奇数和偶数相关练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、奇数和偶数

知识点:

1.奇数和偶数

整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。特别注意,因为0能被2整除,所以0是偶数。

2.奇数与偶数的运算性质

性质1:偶数±偶数=偶数,奇数±奇数=偶数。

性质2:偶数±奇数=奇数。

性质3:偶数个奇数相加得偶数。

性质4:奇数个奇数相加得奇数。

性质5:偶数×奇数=偶数,奇数×奇数=奇数。

利用奇数与偶数的这些性质,我们可以巧妙地解决许多实际问题。

1、1+2+3+…+1993的和是奇数?还是偶数?

2、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?

3、元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?

4、已知a、b、c中有一个是5,一个是6,一个是7。求证a-1,b-2,c-3的乘积一定是偶数。

5、任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。

6、桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

7、假设n盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。

8、在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝。求证至少有一珠子被染上过红、蓝两种颜色。

9、某校六年级学生参加区数学竞赛,试题共40道,评分标准是:答对一题给3分,答错一题倒扣1分.某题不答给1分,请说明该校六年级参赛学生得分总和一定是偶数。

10、某学校一年级一班共有25名同学,教室座位恰好排成5行,每行5个座位.把每一个座位的前、后、左、右的座位叫做原座位的邻位.问:让这25个学生都离开原座位坐到原座位的邻位,是否可行?

11、在中国象棋盘任意取定的一个位置上放置着一颗棋子“马”,按中国象棋的走法,当棋盘上没有其他棋子时,这只“马”跳了若干步后回到原处,问:“马”所跳的步数是奇数还是偶数?

12、线段AB有两个端点,一个端点染红色,另一个端点染蓝色.在这个AB线段中间插入n个交点,或染红色,或染蓝色,得到n+1条小线段(不重叠的线段).试证:两个端点不同色的小线段的条数一定是奇数。

13、有100个自然数,它们的和是偶数.在这100个自然数中,奇数的个数比偶数的个数多.问:这些数中至多有多少个偶数?

14、有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?

15、求证:四个连续奇数的和一定是8的倍数。

16、把任意6个整数分别填入右图中的6个小方格内,试说明一定有一个矩形,它的四个角上四个小方格中的四个数之和为偶数。

17、如果两个人通一次电话,每人都记通话一次,在24小时以内,全世界通话次数是奇数的那些人的总数为____。

(A)必为奇数,(B)必为偶数,(C)可能是奇数,也可能是偶数。

18、一次宴会上,客人们相互握手.问握手次数是奇数的那些人的总人数是奇数还是偶数。

19、有12张卡片,其中有3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7。你能否从中选出五张,使它们上面的数字和为20?为什么?

20、有10只杯子全部口朝下放在盘子里.你能否每次翻动4只杯子,经过若干次翻动后将杯子全部翻成口朝上?

21、电影厅每排有19个座位,共23排,要求每一观众都仅和它邻近(即前、后、左、右)一人交换位置.问:这种交换方法是否可行?

第7讲奇偶性(一)

整数按照能不能被2整除,可以分为两类:

(1)能被2整除的自然数叫偶数,例如

0, 2, 4, 6, 8, 10, 12, 14, 16,…

(2)不能被2整除的自然数叫奇数,例如

1,3,5,7,9,11,13,15,17,…

整数由小到大排列,奇、偶数是交替出现的。相邻两个整数大小相差1,所以肯定是一奇一偶。因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n 为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数。

每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。奇偶数有如下一些重要性质:

(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。

(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。任意多个偶数的和(或差)是偶数。

(3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。(4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数。反过来,如果若干个数的积是偶数,那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数都是奇数。

(5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数。奇数肯定不能被偶数整除。

(6)偶数的平方能被4整除;奇数的平方除以4的余数是1。

因为(2n)2=4n2=4×n2,所以(2n)2能被4整除;

因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。

(7)相邻两个自然数的乘积必是偶数,其和必是奇数。

(8)如果一个整数有奇数个约数(包括1和这个数本身),那么这个数一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数。

整数的奇偶性能解决许多与奇偶性有关的问题。有些问题表面看来似乎与奇偶性一点关系也没有,例如染色问题、覆盖问题、棋类问题等,但只要想办法编上号码,成为整数问题,便可利用整数的奇偶性加以解决。

例1下式的和是奇数还是偶数?

1+2+3+4+…+1997+1998。

分析与解:本题当然可以先求出算式的和,再来判断这个和的奇偶性。但如果能不计算,直接分析判断出和的奇偶性,那么解法将更加简洁。根据奇偶数的性质(2),和的奇偶性只与加数中奇数的个数有关,与加数中的偶数无关。1~1998中共有999个奇数,999是奇数,奇数个奇数之和是奇数。所以,本题要求的和是奇数。

例2 能否在下式的□中填上“+”或“-”,使得等式成立?

1□2□3□4□5□6□7□8□9=66。

相关文档
最新文档