100% 16.3%
3 ts 6s( 5%) n 0.5 1 4 ts 8s( 2%) n 0.5 1 4
3-4 已知典型二阶系统单位阶跃响应 h(t) = 1- 1.25 e-1.2t sin(1.6t + 53.1o),求系统超调量、峰值时间和调节时间。
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50
用全零行的上一行的系数构成辅助方程:A(s) =2s4 + 48s2
第3章 线性系统的时域分析
作业题: 3-2、3-3、3-9、3-11、3-15 、3-17 练习题: 3-4、练1、练2
自动控制原理第三章习题答案
3-3 解:该二阶系统的最大超调量:%100*21/ζζπσ--=ep当%5=pσ时,可解上述方程得:69.0=ζ当%5=pσ时,该二阶系统的过渡时间为:ns w t ζ3≈所以,该二阶系统的无阻尼自振角频率17.22*69.033==≈sn t w ζ3-4 解:由上图可得系统的传递函数:10)51(*2)1(*10)2()1(*101)2()1(*10)()(2++++==+++++=s K s Ks s s Ks s s Ks s R s C所以10=n w ,K w n 51+=ζ⑴ 若5.0=ζ时,116.0≈K 所以116.0≈K 时,5.0=ζ⑵ 系统单位阶跃响应的超调量和过渡过程时间分别为:9.110*5.033%3.16%100*%100*225.01/14.3*5.01/≈==≈==----ns pw t e eζσζζπ⑶ 加入)1(Ks +相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入)1(Ks +后,系统响应性能得到改善。
3-5 解:由上图可得该控制系统的传递函数:12110)110(10)()(K s s K s R s C +++=τ二阶系统的标准形式为:2222)()(nn nws w s w s R s C ++=ζ所以11021012+==τζn n w K w由5.0%5.91%100*21/2==-==--p pn p pt w t eσζπσζζπ可得85.76.0==n w ζ由11021012+==τζn n w K w 和85.76.0==n w ζ可得:64.0384.016.61=≈==ns w t K ζτ3-6 解:⑴ 列出劳斯表为:因为劳斯表首列系数符号变号2次,所以系统不稳定。
⑵ 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定。
自动控制原理第三章习题参考答案
入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。
(1)G(s)
100
(0.1s 1)(s 5)
特征方程:1+G(s)=0 0.1s2+1.5s+105=0
解:
Kv
lim sG(s) 0 s0
S2 0.1 105
r(t) 2t ess
2 Kv
r(t) 2 2t t 2
-
-
10
C(s)
s(s 1)
2s
(1)取τ1=0, τ2=0.1,计算测速反馈系统的超调量、调 节时间和速度误差。
(2)取τ1=0.1, τ2=0,计算比例微分校正系统的超调量、
调节时间和速度误差。
解(1)开环传递函数
G(s)
s2
10
(1 10 2 )s
10 s2 2s
n 10 3.162 2 1 0.316
S1 1.5 S0 105
系统稳定
Kp
lim G(s)
s0
20
Kv 0
ess
2 1 Kp
2 Kv
2 Ka
Ka
lim
s0
s 2G(s)
0
3-15已知单位反馈系统的开环传递函数如各题所示,求输 入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。
(3)G(s) 10(2s 1)
3-6 已知控制系统的阶跃响应为:
h(t) 1 0.2e60t 1.2e10t
试确定系统的阻尼比ξ和自然频率ωn 解:对h(t)求导,得系统的单位脉冲响应为:
y(t) h’(t) 12e60t 12e10t 12(e10t - e ) 60t
自动控制原理第三章课后习题答案汇总.
3-1 i 殳来统的墩专力桿式旬卜:(1) 0.2c(t) =2r(t)(2)0.04c(t) 0.24c(t) c(t) = r(t)试求系统闭环传递函数 ①(s),以及系统的单位脉冲响应 部初始条件为零。
解:(1) 因为 0.2sC(s) =2R(s)闭环传递函数_ 1_ 20.04s0.24s 1Ts 198%的数值。
若加热容器使水温按 10OC/min 的速度匀速上升,问温度计的稳态指示误差有 多大?Ts 1由一阶系统阶跃响应特性可知: c(4T)二98oo ,因此有 4T =1 min ,得出 T = 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为单位脉冲响应: C(s)=10/s g(t) -10 t _0单位阶跃响应 c(t) C(s) =10/s 2c(t) = 10t(2)(0.04s 2 0.24s 1)C(s)二 R(s)C(s)R(s) 0.04s 20.24s 1单位脉冲响应: C(s)= 0.04s0.24s 1g(t)用宀n4t3单位阶跃响应 h " Wk 2; 16]s 6s (s 3)216g(t)和单位阶跃响应 c(t)。
已知全 闭环传递函数13-2 温度计的传递函数为 — ,用其测量容器内的水温,1min 才能显示出该温度的解法一 依题意,温度计闭环传递函数1G(s) 口G(s“4」 1 —①(s) Ts「K=”TV=1用静态误差系数法,当 r(t^10 t 时,10e ss 二—=10T = 2.5 C 。
K3-3 已知二阶系统的单位阶跃响应为c(t) =10-12.5e」.2t si n(1.6t 53.1o)试求系统的超调量b%、峰值时间t p和调节时间t s。
1 严+ y----解:c(t) =1 _ ---- e ~ sin(p 1 _U2豹n t + P)2 '二cos :二cos53.1° 二0.6t s 二 3.5 =3.2 =2.92(S)5n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
自动控制原理第三章课后习题答案(免费)
自动控制原理第三章课后习题答案(免费)3-1 判别下列系统的能控性与能观性。
系统中a,b,c,d 的取值对能控性与能观性是否有关,若有关其取值条件如何?(1)系统如图所示。
题3-1(1)图 系统模拟结构图解: 状态变量:11223123434x ax u x bx x x x cx x x dx =+=-=+-=+输出变量: 3y x =由此写出状态空间:0001000011000010(0010)a b x x u c d Y x⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭= 223333[1,0,0,0],[,0,1,0],[,0,,1],[,0,,]T T T B AB a A B a a c A B a a ac c a c d ==-=--=-++---判断能控型:()2323221000001001c a a a U BABA BA B a c a ac c a c d ⎛⎫-- ⎪⎪== ⎪--++ ⎪ ⎪---⎝⎭4c rankU ≠,所以系统不完全能控,讨论系统能控性:判断能观性:022322222001011000C CA c U CA a c b c c CA a ac c b bc c c ⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪== ⎪ ⎪---- ⎪ ⎪++++-⎝⎭⎝⎭04rankU ≠,所以系统不能观.(2)系统如图所示。
题3-1(2)图 系统模拟结构图解: 状态变量:()1211101[,]1c x a b x ux c d y xa b U B AB c d -⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭=-+⎛⎫== ⎪--⎝⎭若0,a b c d b ----≠则2c rankU =,系统能控.010C U CA a b ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭若0b ≠,则02rankU =,系统能观.(3)系统如下式:1122331122311021010000200000x x x a ux x b x x y c d x y x ∙∙∙⎛⎫-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=-+⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭解:系统如下:1231122311021010000200000x x x a u x b x y c d x y x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-+ ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭若0,0a b ≠≠,系统能控.若0,0c d ≠≠,系统能观.3-2 时不变系统:311113111111x x u y x ∙-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭⎛⎫= ⎪-⎝⎭试用两种方法判别其能控性与能观性。
自动控制原理课后答案第三章
环传递函数, 已知单位反馈系统的开 环传递函数, 的稳定性. 试用劳思判据判断系统 的稳定性. 50 ; G(s) = s(s + 1)(s + 5)
若要求右半s 若要求右半s平面闭环 极点数,则列Routh表 极点数,则列Routh表 : Routh 1 5 s3 6 50 s2 6 × 5 − 1× 50 1 <0 0 s 6 0 s 50 首列元素反号两次, 首列元素反号两次, 故 右半s 右半s平面闭环极点数 为2.
第三章重点
进行时域分析的基本方法:重点是二阶系统的时域响应、 进行时域分析的基本方法:重点是二阶系统的时域响应、劳斯稳定判据 及稳态误差分析。 及稳态误差分析。 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、反馈 校正等。 校正等。 Routh判据的应用;建立系统稳定(绝对稳定和相对稳定)的概念;稳 判据的应用; 判据的应用 建立系统稳定(绝对稳定和相对稳定)的概念; 定和闭环极点的关系 二阶系统的典型输入及性能指标; )(3-27)( )(3-28) 二阶系统的典型输入及性能指标;式(3-26)( )( )( ) )(3-31)和(3-32)为参数与指标间的数学描述 (3-30)( )( ) ) 高阶系统重点建立主导极点概念, 高阶系统重点建立主导极点概念,非主导极点及开环小时间常数影响 根据稳态误差定义推导出稳态误差与系统结构参数以及输入信号形式大 小的关系,引出静态误差系数。( 。(0、 、 型系统 型系统? 小的关系,引出静态误差系数。( 、I、II型系统?)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
12 24 16 48
32 48 0 12S2+48=0 S2+4=0 S1,2=±2j 两个纯虚根
10 2s 1) ( s 2 ( s 2 6s 100 )
K p lim G ( s)
s 0
Kv
K a lim s 2 G ( s) 0.1
s 0
2 2 2 ess 20 1 K p Kv Ka
3-16已知单位反馈系统的开环传递函数如各题所示,求Kp、 Kv、Ka
2 2
3-16已知单位反馈系统的开环传递函数如各题所示,求Kp、 Kv、Ka
(3) G ( s)
10 2s 1)( 4s 1) ( s 2 ( s 2 2s 10)
10 2s 1)( 4s 1) ( K p lim G ( s) lim 2 2 s 0 s 0 s ( s 2 s 10 ) 10 2s 1)( 4s 1) ( K v lim sG ( s) lim s 2 2 s 0 s 0 s ( s 2s 10) 10 2s 1)( 4s 1) ( K a lim s G ( s) lim s 2 2 1 s 0 s 0 s ( s 2s 10)
R(s)
-
-
K1
25 s ( s 0.8)
C(s)
Kt s
25 25 K 1 s ( s 0.8) G ( s) 2 25 K 1 K t s s (0.8 25 K 1 K t ) s 1 s ( s 0.8) K1
解:
n 5 K1 6 K1 1.44
3-15已知单位反馈系统的开环传递函数如各题所示,求输 入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。 (3) G( s) 特征方程:1+G(s)=0 s4+6s3+100s2+20s+10=0 S4 1 100 10 解: K v lim sG ( s ) s 0 S3 6 20 第1列系数均 2 r (t ) 2t ess 0 S2 96.7 10 为正,系统 Kv 稳定 S1 19.4 r (t ) 2 2t t 2 S0 10
0.8 25 K1 K t 2 n 2 1 6 12 12 - 0.8 11.2 Kt 0.31 25 1.44 36
3-9 系统如图所示,要求: R(s)
1s
-
-
10 s ( s 1)
C(s)
2s
(1)取τ1=0, τ2=0.1,计算测速反馈系统的超调量、 调节时间和速度误差。 (2)取τ1=0.1, τ2=0,计算比例微分校正系统的超调 量、调节时间和速度误差。 10 10 2 解(1)开环传递函数 G ( s) 2 s (1 10 2 ) s s 2s n 10 3.162 3.5 2 1 0.316 % 35.1% t s n 3.5s 2 n 3.162 1 10 ess 0.2 K p lim sG(s) 5 Kv s 0 2
特征方程:
s 4 3s 3 4s 2 (2 K ) s 2 K 0
s 3s 4s (2 K ) s 2 K 0
4 3 2
劳斯列表: S4 1 4 2K
S3
3
2+k
2K
S2 (10-K)/3 S1 (20-10K-K2)/(10-K) S0 2K
欲使系统稳定,劳斯列表的第一列系数必须大于零 10-K>0 K<10
2 r (t ) 2t ess Kv r (t ) 2 2t t 2
K p lim G ( s) 20
s 0
S1 1.5 S0 105
系统稳定
Kv 0
K a lim s 2 G ( s ) 0
s 0
2 2 2 ess 1 K p Kv Ka
(20-10K-K2)/(10-K)>0
K>0 0<K<1.708
-11.78<10<1.708
K>0
3-15已知单位反馈系统的开环传递函数如各题所示,求输 入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。 100 特征方程:1+G(s)=0 (1)G ( s) (0.1s 1)( s 5) 0.1s2+1.5s+105=0 解: K v lim sG ( s ) 0 s 0 S2 0.1 105
S1 €
S0 48
(2)s6+4s5-4s4+4s3-7s2-8s+10=0
劳斯列表
S6 S5 S4 1 4 -5 -4 4 -5 -7 -8 10 -5s4-5s2+10=0 -20s3-10s=0 第1列符号变化2次,有两个右根。 系统不稳定 10
S3 -20 -10 S2 -2.5 S1 -90 S0 10 10
(2) G ( s )
K s ( s 2 4s 200 )
K K p lim G ( s) lim s 0 s 0 s ( s 2 4 s 200 ) K K K v lim sG ( s) lim s 2 s 0 s 0 s( s 4s 200 ) 200 K K a lim s G ( s) lim s 0 2 s 0 s 0 s ( s 4s 200 )
2 2
3-6 已知控制系统的阶跃响应为:
h(t ) 1 0.2e
60t
1.2e
10t
试确定系统的阻尼比ξ和自然频率ωn 解:对h(t)求导,得系统的单位脉冲响应为:
y(t ) h’ t ) 12e 60t 12e 10t 12 e 10t - e 60t) ( (
R(s)
1s
-
-
10 s ( s 1)
C(s)
2s
10(1 1 s ) 10(1 0.1s ) (2)开环传递函数 G ( s) s ( s 1) s ( s 1) s 10 ( s) 2 s 2s 10 2 系统存在一个 0.316 n 10 3.162 零点Z=-10 2 n
S4+s2-2=0 (s2+2)(s2-1)=0 s1,2=±1.414j s3,4=±1 ∴1对虚根s1,2=±1.732j
(3) s5+3s4+12s3+20s2+35s+25=0
劳斯列表
S5 S4 1 3 12 20 80/3 25 35 25 5s2+25=0
10s=0 第1列符号无变化,系统无右根 5s2+25=0