全新风、全排风系统热回收方案

合集下载

全热交换新风系统原理

全热交换新风系统原理

全热交换新风系统原理
全热交换新风系统是一种利用热交换技术实现空气净化、温度调节和能量节约的新风系统。

它采用了热交换器,通过对新鲜空气和室内排风进行热量传递,实现了一部分热能的回收和再利用。

该系统的主要原理是利用热交换器将室外新鲜空气与室内排风进行热交换。

当新鲜空气从热交换器的一个通道进入时,它与从另一个通道流过的排风进行接触,通过传热过程,将排风中的热量传递给新鲜空气。

这样,新鲜空气在进入室内之前就已经被预先加热,从而减少了加热的能量需求。

在热交换过程中,还存在着一定的湿度传递。

如果室内空气较湿,经过热交换器后,新鲜空气的湿度将会增加,而室内空气的湿度将会降低。

同样地,如果室内空气较干燥,新鲜空气经过热交换器后的湿度将会降低,而室内空气的湿度将会增加。

因此,全热交换新风系统还能够在一定程度上调节室内的湿度。

除了热交换功能外,全热交换新风系统还可以配备空气过滤装置,用于对新鲜空气进行净化处理。

通过过滤装置,可以有效去除颗粒物、细菌、病毒等悬浮物,提供更加洁净的室内环境。

总的来说,全热交换新风系统通过热交换和湿度传递实现了室内外空气的净化和调节。

它不仅可以提供新鲜的空气,减少室内空气的二氧化碳浓度,还可以节约能源,并且可以适应不同的空气湿度需求。

空调系统排风热回收

空调系统排风热回收

1 绪论随着社会的快速发展,人们生活水平的日益提高,空调在人们生活中得到普遍的应用。

但是这又带来了新的问题:一方面,随着经济的快速发展,能源的短缺日益严重,空调行业作为建筑物的主要的能耗之一,其节能性和经济性已越来越受相关机构和人士的重视;另一方面,伴随人们健康意识的提高,对室内空气品质的要求也越来越高。

如何在满足人们对室内空气品质要求的同时节省空调的投资和运行费用,是很多人都很关心的问题。

使用排风热回收装置,利用排风中的冷热量来对新风进行预处理,就可以在节能的同时增加室内的新风,提高室内空气品质。

这无疑是解决上述问题的一个很好的举措。

1.1 排风热回收装置产生的背景1.1.1 节能与经济的需要随着我国经济的快速发展,人们生活水平的不断提高,对生活环境的舒适度也要求越来越高,空调系统及其设备已经成为人们生活中的一部分,并成为人们舒适生活、正常生产的重要保证。

空调作为建筑物的主要的能耗之一(可高达总能耗的40%),其节能性和经济性已越来越受相关机构和人士的重视。

在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%,在我国也达到20%左右,高级民用建筑的中央空调耗能可以达到建筑总耗能的30%一60%[1]。

而且随着我国住宅业的快速发展及空调普及率的大幅度提高,势必造成空调用电和能耗的迅速增加[2]。

由于空调具有使用时间集中、季节性负荷大的特点,更加重了峰谷电量差距的矛盾,电网负荷率下降,造成电力设施的资源浪费。

因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。

在建筑物的空调负荷中,新风负荷一般要占到空调总负荷的30%甚至更多[3]。

在常规空调中,排风不经过处理直接排至室外,未免造成其中的冷热量能量的浪费,如果能将这一部风能量加以回收利用则可以大大节省能源。

用排风中的余冷余热来预处理新风,不仅可以减少处理新风所需的能量,还可以降低机组负荷,提高空调系统的经济性。

当把空调房间的热量排放到大气中时,既造成城市的热污染,又白白的浪费了能量。

新风系统解决方案

新风系统解决方案

新风系统解决方案新风系统是由风机、进风口、排风口及各种管道和接头组成.安装在吊顶内的风机通过管道与一系列的排风口相连,风机启动,室内受污染的空气经排风口及风机排往室外,使室内形成负压,室外新鲜空气便经安装在窗框上方(窗框与墙体之间)的进风口进入室内,从而使室内人员可呼吸到高品质的新鲜空气.1、采用新风系统的好处1)不用开窗也能享受大自然的新鲜空气;2)避免“空调病”;3)避免室内家具、衣物发霉;4)清除室内装饰后长期缓释的有害气体,利于人体健康;5)调节室内湿度,节省取暖费用;6)有效排除室内各种细菌、病毒.2、新风系统原理新风系统是根据在密闭的室内一侧用专用设备向室内送新风,再从另一侧由专用设备向室外排出,则在室内会形成“新风流动场”的原理,从而满足室内新风换气的需要。

实施方案是:采用高压头、大流量小功率直流高速无刷电机带动离心风机、依靠机械强力由一侧向室内送风,由另一侧用专门设计的排风新风机向室外排出的方式强迫在系统内形成新风流动场。

在送风的同时对进入室内的空气进新风过滤、灭毒、杀菌、增氧、预热(冬天)。

排风经过主机时与新风进行热回收交换,回收大部分能量通过新风送回室内.借用大范围形成洁净空间的方案,保证进入室内的空气是洁净的。

以此达到室内空气净化环境的目的。

3、新风系统的优点a.独立排风管形式——节省了竖井风道占用的室内空间,户间相互影响小。

b.顶部不设排风机,公用竖向排风道形式——易发生回流和泄流现象。

c。

顶部设排风机,公用竖向排风道形式1)每户都在厨房或卫生间设置排风机,排风机出口接公用竖向排风道;2)每户都不设置排风机,厨房和卫生间排风出口接公用竖向排风道.4、新风系统的历史在北欧斯堪的那维亚地区在讲究质量和能源节约的国家里,中央新风系统(VMC)存在至今已有50年历史了。

70年代西班牙90%以上的新建住宅中装用VMC系统。

1989年美国ASHRAE制定了“室内空气品质通风规范"。

乙二醇能量回收系统在空调系统中的应用

乙二醇能量回收系统在空调系统中的应用

- 87 -工 业 技 术0 引言排风系统带走的能量排出室外,既造成能源极大的浪费,又会对室外环境造成热污染。

未来,在暖通空调方面主要是实现节能系统化,寻找新的节能设计方向。

1 乙二醇热回收系统1.1 乙二醇能量回收系统功能如图1所示,乙二醇热回收的基本原理是以换热器和乙二醇溶液作为换热媒介,在排风侧将排风中的热量通过换热器传递给乙二醇溶液(25%浓度),提高乙二醇溶液的温度,然后通过循环泵将被加热的乙二醇溶液输送到新风侧的换热器中,提高新风温度,减少系统的负荷和整个空调系统的运行成本。

乙二醇作为载冷剂,满足载冷剂的6项基本要求。

1)在使用范围内,不凝固,不气化。

2)无毒,化学稳定性好,对金属不腐蚀。

3)比热大,输送一定能量所需流量小。

4)密度小,黏度小,可减小流动阻力,降低循环泵消耗功率。

5)导热系数大,可减少换热设备的传热面积。

6)来源充裕,价格低廉[2]。

乙二醇热回收系统中最核心的设备就是乙二醇回收泵组,泵组包括泵站管路本体及附属控制系统。

泵站管路本体包括水路管道、手动阀门、水泵、过滤器、膨胀罐等设备。

泵站控制系统由集中控制器PLC、水泵变频器、一系列水路、外部传感器和其他电动执行机构组成。

基础系列泵站自带水系统监测及能量统计系统,其他系列泵站可以选择装风系统监测、能量统计系统及VPN 远程调试监测系统等,还可以选择平台远程数据查看等功能。

泵组在控制水泵、水阀进行热量回收的功能上,可以附加各种模块,可以通过直观的数据显示有效地监测热回收系统。

可以附加的功能包括水系统回收能量检测和统计、风系统回收能量检测和统计、VPN 远程调试及检测系统、VPN 远程数据采集及分析系统等。

1.2 水系统的监测和能量统计水系统管路上安装有水温传感器和流量传感器,水温传感器可以监测盘管进出水温度,流量计可以监测盘管进出水流量。

根据能量公式θ=cm △T ,衍生出实时回收功率P 。

θ=cm ΔT =cρV (T 1-T 2)=cρQt (T 1-T 2) (1)式中:θ—回收能量,c—水的比热,m—水的质量,ρ—水的密度,V—水的体积,Q—水流量,t—时长秒,T1—盘管进水温度,T 2—盘管出水温度。

热回收新风机

热回收新风机

热回收新风机现代人越来越重视家居环境的设计,为了使室内保持四季恒温,于是出现了空调和采暖设备,我们每天还要呼吸,因此,为了每天能够呼吸到健康清新的空气,便出现了新风系统,其中热回收新风机是当前最受欢迎的新风设备。

热回收新风机原理所谓热回收新风机,它是一种含有全热交换芯体的新风、排风换气设备。

热回收新风机将室外的新鲜空气,经过滤后,引入室内,并将经过能量交换的室内浑浊空气排出室外,减少能量损失。

其工作原理为:设备在运行时,室内排风和新风分别呈正交叉方式流经换热器芯体时,由于气流分隔板两侧气流存在着温差和蒸汽分压差,两股气流通过分隔板时呈现传热传质现象,引起全热交换过程。

在夏季,新风从空调排风获得冷量,温度得以降低的同时还被空调风干燥,从而使得新风含湿量降低;在冬季,新风从空调室排风获得热量,温度得以升高。

热回收新风机作为一种高效节能型空调通风装置,通过换热芯体的全热换热过程,能够有效地获取排风中的焓值全热型CHA或温度显热型CHB,从而达到了节能换气的目的,极大地节约了新风预处理的能耗。

快净热回收新风机跟其他公司生产的通风设备相比,有以下4大明显的技术优势:1.风量大快净采用的是出口风机,铝合金标准风轮,风轮品质高,风轮叶片宽、叶距密、压头大、风量足,动平衡平稳,送风效果好。

2.热回收效率高采用水平逆向对流技术进行热回收,实际全热回收效率在65~70%,突破了传统产品实际全热回收效率普遍低下(一般在45%~55%的热回收效率)的技术瓶颈,实现了全热新风换气机产品真正意义上的节能省电的目标。

3.噪声小其包装采用普通镀锌钢板加喷漆,中间加进喷塑。

其隔音效果很好。

4.使用寿命长其风机采用进口离心风机,包装采用不锈钢板制造。

整机使用寿命是一般热回收新风机的一倍!热回收新风机适用范围:v 家庭:特别适用于装修后的家庭、通风不良的家庭、有老人小孩的家庭;v 办公场所:办公室、会议室、写字楼、营业厅、银行、密封柜台工作区等;v 休闲娱乐场所:KTV、咖啡厅、茶楼、网吧、影音院、休闲娱乐城等。

热回收新风换气机组原理

热回收新风换气机组原理

热回收新风换气机组原理原理:热回收新风机组是一种对住宅进行24小时不间断的换气,使住宅整体保持新鲜空气的流通的通风换气系统。

主要由新风主机(全热交换器)、控制开关、风管、进气风口、排气风口组成,主机安装于设备间、厨房、卫生间等房间,系统工作时,室内污浊空气通过排风管道经全热交换器排到室外。

在室内污浊空气排到室外的同时,新风经全热交换器通过送风管道进入室内。

在送排风的同时,送入室内的新风吸收排风中的冷(热)量,进行热量回收,达到节能的目的。

热回收新风机组是一种对住宅进行24小时不间断的换气,使住宅整体保持新鲜空气的流通的通风换气系统。

主要由新风主机(全热交换器)、控制开关、风管、进气风口、排气风口组成,主机安装于设备间、厨房、卫生间等房间,系统工作时,室内污浊空气通过排风管道经全热交换器排到室外。

在室内污浊空气排到室外的同时,新风经全热交换器通过送风管道进入室内。

在送排风的同时,送入室内的新风吸收排风中的冷(热)量,进行热量回收,达到节能的目的。

电动调节阀与风机连锁,以保证切断风机电源时风阀亦同时关闭。

电动调节阀亦可实现与风机的联动,当风机切断电源时关闭电动调节阀。

新风机组温度控制系统由比例积分温度控制器、安装在送风管内的温度传感器和电动调节阀组成。

控制器的作用是把置于送风风道的温度传感器所检测到的送风温度传送至温控器与控制器设定的温度进行比较,并根据PI运算的结果,温控器给电动调节阀一个开/关阀的信号,从而使送风温度保持在所需要的范围。

当过滤网堵塞时或当其超过规定值时,压差开关给出开关信号。

在需要制冷时,温控器置于制冷模式,当传感器测量的温度达到或低于设定温度时,温控器给电动阀一个关阀信号,电动阀的关阀接点接通阀门关闭。

如果测量温度没达到设定温度,温控器给电动阀一个开阀信号,电动阀开阀接点接通阀门打开。

在需要制热时,温控器置于制热模式,当传感器测量的温度达到或高于设定温度时,温控器给电动阀一个关阀信号,电动阀的关阀接点接通阀门关闭。

机房新排风工程设计方案

机房新排风工程设计方案

机房新排风工程设计方案一、项目背景随着科技的不断发展,数据中心机房的数量和规模不断扩大,机房内设备密度越来越高,因此,机房内的空气质量对设备运行稳定性和人员健康至关重要。

为了保证机房内空气质量,降低设备故障率,提高人员工作效率,本项目将设计一套机房新排风工程。

二、设计目标1. 确保机房内空气质量达到国家相关标准要求。

2. 降低机房内温度,提高人员舒适度。

3. 减少机房内噪音,保证设备正常运行。

4. 提高能源利用效率,降低运行成本。

三、设计原则1. 符合国家相关法律法规和标准要求。

2. 充分考虑机房内设备负荷、人员密度及新风需求。

3. 系统设计应具有可靠性和稳定性,确保长期安全运行。

4. 节能环保,提高能源利用效率。

5. 易于维护和管理。

四、设计方案1. 排风系统(1)排风方式:采用全热交换新风系统,实现热量的回收,降低能耗。

(2)排风量:根据机房内设备负荷、人员密度及新风需求计算确定。

(3)排风设备:选用高效低噪音的排风风机,合理布局,降低机房内噪音。

2. 新风系统(1)新风来源:室外空气。

(2)新风处理:新风经过过滤、除湿、加热等处理,保证机房内空气质量。

(3)新风量:根据机房内设备负荷、人员密度及新风需求计算确定。

3. 温度控制(1)采用智能温度控制系统,实时监测机房内温度,自动调节新风量和排风量。

(2)设置合理的温度设定值,保证人员舒适度和设备运行稳定性。

4. 噪音控制(1)选用低噪音的排风风机和新风处理设备。

(2)合理布局设备,采用隔音材料降低噪音。

5. 节能措施(1)采用全热交换新风系统,实现热量回收,降低能耗。

(2)智能控制系统,根据机房内负荷变化自动调节新风量和排风量,提高能源利用效率。

五、施工及验收1. 施工过程中,应严格按照设计方案和施工图纸进行。

2. 施工完毕后,进行系统调试,确保系统正常运行,达到设计目标。

3. 验收合格后,交付使用。

六、后期维护与管理1. 定期对排风系统进行清洁、保养,确保系统正常运行。

排风热回收

排风热回收

• 动态回收 • 通过以通道轮回收方式实现的
• 静态回收 • 通过板式回收器实现的
• 显热回收 • • 转轮式换热器 全热回收 • 工作原理: • 转轮作为蓄热芯体,新风通过轮转 的一个半圆,而同时排风逆向通过 • 转轮的另一个半圆,新风和排风以这 • 种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风 • 中的热(湿)量,当转到新风侧时,由 • 于存在温(湿)差的原因,蓄热芯体就 会释放其中的热(湿)量,当再转到排 • 风侧时,又继续吸收排风中的热(湿) • 量。如此往复循环实现能量的回收
全热回收
按回收热量分类
部分热回收
转轮式换热器
板翘式换热器 按工作原理分类 热泵式换热器

按方式分类

动态回收
热管式换热器
中间热媒式换热器 板式显热换热器
静态回收
• 全热回收 • 通过特质的纸介质来完成对室外和室内空 气的温度、湿度实现回收 • 显热回收 • 能量回收的介质通常是铝箔,只对室外空 气和室内空气的温度完成能量回收 全热回收与显热回收对比
热泵式热回收 显热回收
工作原理: 热泵通过从蒸发器吸热,冷凝 器放热而把热量从一处传递到 另外一处。它这样可以用于排 风热回收。 夏季工况: 排风侧的盘管为冷凝器,新风 侧的盘管为蒸发器;从而冷却 了新风。 冬季工况: 四通换向阀使制冷剂流向改变 ,这时排风侧的盘管为蒸发器 ,新风侧的盘管为冷凝器;系 统从排风侧吸热,而加热了新 风。 当系统中排风和新风的冷、热 量并不一定平衡,这时需有辅 助冷热源对新风补冷却或加热
⑷冷热气体中间用隔板隔开,没有泄漏,因此没有交叉污染问题。
⑸由于流体流动通道宽敞,阻力损失小。 ⑹每根热管完全独立,维修方便。
热管换热器的分类

关于排风能量回收的效率

关于排风能量回收的效率

关于排风能量回收的效率GB 50189-2005《公共建筑节能设计标准》5.3.14 条:建筑物内设有集中排风系统且符合下列条件之一时,宜设置排风热回收装置。

排风热回收装置(全热和显热)的额定热回收效率不应低于60%。

显热效率也称温度效率,用下式表达:W J t W Pt t t t η-=- (新风进风—新风出风)÷(新风进风—排风进风)式中:t W 室外空气温度(℃)t J 进风(热交换后)温度(℃)t P 排风(热交换前)温度(℃)全热效率也称焓效率,只要将显热效率公式中的温度t,更换为焓h :W J h W Ph h h h η-=-式中:h W 室外空气焓值(J/kg )h J 进风(热交换后)焓值(J/kg )h P 排风(热交换前)焓值(J/kg )在室外空气温度(即新风起点温度)、新风终点温度、排风起点温度(即室内空气温度)和排风终点温度4个参数中,标志能量回收效率只用了3个。

因为,在实际工程设计时,在选定排风能量回收装置,并根据产品样本得到显热效率或全热效率以后,所需要关注的只是新风终点温度(或焓值),而不是排风终点温度(或焓值) 。

这说明:※能量回收效率是B/A,即室外空气温度(或焓值)变化达到室内外温差(或焓差)的程度。

※而非C/A,非排风温度(或焓值)变化达到室内外温差(或焓差)的程度。

例如:冬季室外温度为t W =-10℃, 室内温度为t P = 20℃, 如果排风热回收装置的显热回收效率为60%,求回收装置后的进风温度t J ?(8℃)※排风能量回收是进入室外空气与室内排出空气之间的换热,能量回收效率为60%时,室外空气经能量回收装置后的进风温度从-10℃提高到了8℃。

当进入室外空气与室内排出空气的风量相等时,根据能量守衡原理: 室外空气温度(或焓值)变化达到室内外温差(或焓差)的程度, 与排风温度(或焓值)变化达到室内外温差(或焓差)的程度是相同的,即B = C 。

空调系统中排风热回收

空调系统中排风热回收

空调系统中的排风热回收摘要:本文详细介绍了目前常用换热器的形式、特点、及对它们之间的优缺点进行了多角度的对比,并针对具体应用中的一些实际问题提出了建议,这对合理设计和应用热回收系统有着重要的参考价值。

关键词:热回收;热交换器;节能;合理化设计;0引言建筑能耗是国家总能耗的重要组成部分,在欧美一些国家,建筑能耗约占全国总能耗的30%左右,我国建筑物能耗约占全国总能耗的18%~25%,并且这一比例还将随着人们生活水平不断提高而增加。

建筑耗能中,建筑物采暖、通风和空调的能耗约占建筑总能耗的20%~40%,而空调系统中新风负荷又占总负荷的20%~30%,所以新风耗能占建筑总能耗的4%~12%。

由此可见,有效降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。

又空调系统能耗特点之一是系统同时存在需冷(热、湿)和排冷(热、湿)的处理过程,夏季室外空气需经过冷却干操处理,而排风正是低温较干燥的空气;冬季室外空气需加热加湿处理,而排风是温湿度较高的空气。

从有效利用能源的角度来考虑,应当将建筑物内(包括空调系统中)需排掉的余热(冷)移向需要热(冷)的地方去即热能回收。

1热回收系统概述空调系统的节能方式很多,冷量和热量回收就是众多方法中的一种。

空调系统中可供回收的余热、余冷主要分布在排风,冷凝热和室内冷凝水中。

所谓热(冷)回收系统就是回收建筑物内外的余热(冷)或废热(冷)并把回收的热(冷)量作为供热(冷)或其他加热设备的热源而加以利用的系统。

《公共建筑节能设计标准》中明文规定;“建筑物内设有集中排风系统且符合下列条件之一时,宜设置排风热回收装置;排风热回收装置(全热和显热)的额定热回收效率不应低于60%:1)送风量大于或等于3000m3/h的直流式空气调节系统,且新风与排风的温度差大于或等于8℃;2)设计新风量大于或等于4000m3/h 的空气调节系统,且新风与排风的温度差大于或等于8℃;3)设有独立新风和排风的系统。

热回收技术在排风系统中的应用

热回收技术在排风系统中的应用

热回收技术在排风系统中的应用摘要:探讨了热回收技术在空调排风系统中的应用,以工程实例介绍了施工要点,分析了热回收技术的经济效益,为热回收技术的推广提供了数据支持。

关键词:空调系统液体循环式热回收系统经济效益分析0 前言目前,我国能源形势非常严峻,已成为仅次于美国的第二大能源消费国。

随着人民生活水平的提高,建筑能耗增长迅猛。

我国的建筑能耗约占全国总用能量的1/4,其中空调能耗已达建筑总能耗的60%以上。

另外,建筑物的室内空气品质越来越重视,对新风量提出了更高的要求。

[1]据调查,空调工程中对新风处理的能耗约占总能耗的25%~30%,对于高级宾馆和办公建筑可达40%。

因此,降低建筑能耗,尤其降低空调能耗,是缓解国家能源紧张形势,实现可持续发展的重要措施。

在空调节能中,新风、排风空气热回收的设置就显得尤为重要,合理使用排风热回收装置,可以降低能源消耗,提高能源利用率。

1 背景1.1热回收技术的形成过程有关空气品质的研究,可以追溯到20世纪初,当时,人们已经开始采用通风的方法来改善室内空气环境。

空调系统的出现,为人们创造了舒适的空调环境。

70年代的全球能源危机,使空调系统这一能源消耗大户面临严峻的考验,节能降耗成为空调系统设计的关键。

节能措施之一就是减少入室新风量,但是这一措施引起了室内空气环境恶化,再加上现代建筑中密闭空间的增多以及各种装饰材料的使用,出现了“病态建筑综合症”。

80年代以来,空调步入一个新的发展阶段,新阶段的标志之一就是由舒适性空调向健康空调的变革。

新排风热回收技术以其独特的优势已在市场上逐渐普及开来。

1.2热回收技术的优势传统的新风系统,新风负荷占空调总负荷的30%甚至更多。

把空调房间里的热量直接排放到大气中,既造成了城市的热污染,又白白浪费了热能。

而加入热回收技术的新风系统则有效利用了排风中的余冷余热来预处理新风,减少了处理新风的能量,降低了机组的负荷,提高了空调系统的经济性。

图1:新排风热回收系统示意图如图所示,从空调房间出来的空气一部分经过热回收装置与新风进行换热,从而对新风进行预处理,换热后的排风以废气的形式排出,经过预处理的新风与回风混合后再被处理到送风状态送人室内。

热回收新风系统

热回收新风系统

热回收新风系统在发达国家热回收新风系统是居家的必备品,只有配备的热回收新风系统才能彻底解决室内的空气质量问题。

快净热回收新风系统又称房屋呼吸系统,属于开放式的循环系统,是一种改善室内空气质量的产品。

为了节约能源,我们的室内保温和密闭性越好,装修越豪华,室内的空气污染就越严重!人们的居住环境在改变,生活方式在改变,人们对生活品质的要求越来越高,但是室内环境的污染越来越严重,威胁着人们的身体健康。

室内装修后所产生的甲醛等气体掺杂在空气中,还有厨房产生的水蒸气,油烟味,以及厕所的异味,这些全都威胁着人们的健康。

热回收新风系统能解决这些室内问题,它将室内的有害气体排到室外,同时将新鲜的空气换进室内,与此同时过滤灰尘等,避免室外的杂物进入室内,并且能量回收,节约能量。

热回收新风系统的基本功能主要是通风、热回收和过滤。

其中通风是最基本的功能,而热回收功能就是将进入室内的新鲜空气和室内要排出的污浊空气进行能量交换,把污浊空气排出的同时留下能量。

通过热回收,送入室内的新鲜空气的温度接近室内温度,让居住者体感舒服,不会存在不适感,且运行经济又节能环保。

第三个基本功能正是针对目前的雾霾天气的,好的热回收新风系统的过滤一般都能达到很高的级别,室外的可吸入颗粒物在进入室内之前均可得到有效过滤,这样就有效保证了室内空气的安全指数。

为了给人们一个好的通风条件,快净热回收新风系统决定在通风行业打造领先的品牌。

广州快净环保科技有限公司有多年的实践经验,拥有成熟的技术。

安装队伍在通风工程安装方面有科学的规划,让我们室内有一个良好的循环系统。

打造理想的热回收新风系统:可以在下面的功能方面加以改进。

产品性能上,要实现智能控制,净化率提高;打造无噪音风机;降低造价和运行成本;合理设计,让施工方便,维护简便。

热回收新风系统又称全热回收通风系统,具有简洁、高效、舒适、经济、便于清洗、无二次污染的特点,是最适合家庭安装的新风系统,打造行业领先!。

浅议几种常见的空调新风处理方式

浅议几种常见的空调新风处理方式

浅议几种常见的空调新风处理方式近些年来VRV系统在中小型项目中的应用越来越多。

因其对应空间灵活,施工方便且日后维护保养工作量小在夏热冬冷和夏热冬暖地区应用越来越广泛。

设置集中空调的场所为达到良好的室内空气品质及保持空调房间正压需对室内补充新风。

新风有处理和非处理两种方式。

将未处理过的室外新风如直接送入室内是最简单节能的方式,但因夏季冬季室内外温差较大,如直接将室外空气送入室内将造成室内温湿度产生较大波动,严重影响室内工作人员的舒适度。

且新风负荷由室内机承担,机组长期在在湿工况下工作,影响机器运行稳定性,并且房间温湿度均难以达到设计要求。

处理新风常用的有三种形式,1、采用新风冷媒机直接处理新风;2、采用全热交换器回收排风能量来预处理新风;3、采用一体化排风冷凝热回收全新风机组来处理新风。

接下来,笔者将结合自身做过的项目来简单阐述下三种新风处理形式的利弊之处。

临港海洋高新技术产业化基地位于上海市临港工业园区内,该项目一期总建筑面积约为27453㎡,地下一层,地上六层。

地下主要功能为车库,设备房及员工餐厅厨房。

地上六层主要功能为办公、会议,地上总建筑面积约为21877㎡,每层建筑面积约为4000㎡,建筑总高度23.95m。

上海市地处夏热冬冷地区,冬季采用空调制热,因该建筑为多层,总层约为24米,设计空调采用VRV变频多联空调系统,根据建筑布局每层设置4套空调系统,并配套设置4个冷媒管井,外机放置于6层屋顶。

办公楼人员密度业主定位为10㎡/人,所需新风量根据《公共建筑节能设计标准》(DJG-108-2012)表4.1.2-2确定,办公建筑每人所需新风量为30m3/H*人,每层新风量约为9000CMH.一、采用高静压新风冷媒机直接处理新风。

该方法的优点在于,可直接将新风处理至室内焓点,经新风口送入室内,不会造成室内空气温湿度波动,室内舒适性效果良好。

且单送风系统,可避免室内污浊空气对新风的影响。

使用该方法新风机可吊装于走廊吊顶内,设置百叶直接于侧墙取新风,注意机器外包裹吸音棉,并在风管上加装消声静压箱来减小噪音,不占用机房面积。

北京市公共建筑空调系统排风热回收

北京市公共建筑空调系统排风热回收

北京市公共建筑空调系统排风热回收
集中空调系统的排风热回收,应符合以下规定:
1、风机盘管加新风系统,全楼设计最小新风量≥ 20000m3/h时,应设置集中排风系统,并至少有总新风量的40%设置热回收装置;
2、全空气直流式空调系统,总送风量在3000m3/h~10000 m3/h时,应至少有总送风量的80%设置热回收装置;总送风量大于10000 m3/h 时,应至少有总风量的60%、且风量不得小于8000 m3/h设置热回收装置;
3、带回风的全空气空调系统,总风量≥ 20000m3 /h、最小新风比≥40%时,宜设置热回收装置;
4、宜跨越热回收装置设置旁通风管。

注:
1、用于设备机房等部位冬季加热的直流送风系统,当室内设计温度≤5℃时,可不设热回收装置;
2、有害物质浓度较大的排风(例如厨房油烟、吸烟室排风等),可不设热回收装置。

有人员长期停留,且不能设置集中新风、排风系统的空调房间,宜在各空调区(房间)分别安装带热回收功能的双向换气装置。

排风热回收装置选用,应按以下原则确定:
1、冬季也需要除湿的空调系统,应采用显热回收装置;
2、根据卫生要求新风与排风不应直接接触的系统,应采用显热回收装
置;
3、其余热回收系统,宜采用全热回收装置。

仅用于消除室内余热的通风系统, 当采用直流系统时,夏季室内计算温度取值不宜低于室外通风计算温度。

全新风、全排风系统热回收方案

全新风、全排风系统热回收方案

全新风、全排风系统热回收方案前言:针对本项目A7#车间采用的全新风、全排风系统热量回收装置,列举备选方案,逐一分析优劣及选定施工方案的理由。

最终依照现场情况,选定方案。

因生产工艺需要,A7#布病车间JK-B、JK-C、JK-D、JK-F、K-H 5个系统采用的全新风,房间直排模式。

此设计方案,虽然能够有效保证生产安全,避免生产过程中的病菌等有毒物质危害人体,但是机组能耗过大,浪费严重,不满足现今提倡的节能环保,绿色生产的理念。

经过探讨,考虑针对现已完成的施工内容,进行有限度的改造,增设热回收装置,利用排风中的余冷和余热来预处理新风,以达到降低空调机组的冷热负荷,较少能耗,提高空调系统经济性、环保性的目的。

A7#布病车间内机组均为全年性空调,设有独立新风和排风的系统,送风量大于3000m3/h,新、排风之间的设计温差大于8℃,对室内空气品质要求较高。

以上条件均满足空调排风空气中热回收系统的设计要求。

热回收装置分为显热和全热交换器两种。

考虑到新风中显热和潜热能耗的比例构成是选择显热和全热交换器的关键因素。

在严寒地区宜选用显热回收装置;而在其他地区,尤其是夏热冬冷地区,宜选用全热回收装置。

依照呼和浩特所处的地理位置,属严寒地区,宜采用显热回收。

方案1:转轮式热回收装置转轮式热交换器一般应用于空调设备的送排风系统中,排风和新风以相逆方向渡过旋转的蓄热体转轮,过程中释放和吸收能量,将排风中所蕴含的热或冷量转移到新风中。

1)为了保证回收效率,要求新、排风的风量基本保持相等,最大不超1:0.75。

如果实际工程中新风量很大,多出的风量可通过旁通管旁通。

2)转轮两侧气流入口处,宜装空气过滤器。

特别是新风侧,应装设效率不低于30%的粗效过滤器。

3)在冬季室外温度很低的严寒地区,设计时必须校核转轮上是否会出现结霜、结冰现象,必要时应在新风进风管上设空气预热器或在热回收装置后设温度自控装置;当温度达到霜冻点时,发出信号关闭新风阀门或开启预热器。

全新风排风系统热回收工作原理

全新风排风系统热回收工作原理

全新风排风系统热回收工作原理
随着社会的发展,人们越来越注重室内空气质量。

在空调系统中,全新风排风系统是一种高效的新型空调系统,它能够有效地将新风和排风相互调节,从而达到优化室内环境的效果。

在这种系统中,热回收技术是其中核心的技术之一。

全新风排风系统通过一个热回收器来实现热回收,使得室内的温度得到有效控制。

该热回收器通常由两个空气流道组成,分别用于新风和排风。

当新风和排风通过热回收器时,它们相互交换热量,从而达到回收热能的效果。

具体的工作原理如下:
首先,新风进入热回收器的一个空气流道,排风则进入另一个空气流道。

两者之间通过一个热传导层隔开,以避免直接混合。

其次,经过一段时间的运转,新风和排风之间的温度差异逐渐缩小。

在这个过程中,热传导层会将热能从排风侧传输到新风侧,从而使得新风被预热。

最后,新风被送入室内,而排风则被排出。

通过这种方式,室内的温度得到了有效的控制,同时还能够实现充分利用热能的效果。

总之,全新风排风系统热回收技术是一种高效的室内空调系统,它能够通过热回收器实现新风和排风之间的热能交换,从而达到优化室内环境的效果。

在今后的空调系统中,热回收技术将会得到更加广泛的应用。

- 1 -。

新风全热交换的原理

新风全热交换的原理

新风全热交换的原理
新风全热交换是利用热交换器的原理,实现新风与室内空气之间的热能传递。

新风全热交换系统由两个独立的通风系统组成,分别为新风通风系统和室内回风系统。

新风通风系统通过送风机将新鲜空气吹入室内,而室内回风系统通过排风机将室内空气排出室外。

热交换器是新风全热交换系统的核心部件,通常由两个密封的风道相交叉组成。

其中一个风道用来输送新风,另一个风道用来回收室内空气的热能。

当新风通风系统工作时,送风机将新鲜空气吹入热交换器的一个风道内。

同时,室内回风系统的排风机将室内空气排出另一个风道内。

由于两个风道交叉,新鲜空气与室内空气在热交换器内的金属片上进行热交换。

金属片通常采用高导热性能的材料制成,如铝合金。

新风与室内空气在金属片的接触面上进行热量传递。

由于金属片的导热性能良好,热量可以从室内空气向新风传递,实现能量的回收利用。

在热交换过程中,新鲜空气被加热,而室内空气被冷却。

这样,新风通风系统将带有一定温度的新鲜空气送入室内,提高室内空气的温度,提供舒适的室内环境。

同时,室内回风系统将冷却后的室内空气排出室外,减少能量的浪费。

通过新风全热交换系统,室内空气的热能可以得到回收利用,提高能源利用效率。

此外,新风全热交换系统还可以过滤空气中的颗粒物和有害气体,提供更健康、清洁的室内环境。

关于空调系统中排风热回收的探讨

关于空调系统中排风热回收的探讨

关于空调系统中排风热回收的探讨摘要:制冷空调系统为人们创造了舒适的热湿环境。

本文笔者在对热回收在空调系统中的使用原理的认识基础上,论述空调系统利用排风对新风进行预处理的常用方法和使用特点,同时提出在各种方法使用过程中需注意的若干问题。

关键词:空调系统热回收热交换器节能1 热回收在空调系统中的使用原理空调系统的排风热回收是利用热回收装置回收排风中的冷(热)量达到节能的一种有效方式。

空调设计规范规定:建筑物内设有集中排风系统且符合下列条件之一时宜设置排风热回收装置。

(1) 送风量≥3000m3/h的直流式空气调节系统,且新风与排风的温度差≥8℃;(2) 设计新风量≥4000m3/h的空气调节系统,且新风与排风的温度差≥8℃;(3) 设有独立新风或排风系统;排风热回收装置是利用空气―空气热交换器来回收排风中的冷(热)能对新风进行预处理。

图1是一个简单的带排风热回收装置的空调系统图。

从空调房间出来的空气经过热交换器与室外新风进行热交换,对其进行预处理。

换热后的排风排到室外,经过预处理的新风和回风混合后再经辅助盘管处理后送进室内。

热回收装置的新风管和排风管均应设有1个旁通管道,以便在过渡季节等不需要进行排风热回收的时候打开,直接通入新风,同时减少风机能耗。

2 节能分析排风热回收的节能性主要是在于他利用排风对新风进行预处理,系统只需将空气从预处理后的温度处理到送风温度即可,这样就降低了系统处理空气的负荷量及运行时的能耗。

用于评价热回收器性能的一项重要指标,是热的回收效率。

显热回收设备只有显热回收效率。

全热型回收设备则可有显热回收效率、潜热回收效率和全热回收效率之分。

3 热交换器的实际使用空气-空气热交换器是排风热回收系统的核心。

根据回收热量的形式,主要可分为显热回收和全热回收。

典型的热交换器有热管式热交换器、中间热媒式热回收器、板式热交换器及转轮式热交换器等几种。

其中热管式和中间热媒式传递的是显热,其他2种既可传递显热,又可传递全热。

热泵型全热回收新风排风机组产品简介

热泵型全热回收新风排风机组产品简介

热泵型全热回收新风排风机组产品简介
热泵型全热回收新风排风机组是由空气-空气能量回收装置、风-风热泵系统及多种空气处理功能耦合组装而成,能同时向室内空调环境送新风和机械排风,具有从室内排风回收能量转移至新风,并对新风进行一种或多种空气处理的机组。

原理示意图如图1:
图1
该机组具有如下技术特点:
1、将空调环境所需新风、排风、冷热源和多种空气处理实现一体化的整体机。

2、对排风能量实现全热回收。

3、机组内含能全年处理新风的冷热源-热泵系统。

4、能向空调环境直接送入经过热、湿、净化等多种处理的新风,可完全满足空调环境所需新风要求。

5、能对空调环境实现有组织的机械排风。

6、机组内含二级热回收
7、由风-风热泵驱动第二级热回收
8、配置专用智能控制器,实现制冷、制热、通风、自动四种运行模式。

结合具体的工程系统,根据当地的气象条件、建筑物功能、室内负荷特点等,可对该类机组进行有针对性的、个性化的设计,以更好地满足实际工程应用要求。

通风系统设计方案

通风系统设计方案

通风系统设计方案一、设计目标与要求为了保证建筑物室内空气质量的合理调控,提供适宜的室内环境,设计一个高效且可靠的通风系统是必要的。

本设计方案旨在满足以下要求:1. 提供足够的新鲜空气,以确保室内空气质量的合理。

2. 有效控制室内温度和湿度,为居住者提供舒适的环境。

3. 设计方案应满足建筑物的特点和需求,尽可能减少能源消耗,并确保运行成本的可控。

4. 系统设计应具备可扩展性和可维护性,方便后期维护和升级。

二、方案设计1. 能量回收采用热交换器技术,通过热回收系统可以更好地利用废弃空气中的热能,减少供暖和冷却时的能源消耗。

通过回收室内排出的热量,可以有效地预先加热进入室内的新鲜空气,从而减少冬季供暖负荷。

2. 新风系统新风系统是通风系统的核心组成部分,其目标是提供干净、新鲜的室外空气,并将其适当地分配到不同的室内区域。

新风系统需要考虑以下几个方面:- 新风量:根据建筑物的户型和人员密度进行计算,确保每个房间都能得到充足的新鲜空气。

- 过滤器:安装高效空气过滤器,过滤室外空气中的颗粒物和污染物,提高室内空气质量。

- 风速和风向调节:根据不同房间的需求,通过风速和风向的调节,使得新风能够达到最佳的通风效果。

3. 排风系统排风系统主要用于排出室内的废气和污染物,确保室内空气的质量常保鲜活。

在设计排风系统时,需要考虑以下几个方面:- 排风口位置:根据房间的功能和布局,合理设置排风口的位置,确保污染源附近的废气能够及时排出。

- 排风量:根据污染源的类型和房间的大小,合理计算排风量,确保排出的废气能够满足室内空气质量标准。

- 排风管道:选择适当的材料和直径,确保排风管道的风阻尽可能小,并且方便清洁和维护。

4. 温控系统温控系统主要用于室内温度和湿度的调节,以及对通风系统的控制和监测。

温控系统在设计时需要考虑以下几个方面:- 温度调节:根据建筑物的特点和需求,选择恰当的供暖和冷却设备,并合理设计布局,确保室内温度可以稳定在舒适范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全新风、全排风系统热回收方案
前言:针对本项目A7#车间采用的全新风、全排风系统热量回收装置,列举备选方案,逐一分析优劣及选定施工方案的理由。

最终依照现场情况,选定方案。

因生产工艺需要,A7#布病车间JK-B、JK-C、JK-D、JK-F、K-H 5个系统采用的全新风,房间直排模式。

此设计方案,虽然能够有效保证生产安全,避免生产过程中的病菌等有毒物质危害人体,但是机组能耗过大,浪费严重,不满足现今提倡的节能环保,绿色生产的理念。

经过探讨,考虑针对现已完成的施工内容,进行有限度的改造,增设热回收装置,利用排风中的余冷和余热来预处理新风,以达到降低空调机组的冷热负荷,较少能耗,提高空调系统经济性、环保性的目的。

A7#布病车间内机组均为全年性空调,设有独立新风和排风的系统,送风量大于3000m3/h,新、排风之间的设计温差大于8℃,对室内空气品质要求较高。

以上条件均满足空调排风空气中热回收系统的设计要求。

热回收装置分为显热和全热交换器两种。

考虑到新风中显热和潜热能耗的比例构成是选择显热和全热交换器的关键因素。

在严寒地区宜选用显热回收装置;而在其他地区,尤其是夏热冬冷地区,宜选用全热回收装置。

依照呼和浩特所处的地理位置,属严寒地区,宜采用显热回收。

方案1:转轮式热回收装置
转轮式热交换器一般应用于空调设备的送排风系统中,排风和新风以相逆方向渡过旋转的蓄热体转轮,过程中释放和吸收能量,将排风中所蕴含的热或冷量转移到新风中。

1)为了保证回收效率,要求新、排风的风量基本保持相等,最大不超1:0.75。

如果实际工程中新风量很大,多出的风量可通过旁通管旁通。

2)转轮两侧气流入口处,宜装空气过滤器。

特别是新风侧,应装设效率不低于30%的粗效过滤器。

3)在冬季室外温度很低的严寒地区,设计时必须校核转轮上是否会出现结霜、结冰现象,必要时应在新风进风管上设空气预热器或在热回收装置后设温度自控装置;当温度达到霜冻点时,发出信号关闭新风阀门或开启预热器。

4)适用于排风不带有害物和有毒物质的情况。

一般情况下,宜布置在负压段。

转轮式热回收装置运行原理
分析:
●属于成型产品,增设转轮机组能够有效回收能源;
●需额外的驱动动力,且考虑极端环境对机体的影响,需进行自控联动、监视;
●现场排风属有害气体,通过转轮蓄热体会产生残留,造成危害;
●设备对环境有一定要求,呼市冬季寒冷空气会造成设备结霜、结冰;
●设备气流入口处需安装空气过滤器,对空调机组产生额外的阻力;结论:
该方案不满足现场需求,无法采用。

方案2:板式显热回收装置
板式热回收器是采用轧花铝箔、波纹铝箔等做传热导体的热交换器,不需要中间热媒,没有温差损失,同时空气阻力小,温差效率可达到80%。

(1)当室外温度较低时,应根据室内空气含湿量来确定排风侧是否会结霜或结露。

(2)一般来讲,新风温度不宜低于-10℃,否则排风侧会出现结霜。

(3)当排风侧可能出现结霜或结露时,应在热回收装置之前设置空气预热器。

(4)新风进人热回收装置之前,必须先经过过滤净化。

排风进入热回收装置之前,也应装过滤器;但当排风较干净时,可不装。

分析:
●构造简单,无运动部件,不需要动力,运行可靠安全,使用寿命长,
维护简单。

●送、排风通道互相独立、热回收芯体漏风率极低,有效防止交叉污
染。

●因其构造及迎面风速的限制,需占用较大的空间尺寸。

结论:
该方案能够满足使用需求,但是针对原设计图纸变动较大,现场风管管路主体已基本成型,更改成本较大;设备占用空间尺寸过大,现场无足够空间,无法采用。

板式热回收器
机组功能段示意图
方案3:板翅式全热回收装置
采用平直和波纹状铝箔或纤维性材料交叉层叠而成,属于空气与空气直接交换式换热器,利用隔板两侧的两股气流的温差和水蒸气分压力差进行显热及潜热回收的装置。

(1)当排风中含有害成分时,不宜选用。

(2)实际使用时,在新风侧和排风侧宜分别设有风机和粗效过滤器,以克服全热回收装置的阻力并对空气进行过滤。

(3)当过渡季或冬季采用新风供冷时,应在新风道和排风道上分别设旁通风道;并装设密闭性好的风阀,使空气绕过热回收装置。

分析
●现场排风属于有害气体,进行热回收时会造成新风源的污染
●需另设风机设备以克服回收装置的阻力
结论
该方案不满足现场需求,无法采用。

方案4:中间热媒式换热装置(乙二醇液体循环式)
新风与排风系统完全独立,根据需要布置新风机组与排风机组,中间连接管路与水泵,同时,可考虑多个新风机组共用一个排风机组。

(1)为保证较高效率的运行,换热盘管的排数,宜选择n=6~8
排。

(2)换热盘管的迎面风速,宜选择v g=2m/s。

(3)作为中间热媒的循环水量,一般可根据水汽比μ确定:n=6排时,μ=0.3;n=8排时,μ=0.25。

(4)当供热侧与得热侧的风量不相等时,循环水量应按数值大的风量确定。

(5)为了防止热回收装置表面结霜,在中间热媒的供回水管之间宜设置电动三通调节阀。

(6)排风系统需考虑冷凝水的排放问题。

分析
●此方案机组布置灵活,无需对现场已完成风管主体进行大面积更改;
同时回收盘管之间通过管路连接,安装较为方便
●对安装空间要求不高,新风机组中回收盘管可以和表冷盘管放在一
起,节省空间
●换热器本身无运动部件,维护简单
●乙二醇溶液作为循环介质,具有防冻作用,冬季无需考虑新风系统
防冻问题
结论
此方案能够满足现场需求,且针对前期施工内容,无需大范围更改。

但是需要增设部分乙二醇水泵及相应管路,空调机组内需加装热回收盘管。

中间热媒式换热装置
方案5:热管式热回收装置
在空调机中加设热管作为热回收装置,利用热管的传热性能,冬季回收排风中的热量加热新风,夏季回收排风中的冷量冷却新风,从而达到技能的目的(1)冬季使用时,低温侧;上倾5°~7°。

夏季时可用手动方法使其下倾10°~14°
(2)排风中应含尘量小,且无腐蚀性。

(3)迎面风速宜控制在1.5~3.5m/s之间。

(4)可以垂直或水平安装,既可并联,也可串联。

(5)当热气流的含湿量较大时,应设计排凝水装置。

(6)当启动换热装置时,应使冷、热气流同时流动或使冷气流先流动;停止时,应使冷、热气流同时停止,或先停止热气流。

(7)受热管和翅片上积灰等因素的影响,计算出的效率应打一定的折扣。

(8)当冷却端为湿工况时,加热端的效率值应适当增加,即增加回收热量
系统原理图
热管热回收器工作原理(冬季)
分析
●热回收系统对新风进行了处理降低了空调机运行负荷,减少了运行费用;
●热回收系统减少了空调机组的最大负荷,减小空调系统型号降低初始投资;
●后期需人为切换冬夏季工作模式;
●因呼市气候环境的因素,夏季昼夜温差较大,热管回收装置换热效率无法保证,有可能出现排风温度高出新风温度,造成能源浪费;
注:热管热回收工质为乙二醇。

咨询相关厂家,提供了空调机组的变更参数
A7#布病车间全新风系统热排交换盘管参数
系统编号新风量
m3/h
排风量
m3/h
风速
m/s
盘管规格(排
数*列根数)
盘管尺寸mm(L*W*H)
初阻力
Pa
K-H 2853 3665 2.21 6*11 (新风640+排风640)*676*420 100 JK-F 3810 4211 2.16 6*13 (新风740+排风740)*778*420 100 JK-D 8239 8841 2.66 6*18 (新风940+排风940)*1033*420 100 JK-C 11738 13146 2.68 6*21 (新风1140+排风1140)*1226*420 100 JK-B 19577 21191 2.65 6*28 (新风1440+排风1440)*1583*420 100 结论
此方案能够满足现场需求,但需对现场已完成工作内容进行改动,无其他外加设备。

同时换热效果不稳定,存在浪费能源的可能。

综上所述,方案4:中间热媒式换热装置(乙二醇液体循环式)方案最佳,且相应的变更改造费用最低。

所以,最终确认采用此方案。

相关文档
最新文档