2018年江西省南昌市中考数学试卷(含答案)

合集下载

2018年江西省中考数学试题含答案解析

2018年江西省中考数学试题含答案解析

. 【解析】 本题考察分式有意义的条件,当分母不为 0 时,分式有意义,所以������ ‒ 1 ≠ 0. 【答案】 ������ ≠ 1 ★ 8.2018 年 5 月 13 日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过 6 万吨,将数 60000 用科学记数法表示应 为 . ������ 【解析】 本题考察科学记数法,把 60000 写成������ × 10 的形式,注意1 ≤ ������<10 4 【答案】 6 × 10 ★ 9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金 十 两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛 5 头,羊 2 头,共值金 10 两,
江西省 2018 中考数学试题卷解析
乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 (乒 4乒 )
5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3 个 B. 4 个 C. 5 个 D. 无数个 【解析】
G D F
10.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转 得到矩形AEFG,点B的对应点E落在CD上,且DE = EF,则 AB 的长为 . 【解析】 【答案】 本题考察矩形的性质和旋转的对应线段,利用勾股定理 计算AB的长.DE = EF = BC = AD=3, ∠D=90°,所以 AB = 3 2 ★★
AB = AE = 3 2
A
E B C 乒 乒 10乒 乒
2 2 11.一元二次方程������ ‒ 4������ + 2 = 0的两根为������1,������2 ,则������1 ‒ 4������1 + 2������1������2的值为

最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

江西省2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ . 三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A 'x处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F . (1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后ABCDFA 'B 'EB A告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.1228 ⎪⎝⎭,于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.030.29 (4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.96644-+==,≈,≈.)江西省南昌市2018年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C图1图2B (E A (F D图3H DACB图4二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +-11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得直线2BD 的解析式为1y x =--. ······································································ 6分 ③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:ABabBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;A B CD F A 'B ' E ABCDFA 'B 'E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.1112224AOC S AC OF ∴==⨯=△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分34AOC AOC S S S π∴=-=-△阴影扇形. ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分BA23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.····································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.···························································· 8分 (3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分 A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上.····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 B (EA (FD14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12= ···················································································· 7分解得1x =14x y ∴==-. ················································································· 8分 (3)α0 153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DB。

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)D15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B 固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2√3,BE=2√19,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为yn ;其顶点为An…(n为正整数)求AnAn+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

江西省2018年中考数学试题(含解析)

江西省2018年中考数学试题(含解析)

江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。

2.请将答案写在答题卡上,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★第3题(第4题)乒乓球径毛球足球篮球5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲 线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10 【答案】6×104★9.中国的《九章算术》是世界现代数学的两大泉之一,其中有一问题:“今有牛五,羊二,值金十 两。

江西省中考数学试卷(含答案解析版)

江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。

每小题只有一个正确选项) 1.(3.00分)(2018•江西)﹣2的绝对值是( )A .﹣2B .2C .﹣12D .122.(3.00分)(2018•江西)计算(﹣a )2•ba的结果为( )A .bB .﹣bC .abD .ba3.(3.00分)(2018•江西)如图所示的几何体的左视图为( )A .B .C .D .4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=3x的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式1x−1有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A 逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥x−22+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B 固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2√3,BE=2√19,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。

每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

江西省中考数学试题含答案解析

江西省中考数学试题含答案解析

A
D
B
C
(乒 5乒 )
本题考察图形变换,平移的方向只有 5 个,向上,下,右,右上 45°,右下 45°方向,
否则两个图形不轴对称. 【答案】 C ★★ 6.在平面直角坐标系中,分别过点A(m,0),B(m﹢2, 0)作������轴的垂线������1和������2 ,探究直线������1和������2与双曲 3 ������ = ������ 的关系,下列结论中错误的是 线 A.两直线中总有一条与双曲线相交 B.当������=1 时,两条直线与双曲线的交点到原点的距离相等 C.当 ‒ 2﹤������﹤0 时,两条直线与双曲线的交点在������轴两侧 D.当两直线与双曲线都有交点时,这两交点的最短距离是 2 【解析】 本题考察直线与双曲线的关系,当������=0 时,������2与双曲线有交点,当������=-2 时,������1与双曲线 有交点,当������ ≠ 0,������ ≠ ﹣2时,������1与������2和双曲线都有交点,所以A正确;当������ = 1时, 两交点分别是(1,3),(3,1),到原点的距离都是 10,所以B正确;当 ‒ 2﹤������﹤0 时, ������1在������轴 3 3 ������, 和(������ + 2, ������ ������ ������ + 2),两交点 的左侧, 2在������轴的右侧,所以������正确;两交点分别是

A. ‒ 2 【解析】 【答案】 B.2 C.
1 2
1 D. 2
本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. B★ ������ ������2 的结果为 B. - ������ C. ������������ ������ D. ������

2018年江西省南昌市中考数学试卷-(word整理版)

2018年江西省南昌市中考数学试卷-(word整理版)

2018年江西省南昌市中考数学试卷-(word整理版)一、选择题(共6小题,每小题3分,共18分)1.2018的相反数的倒数是()A.−12018B.﹣2018 C.12018D.−√20182.下列式子中与(﹣a)2计算结果相同的是()A.(a2)﹣1B.a2a﹣4C.a﹣2÷a4D.a4(﹣a)﹣23.某车间5月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,1.则在这10天中该车间生产零件的次品数的()A.众数是3 B.中位数是1.5 C.平均数是2 D.以上都不正确4.函数y=﹣kx+k与y=﹣(k≠0)在同一坐标系中的图象可能是图中的()A.B.C.D.5.如图是某几何体的三视图,则该几何体是()A.正方体B.圆锥体C.圆柱体D.球体6.已知两条抛物线P和Q的解析式分别是关于y与x的关系式:P:y=x2﹣2mx﹣m2与Q:y=x2﹣2mx ﹣(m2+1).对上述抛物线说法正确的序号是()①两条抛物线与y轴的交点一定不在x轴的上方;②在抛物线P、Q中,可以将其中一条抛物线经过向上或向下平移得到另一条抛物线;③在抛物线P、Q中,可以将其中一条抛物线经过向左或向右平移得到另一条抛物线;④两条抛物线的顶点之间的距离为1.A.①②B.①③④C.①②④D.①②③④二、填空题(共8小题,每小题3分,共24分)7.分解因式:4x2﹣36=.8.如图,△ABC中,∠B=50°,AB=BC,DE是中位线,则∠ADE=.9.如图,点O在∠APB的平分线上,⊙O与PA相切于点C,PO与⊙O相交点D,PO=2,若D为PO的中点,则阴影部分的面积为.10.足球比赛中胜场积3分,平场积1分,负场积0分.中天队第12轮比赛战罢,输了3场,共积19分,若设其胜了x场,平了y场,可列方程组:.11.圆铁环内直径为3cm,外直径为5cm,将这样的圆铁环一个接一个地环套环连成一条锁链(如图)(1)4个环连成的锁链拉直后的最长长度是cm;(2)n个环连成的锁链拉直后的最大长度是cm.12.写出一个二次项系数为2,一根比1大,另一根比1小的一元二次方程:.13.如图,▱ABCD中,∠A=50°AD⊥BD,沿直线DE将△ADE翻折,使点A落在点A′处,AE交BD于F,则∠DEF=.14.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(共4小题,每小题6分,共24分)15.先化简,再求值:,其中a=.16.尺规作图,已知半圆如图,请以直径为底,半径为腰上的高作等腰三角形(不写作法,保留痕迹).17.小明从家赶往考点,可以步行或者骑车,步行路程1500米,骑车路程是步行路程的1.2倍;若骑车速度是步行速度的3倍,且骑车所用时间比步行节约15分钟.求小明步行的速度.18.为做中考前心理调整,学生可观看教育专家的专题DVD光碟.现有两个专家甲乙的四块光碟(光碟分上下篇,分别是甲上篇记作A,甲下篇记作a,乙上篇记作B,乙下篇记作b)散乱放在一起.(1)若光碟表面只标注上下篇,那么从上篇中取一块,再从下篇中取一块,求恰好属于同一个专家光碟的概率.(2)若光碟未作任何标注,从四块光碟中随机取两块,求恰好属于同一专家光碟的概率.四、解答题(共3小题,每小题8分,共24分)19.平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.(1)求菱形ABCD的边长;(2)求双曲线的解析式.20.为了解某县九年级学生中考体育成绩,现从中随机抽取部分学生的体育成绩进行分段(E:0≤x<13;D:13≤x<19;C:19≤x<24;B:24≤x<30;A:30分》)分析统计如下:分数段人数(人)频率A 48 0.20B a 0.25C 84 0.35D 36 bE 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的中考体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的成绩应在分数段内;(填写相应分数段的字母即可)(3)若把体育中考成绩在24分以上定为优秀,那么该县今年3000名九年级学生中,中考体育成绩为优秀的学生人数约有多少名?21.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.五、解答题(共2小题,每小题9分,共18分)22.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)23.如图甲,平面直角坐标系中,边长为2的正方形ABCD顶点A与原点重合,边AB、AD落在坐标轴上,在正方形内有AE=2,过点E作直线MN⊥AE交BC、CD分别于M、N,连接AM、AN.(1)直接写出:∠MAN=°△MCN的周长=.(2)若线段AE=2在正方形外(只考虑第三象限),请在图乙中作出相应的图形,探索线段BM、MN、DN三者之间的关系并给出证明.(3)在图甲中,设BM=x,求△MCN的面积S与x之间的函数关系.六、解答题(本题12分)24.如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线c2的解析式;设c2交x轴于点D 和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式.2018年江西省南昌市中考数学试卷答案1.A.2.D.3.B.4.B.5.C.6.C.7.4(x+3)(x﹣3).8.115°.9.﹣π.10..11.14;(3n+2).12.2x2﹣4x=0.13.65°.14.(0,),(2,0),(,0).15.解:原式=(﹣)÷a=×=,当a=+1时,原式===.16.解:如图,分别以A、B为圆心,半径长为半径画弧,交圆弧于M、N,连接AN、BM,交点为C,则△ABC 为所求的三角形.17.解:设小明步行的速度为x米/分,骑车的速度为3x米/分,由题意得,=+15,解得:x=60,经检验,x=60是原分式方程的解,且符合题意.答:小明步行的速度为60米/分.18.解:(1)∵可能的结果有:Aa,Ab,Ba,Bb,恰好属于同一个专家光碟的有:Aa,Bb,∴恰好属于同一个专家光碟的概率为:;(2)画树状图得:∵共有12种等可能的结果,恰好属于同一专家光碟的有4种情况,∴恰好属于同一专家光碟的概率为:=.19.解:(1)设菱形的边长为x,则BC=AB=x,BE=10﹣2﹣x,∵点C(10,4),∴CE=4,在Rt△BEC中,由勾股定理可得:BC2=BE2+CE2,即x2=(10﹣2﹣x)2+42,解得:x=5,∴菱形ABCD的边长为5;(2)设双曲线的解析式为y=,过点D作DF⊥AB于点F,∵DC∥AB,点C(10,4),∴DF=4,∵AB=5,∴OF=OE﹣EF=10﹣5=5,∴点D(5,4),∴k=20,∴.20.解:(1)随机抽取部分学生的总人数为:48÷0.2=240(人),则a=240×0.25=60(人),b=36÷240=0.15,如图所示:故答案为:60,0.15;(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;故答案为:C;(3)根据题意得:3000×(0.2+0.25)=1350(人),答:中考体育成绩为优秀的学生人数约有1350名.21.解:(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.22.解:如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,∴∠Q=∠EDF,在Rt△EDF中,cos∠EDF===0.8,sin∠EDF==0.6,∵△MNH∽△DQE,∴∠MNH=∠Q,在Rt△MNH中,∵cos∠MNH==0.8,sin∠MNH==0.6,∴NH=0.8×1.8=1.44,MH=0.6×1.8=1.08,在Rt△ANH中,∵tan∠ANH=tan21.8°=,∴AH=1.44×0.4=0.576,∴MA=MH﹣AH=1.08﹣0.576=0.504(m).答:符合安装要求的支架MA的长度为0.504米.23.解:(1)∠MAN=45°,△MCN的周长=4;(2)如图,。

2018年江西省中考数学试题含答案解析

2018年江西省中考数学试题含答案解析
江西省 2018 中考数学试题卷解析
乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 (乒 4乒 )
5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3 个 B. 4 个 C. 5 个 D. 无数个 【解析】
机密★2018 年 6 月 19 日
江西省 2018 年中等学校招生考试 数学试题卷 【解析】
说明:1.全卷满分 120 分,考试时间 120 分钟。 2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分.每小题只有一个正确选项) 1. ﹣2 的绝对值是
( )
������,
3 3 和(������ + 2, ������ ������ + 2),两交点
意是错误的选项. D ★★★
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 1 7.若分式 ������ ‒ 1 有意义,则������的取值范围是
. 【解析】 本题考察分式有意义的条件,当分母不为 0 时,分式有意义,所以������ ‒ 1 ≠ 0. 【答案】 ������ ≠ 1 ★ 8.2018 年 5 月 13 日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过 6 万吨,将数 60000 用科学记数法表示应 为 . ������ 【解析】 本题考察科学记数法,把 60000 写成������ × 10 的形式,注意1 ≤ ������<10 4 【答案】 6 × 10 ★ 9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金 十 两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛 5 头,羊 2 头,共值金 10 两,

j江西2018年中考数学试题及答案

j江西2018年中考数学试题及答案

j江西2018年中考数学试题及答案江西2018年中考数学试题及答案2018年江西省中考数学试题已经公布,以下是部分试题及答案供参考。

一、选择题1. 已知直线AB与x轴的交点为(4, 0),斜率为2/3,下列哪个方程是线段AB的方程?A. y = 2/3xB. y = 2/3x + 4C. y = -2/3x + 4D. y = -2/3x答案:C2. 已知函数y = ax^2 + 2x + 1的图象过点(1, 5),则a的值为多少?A. 2B. 3C. 4D. 5答案:B二、填空题1. 一辆车每小时行驶80公里,行驶4小时共行驶多少公里?答案:320公里2. 若2(x + 3) + 4 = 5(3x - 1),则x的值为多少?答案:4三、解答题1. 计算12+22+32+...+102的值。

解答:首先列出每一项的平方:12=1,22=4,32=9,...,102=100。

将这些数相加:1+4+9+...+100=385。

2. 某商品原价是200元,根据商家的促销活动,价格打折后按照9折出售,打完折后还可以使用一个额外优惠券,再减去80元。

请问最终买家需要支付多少钱?解答:首先将原价打9折,得到9/10*200=180元。

然后减去优惠券的金额,180-80=100元。

最终买家需要支付100元。

四、应用题某公司一共有120名员工,其中男性和女性人数之比为3:5。

如果增加了20名男性员工和30名女性员工后,男性和女性人数之比变为4:7,求原先的男性人数和女性人数各为多少?解答:设原先男性人数为3x,女性人数为5x。

根据题意,有3x+20/(5x+30)=4/7。

通过解方程可得x=10,代入可知原先男性人数为3x=30,女性人数为5x=50。

以上是2018年江西省中考数学试题的部分内容及答案,希望能对你有所帮助。

2018年江西省南昌市中考数学试卷001 精品

2018年江西省南昌市中考数学试卷001 精品

2018年江西省南昌市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1、(2018•江西)计算﹣2﹣6的结果是()A、﹣8B、8C、﹣4D、42、(2018•江西)计算﹣(﹣3a)2的结果是()A、﹣6a2B、﹣9a2C、6a2D、9a23、(2018•南昌)某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A、该学生捐赠款为0.6a元B、捐赠款所对应的圆心角为240°C、捐赠款是购书款的2倍D、其他消费占10%4、(2018•江西)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A、B、C、D、5、(2018•江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是()A、8B、7C、4D、36、(2018•南昌)下列图案中既是轴对称图形又是中心对称图形的是()A、B、C、D、7、(2018•江西)不等式组错误!未找到引用源。

的解集是()A、x>﹣3B、x>3C、﹣3<x<3D、无解8、(2018•江西)如图,反比例函数错误!未找到引用源。

图象的对称轴的条数是()A、0B、1C、2D、39、(2018•江西)化简错误!未找到引用源。

的结果是()A、3B、﹣3C、错误!未找到引用源。

D、﹣错误!未找到引用源。

10、(2018•江西)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A、5B、3C、2D、111、(2018•南昌)如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系式中,正确的是()A、θ=α+βB、θ=2α+2βC、θ+α+β=180°D、θ+α+β=360°12、(2018•南昌)某人从某处出发,匀速前进一段时间后,由于有急事,接着更快地,匀速地沿原路返回到原处,这一情境中,速度V与时间t的函数图象(不考虑图象端点情况)大致为()A、B、C、D、二、填空题(共8小题,每小题3分,满分24分)13、(2018•嘉兴)分解因式:2x2﹣8=_________.14、(2018•江西)按照下面所示的操作步骤,若输入x的值为﹣2,则输出的值为_________.15、(2018•江西)(两题任选其一作答)﹙Ⅰ﹚如图,从点C测得树的顶端的仰角为33°,BC=20米,则树高AB≈_________米﹙用计算器计算,结果精确到0.1米﹚(Ⅱ)计算:sin30°•cos30°﹣tan30°=_________.﹙结果保留根号﹚.16、(2018•江西)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=_________度.17、(2018•江西)如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为_________.18、(2018•江西)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:_________.19、(2018•江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为_________.20、(2018•江西)如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小、其中,正确结论的序号是_________.﹙多填或错填的得0分,少填的酌情给分﹚.三、解答题(共10小题,满分60分)21、(2018•南昌)化简:(1﹣3a)2﹣3(1﹣3a)22、(2018•江西)已知直线经过点﹙1,2﹚和点﹙3,0﹚,求这条直线的解析式.23、(2018•江西)解方程:错误!未找到引用源。

江西省南昌市2018年中考数学试题(解析)

江西省南昌市2018年中考数学试题(解析)

2018年江西省南昌市中考数学试卷一.选择题<共12小题)1.<2018江西)﹣1的绝对值是< )A. 1 B.0 C.﹣1 D.±1考点:绝对值。

分析:根据绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.xxM0whI3Ex2.<2018南昌)在下列表述中,不能表示代数式“4a”的意义的是< )A.4的a倍B.a的4倍C.4个a相加D.4个a相乘考点:代数式。

分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.xxM0whI3Ex解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.xxM0whI3Ex3.<2018江西)等腰三角形的顶角为80°,则它的底角是< )A.20°B.50°C.60°D.80°考点:等腰三角形的性质。

分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=<180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.<2018江西)下列运算正确的是< )A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3a3=2a3 D.<﹣2a2)3=﹣8a6xxM0whI3Ex考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

2018年江西省中考数学试题含答案解析(Word版)

2018年江西省中考数学试题含答案解析(Word版)

机密★2018年6月19日江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。

2.请将答案写在答题卡上,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. ﹣2的绝对值是 A.B. C.D.【解析】 本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★ 2.计算的结果为A. B. C. D.【解析】 本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A ★3.如图所示的几何体的左视图为第3题A B C D 【解析】 本题考察三视图,容易,但注意错误的选项B 和C. 【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是(第4题)乒乓球径毛球足球篮球A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】 本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3个 B. 4个 C. 5个 D. 无数个【解析】 本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当 时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】 本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当 时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距(第5题)离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两。

2018年江西省南昌市中考数学试卷含答案

2018年江西省南昌市中考数学试卷含答案
分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可 以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两 个数的平均数)为中位数
解答:解:将这组数据从小到大的顺序排列 23,25,25,28,28,28,31, 在这一组数据中 28 是出现次数最多的,故众数是 28℃. 处于中间位置的那个数是 28,那么由中位数的定义可知,这组数据的中位数是 28℃; 故选 B.
点评:本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟
练掌握运算法则是解题的关键.
5.(3 分)(2018•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯 罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )
A.
B.
C.
D.
=2a2﹣1
﹣1
考点:整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式. 菁优网版 权所有
分析:A.根据合并同类项法则判断; B.根据积的乘方法则判断即可; C.根据平方差公式计算并判断; D.根据多项式除以单项式判断.
解答:解:A.a2 与 a3 不能合并,故本项错误; B.(﹣2a2)3=﹣8a6,故本项错误; C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误; D.(2a3﹣a2)÷a2=2a﹣1,本项正确, 故选:D.
可得:
∵C 点位于数轴最左侧, ∴C 选项数字最小. 故选:C. 点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.
2.(3 分)(2018•南昌)据相关报道,截止到今年四月,我国已完成 5.78 万个农村教学点的建设任务.5.78 万
可用科学记数法表示为( )

中考数学试题-2018年江西省南昌市初中毕业暨中等学校招生考试数学试卷及答案 最新

中考数学试题-2018年江西省南昌市初中毕业暨中等学校招生考试数学试卷及答案 最新

机密★2018年6月19日江西省南昌市2018年初中毕业暨中等学校招生考试数学试卷说明:本卷共有五个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算2008(1)-的结果为( ) A .2008B .2008-C .1D .1-2.下列各式中,与2(1)a -相等的是( ) A .21a -B .221a a -+C .221a a --D .21a +3.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手 B .冠军属于外国选手 C .冠军属于中国选手甲 D .冠军属于中国选手乙 4.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.下列图案中是轴对称图形的是( )A. B. C. D.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )7.下列三角形纸片,能沿直线剪一刀得到等腰梯形的是( )2018年北京 2018年雅典 1988年汉城 1980年莫斯科左面 (第6题)A .B .C.D.8.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与② B .②与③ C .③与④ D .①与④ 二、填空题(本大题共8小题,每小题3分,共24分)9.在“W e l i k e m a t h s .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).10.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .11.如图,AB 是O 的直径,点C D ,是圆上两点, 100AOC ∠=,则D ∠= 度.12.方程212xx =-的解是 . 13.相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 .14.在ABC △中,6AB =,8AC =,在DEF △中,4DE =,3DF =,要使ABC △与DEF △相似,需添加的一个条件是 (写出一种情况即可). 15.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .16.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 三、(本大题共4小题,每小题6分,共24分) 17.计算:0(2007)132sin 60-+--°.ABFE O(第16题)yxO 1 3(第15题)50 70A .50 80B . 50100C .50 D .A OBDC (第11题)18.化简:24214a a a+⎛⎫+⎪-⎝⎭·.19.下面三张卡片上分别写有一个等式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?20.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?证明你的结论.四、(本大题共3小题,每小题8分,共24分)21.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.22.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,3.27.07.888.49.812 3 分数人数x1x - 2AD BCFE设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?23.2018年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李用8000元做为预订下表中比赛项目门票的资金. (1)若全部资金用来预订男篮门票和乒乓球门票共10张,问男篮门票和乒乓球门票各订多少张?(2)小李想用全部资金预订男篮、足球和乒乓球三种门票共10张,他的想法能实现吗?请说明理由.比赛项目 票价(元/场)男篮 1000 足球 800 乒乓球500五、(本大题共2小题,每小题12分,共24分)24.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,(04)F -,.(1)画出ABC △的外接圆P ,并指出点D 与P 的位置关系;(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与P 的位置关系,并说明理由;②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与P 的劣弧..CD 围成的图形的面积(结果保留π).25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写xy654321------ 123456------ 123 321O A E DBC出图1,2,3中的顶点C 的坐标,它们分别是 , , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)Hc ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.y C ()A(40)D ,(12)B , O x图1y C()A(0)D e ,()B c d ,O x图2y C ()A a b ,()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图4江西省南昌市2018年初中毕暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分)1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.D 二、填空题(本大题共8小题,每小题3分,共24分) 9.0.18; 10.12; 11.40; 12.2-; 13.答案不惟一,如5; 14.2BCEF=(或A D ∠=∠); 15.11x =-,23x =; 16.如图:三、(本大题共4小题,每小题6分,共24分) 17.解:原式31(31)22=+--⨯································································· 3分 1313=+-- ········································································· 4分 0= ··························································································· 6分18.解:原式22442(4)a a a a-++=-······································································· 2分 22(2)(2)a a a a a+=+-······························································· 4分 2aa =- ······················································································ 7分 19.解:树形图:第一张卡片上的整式 x 1x - 2(第16题) A OE B F第二张卡片上的整式 1x - 2 x 2 x 1x - 所有可能出现的结果1x x - 2x 1x x - 12x - 2x21x - ··················································································································· 4分也可用表格表示: 第一张卡片 上的整式 第二张卡片上的整式x1x - 2x1x x - 2x 1x - 1x x -12x - 22x21x -··················································································································· 4分 所以P (能组成分式)4263==. ····································································· 6分 20.解:AB CF ∥.证明:在ABC △和CFE △中,由DE FE AED CEF AE CE =∠=∠=,,, 得ADE CFE △≌△. ··················································································· 4分 所以A FCE ∠=∠. ······················································································· 5分 故AB CF ∥. ······························································································ 6分 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; ········ 1分 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=; ············································· 2分 方案3最后得分:8; ····················································································· 3分 方案4最后得分:8或8.4. ············································································· 4分(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案. ···························································· 6分 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案. ········································································ 8分 (说明:少答一个方案扣2分,多答一个方案扣1分)22.解:(1)DE BC ∥,ADE ABC ∴△∽△. AD AEAB AC∴=. ······························································································ 1分 又82AD x =- ,8AB =,AE y =,6AC =,8286x y-∴=. 362y x ∴=-+. ··························································································· 3分自变量x 的取值范围为04x ≤≤. ··································································· 4分(2)11326222S BD AE x x ⎛⎫==-+ ⎪⎝⎭22336(2)622x x x =-+=--+. ····································································· 6分∴当2x =时,S 有最大值,且最大值为6. ······················································· 8分 (或用顶点公式求最大值)23.解:(1)设订男篮门票x 张,乒乓球门票y 张. 由题意,得1000500800010x y x y +=⎧⎨+=⎩,., ································································ 3分解得64.x y =⎧⎨=⎩,答:小李可以订男篮门票6张,乒乓球门票4张. ················································· 4分 (2)能,理由如下: ······················································································ 5分 设小李订男篮门票x 张,足球门门票y 张,则乒乓球门票为(10)x y --张.由题意,得1000800500(10)8000x y x y ++--=. ··········································· 7分 整理得5330x y +=,3053xy -=. x y ,均为正整数,∴当3x =时,5y =,102x y ∴--=.∴小李可以预订男篮门票3张,足球门票5张和乒乓球门票2张.∴小李的想法能实现. ···················································································· 8分 五、(本大题共2小题,每小题12分,共24分)24.解:(1)所画P 如图所示,由图可知P 的半径为5,而5PD =. ∴点D 在P 上. ···························································· 3分 (2)① 直线EF 向上平移1个单位经过点D ,且经过点(03)G -,, ∴2221310PG =+=,25PD =,25DG =.222PG PD DG ∴=+.则90PDC ∠=,1PD l ∴⊥.∴直线1l 与P 相切.(另法参照评分) ··························································································· 7分 ② 5PC PD ==,10CD =,222PC PD CD ∴+=.90CPD ∴∠= .xy 2l1lACPB D EFG 654321------ 123456------ 1233212(5)π5π44S ∴==扇形,215(5)22PCD S ==△.∴直线2l 与劣弧CD 围成的图形的面积为5π542-.………………………………………12分 25.解:(1)(52),,()e c d +,,()c e a d +-,. ·············································· 2分 (2)分别过点A B C D ,,,作x 轴的垂线,垂足分别为1111A B C D ,,,, 分别过A D ,作1AE BB ⊥于E ,1DF CC ⊥于点F . 在平行四边形ABCD 中,CD BA =,又11BB CC ∥,180EBA ABC BCF ABC BCF FCD ∴∠+∠+∠=∠+∠+∠= . EBA FCD ∴∠=∠.又90BEA CFD ∠=∠=,BEA CFD ∴△≌△. ····················································································· 5分 AE DF a c ∴==-,BE CF d b ==-.设()C x y ,.由e x a c -=-,得x e c a =+-.由y f d b -=-,得y f d b =+-.()C e c a f d b ∴+-+-,. ···························· 7分 (此问解法多种,可参照评分)(3)m a c e +=+,n b d f +=+或m c e a =+-,n d f b =+-. ····················· 9分 (4)若GS 为平行四边形的对角线,由(3)可得1(27)P c c -,.要使1P 在抛物线上, 则有274(53)(2)c c c c c =--⨯--,即20c c -=.10c ∴=(舍去),21c =.此时1(27)P -,. ······················································· 10分 若SH 为平行四边形的对角线,由(3)可得2(32)P cc ,,同理可得1c =,此时2(32)P ,. 若GH 为平行四边形的对角线,由(3)可得(2)c c -,,同理可得1c =,此时3(12)P -,. 综上所述,当1c =时,抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形.符合条件的点有1(27)P -,,2(32)P ,,3(12)P -,. 12分 yC ()A a b ,()D e f ,()B c d ,EF1B 1A1C 1D Ox。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江西省南昌市中考数学试卷参考答案与试卷解读一、选择题<本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.<3分)<2018•南昌)下列四个数中,最小的数是<)A.﹣B.0C.﹣2 D.2分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.2.<3分)<2018•南昌)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为<)A.5.78×103B.57.8×103C.0.578×104D.5.78×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.解答:解:5.78万=57 800=5.78×104.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.<3分)<2018•南昌)某市6月份某周气温<单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是<)A.25、25 B.28、28 C.25、28 D.28、31考点:众数;中位数.分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数<或两个数的平均数)为中位数解答:解:将这组数据从小到大的顺序排列23,25,25,28,28,28,31,在这一组数据中28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28℃;故选B.点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.<3分)<2018•南昌)下列运算正确的是<)A.a2+a3=a5B.<﹣2a2)3=﹣6a6C.<2a+1)<2a﹣1)D.<2a3﹣a2)÷a2=2a=2a2﹣1 ﹣1 考点:整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.分析:A.根据合并同类项法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据多项式除以单项式判断.解答:解:A.a2与a3不能合并,故本项错误;B.<﹣2a2)3=﹣8a6,故本项错误;C.<2a+1)<2a﹣1)=4a2﹣1,故本项错误;D.<2a3﹣a2)÷a2=2a﹣1,本项正确,故选:D.点评:本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键.5.<3分)<2018•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是<)A.B.C.D.考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是A选项中所示的图形.故选:A.点评:本题考查了简单组合体的三视图,压扁是主视图是解题关键.6.<3分)<2018•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y元,根据题意列方程组正确的是<)A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.解答:解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.点此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找评:出等量关系,列出方程组.7.<3分)<2018•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是<)A.A B=DE B.∠B=∠E C.E F=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,<1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;<2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;<3)EF=BC,无法证明△ABC≌△DEF<ASS);故C选项正确;<4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.8.<3分)<2018•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为<)A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.9.<3分)<2018•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为<)A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为<α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=<α+β)2﹣2αβ=22﹣2×<﹣3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.<3分)<2018•南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为<)A.4,30°B.2,60°C.1,30°D.3,60°考点:旋转的性质;平移的性质.分析:利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.解答:解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.点评:此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.11.<3分)<2018•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为<)A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:整式的加减;列代数式.专题:几何图形问题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:2<a﹣b+a﹣3b)=2<2a﹣4b)=4a﹣8b,故选B点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12.<3分)<2018•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为<)A.B.C.D.考点:二次函数的图象;反比例函数的图象.分本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方析:向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题<本大题4小题,每小题3分,共12分)13.<3分)<2018•沈阳)计算:=3.考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.14.<3分)<2018•南昌)不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.<3分)<2018•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2<﹣1)×2<﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.16.<3分)<2018•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上<不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.考点:解直角三角形.专题:分类讨论.分析:根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.解答:解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.点评:本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.三、<本大题共4小题,每小题6分,共24分)17.<6分)<2018•南昌)计算:<﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.<6分)<2018•南昌)已知梯形ABCD,请使用无刻度直尺画图.<1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;<2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.考点:作图—应用与设计作图.分<1)求出三角形CD边上的高作图,析:<2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解答:解:设小正方形的边长为1,则S梯形ABCD=<AD+BC)×4=×10×4=20,<1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,<2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.19.<6分)<2018•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.<1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.<请用“树形图法”或“列表法“求解)<2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.考点:列表法与树状图法.专题:计算题.分析:<1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率;<2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.解答:解:<1)列表如下:√×√√<√,√)<×,√)<√,√)×<√,×)<×,×)<√,×)×<√,×)<×,×)<√,×)所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;<2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,则P=;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,则P=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.<6分)<2018•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.<1)求点C的坐标;<2)若点D在反比例函数y=<k>0)的图象上,求反比例函数的解读式.考点:反比例函数与一次函数的交点问题.分析:<1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标;<2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解读式.解答:解:Rt△PBD的斜边PB落在y轴上,∴BD⊥PB,k PD=cot∠BPD=,k BD•k PD=﹣1,k BD=﹣,直线BD的解读式是y=﹣x+3,当y=0时,﹣x+3=0,x=6,C点坐标是<6,0);<2)当x=4时,y=﹣×4+3=1,∴D<4,1).点D在反比例函数y=<k>0)的图象上,∴k=4×1=4,∴反比例函数的解读式为 y=.点评:本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直线BD,再求出点的坐标.四、<本大题共3小题,每小题8分,共24分)21.<8分)<2018•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06<1)求样本容量及表格中a,b,c的值,并补全统计图;<2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;<3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?考点:频数<率)分布直方图;用样本估计总体.分析:<1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c的值;<2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;<3)根据<1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解答:解:<1)由题意可得出:样本容量为:57÷0.38=150<人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:<2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598<人);<3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.点评:此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键.22.<8分)<2018•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.<1)连接CD,EB,猜想它们的位置关系并加以证明;<2)求A,B两点之间的距离<结果取整数,可以使用计算器)<参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:<1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;<2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:<1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.<2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.23.<8分)<2018•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.<1)求△OPC的最大面积;<2)求∠OCP的最大度数;<3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.考点:切线的判定与性质.分析:<1)在△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;观察图形,当OP⊥OC时满足要求;<2)PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;<3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.解答:<1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面积为4.<2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:∵tan∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°.<3)证明:如答图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,∵=,∴=,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD∠C,在△ODB与△BPC中,∴△ODB≌△BPC<SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查了全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解题的关键.五、<本大题共2小题,每小题12分,共24分)24.<12分)<2018•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上<不与点A,B重合),点F在BC边上<不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…<1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长;<2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;<3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.考点:几何变换综合题.分析:<1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;<2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.<3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4.解答:解:<1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF<HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=<4﹣x).∴DE=DF=EF=<4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[<4﹣x]2,解得:x1=8﹣4,x2=8+4<舍去)∴EF=<4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.<2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE<ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x<4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16<0<x<4)∵y=2x2﹣8x+16=2<x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.<3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.点评:本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、正多边形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.25.<12分)<2018•南昌)如图1,抛物线y=ax2+bx+c<a>0)的顶点为M,直线y=m与x 轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.<1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2<a>0)对应的碟宽为;抛物线y=a<x﹣2)2+3<a>0)对应的碟宽为;<2)抛物线y=ax2﹣4ax﹣<a>0)对应的碟宽为6,且在x轴上,求a的值;<3)将抛物线y=a n x2+b n x+c n<a n>0)的对应准蝶形记为F n<n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将<2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.考二次函数综合题.点:分<1)根据定义易算出含具体值的抛物线y=x2,抛物线y=4x2的碟宽,且都利用端析:点<第一象限)横纵坐标的相等.推广至含字母的抛物线y=ax2<a>0),类似.而抛物线y=a<x﹣2)2+3<a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a 有关.<2)根据<1)的结论,根据碟宽易得a的值.<3)①由y1,易推y2.②结合画图,易知h1,h2,h3,…,h n﹣1,h n都在直线x=2上,但证明需要有一般推广,可以考虑h n∥h n﹣1,且都过F n﹣1的碟宽中点,进而可得.另画图时易知碟宽有规律递减,所以推理也可得右端点的特点.对于“F1,F2,…,F n的碟宽右端点是否在一条直线上?”,如果写出所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反正结论成立.求直线方程只需考虑特殊点即可.解解:<1)4;1;;.答:分析如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A<﹣,),B<,),C<0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2<a>0),碟宽为;④抛物线y=a<x﹣2)2+3<a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a<x﹣2)2+3<a>0)的准碟形≌抛物线y=ax2的准碟,∵抛物线y=ax2<a>0),碟宽为,∴抛物线y=a<x﹣2)2+3<a>0),碟宽为.<2)∵y=ax2﹣4ax﹣=a<x﹣2)2﹣<4a+),∴同<1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得 a=,∴y=<x﹣2)2﹣3.<3)①∵F1的碟宽:F2的碟宽=2:1,∴,∵a1=,∴a2=.∵y=<x﹣2)2﹣3的碟宽AB在x轴上<A在B左边),∴A<﹣1,0),B<5,0),∴F2的碟顶坐标为<2,0),∴y2=<x﹣2)2.②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=<)2h n﹣2=<)3h n﹣3=…=<)n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+.另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑F n﹣2,F n﹣1,F n情形,关系如图2,F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行相等于FE,DE平行相等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=•∠GFH=•∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴F n﹣2,F n﹣1,F n的碟宽的右端点是在一条直线,∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=<x﹣2)2﹣3准碟形右端点坐标为<5,0),F2:y2=<x﹣2)2准碟形右端点坐标为<2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.点评:本题考查学生对新知识的学习、理解与应用能力.题目中主要涉及特殊直角三角形,二次函数解读式与图象性质,多点共线证明等知识,综合难度较高,学生清晰理解有一定困难.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档