全等三角形的判定课件总结

合集下载

完整版-全等三角形总复习PPT教学课件

完整版-全等三角形总复习PPT教学课件

AC=BC
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
∴ BE=AD
2024/3/9
29
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
AB

DB
∠ABE = ∠ DBC
BE=BC ∴△ABE≌△DBC(SAS)
D
C
2
1
A
B
思路3: 已知一边一角(边与角相邻):
找夹这个角的另一边
AD=CB (SAS)
找夹这条边的另一角
∠ACD=∠CAB(ASA)
找边的对角
∠D=∠(B AAS)
15
如图,已知∠B= ∠E,要识别△ABC≌ △AED,需 要添加的一个条件是--------------
A
D
C
E
思路4:
找夹边
AB=AE (ASA)
∴ △ADC ≌ △EDB
D
C
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD 1 (AB AC) 2
2024/3/9
35
12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
离相等的点在角的平分线上)
2024/3/9
10
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

完整版三角形全等的判定课件

完整版三角形全等的判定课件

长至E,使CE =CB,连接ED,那么量出DE的长就是A,
B的距离.为什么?
A
B
1
C
2
E
D
完整版三角形全等的判定
40
证明:在△ABC 和△DEC 中,
AC = DC(已知),
∠1 =∠2 (对顶角相等),
BC =EC(已知) ,
A
B
∴ △ABC ≌△DEC(SAS).
∴ AB =DE
1 C
(全等三角形的对应边相等).
②两边及其中一边的的对角对应相 等的两个三角形不一定全等.
③ 现在你知道哪些三角形全等的 判定方法?
SSS, SAS
完整版三角形全等的判定
24
4.“斜边、直角边”公理(HL):
斜边和一条直角边分别相等的两个直角三角形全等。 简写为“斜边、直角边”或“HL”
A
几何语言:
∵ 在Rt△ABC 和 Rt△A'B'C'中, AB =A'B',
一、知识回顾
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、 已知△ABC ≌△ DEF,找出其中相等的边与角
A
D
①AB=DE ④ ∠A= ∠D
② BC=EF ⑤ ∠B=∠E
③ CA=FD ⑥ ∠C= ∠F
B
CE
F
全等三角形性质:
全等三角形的对应边相等,对应角相等。
完整版三角形全等的判定
1
几何语言:
A
D
E
F
题设
B 结论 C
全等三角形 的对应边相等对应角相等
∵∆ABC ≌∆DEF

①AB=DE ④ ∠A= ∠D ② BC=EF ⑤ ∠B=∠E

三角形全等的判定ppt课件

三角形全等的判定ppt课件

知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.

全等三角形ppt课件

全等三角形ppt课件

斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

12-2 三角形全等的判定 课件(共25张PPT)

12-2 三角形全等的判定 课件(共25张PPT)
并延长到点,使 = .连接并延长到点,使
和 ∠2 的根据是什么?
AB=DE的根据是什么?
.连接,那么量出的长就是,的距离.为什么?
在△ 和△ 中,
=
ቐ ∠1 = ∠2
=
∴△ ≌△ ()∴ = .
【结论】因为全等三角形对应边相等,对应角相等,所以证明线段相等或者
第十二单元 全等三角形
12.2 三角形全等的判定
情景导入
根据上一节的学习,我们知道,如果△ ≌△ ′′′,那么它们
的对应边相等,对应角相等。反过来,根据全等三角形的定义,
如果△ 与 △ ′′′满足三条边分别相等,三个角分别相等,即
= ’’, = ’’, = ’’
与△ABD不全等。这说明,有两边和
其中一边的对角分别相等的两个三角
形不一定全等。
教学新知
探索4:先 任 意 画 出 一 个 △ . 再 画 一 个 △ ′′′ , 使 ′′ = ,
∠′ = ∠,∠′ = ∠(即两角和它们的夹边分别相等).把画
好的△ ′′′剪下来,放到△ 上,它们全等吗?
.求证△ ≌△ .
在△ 中,∠ + ∠ + ∠ = 180°,
∴∠ = 180° − ∠ − ∠.
同理∠ = 180° − ∠ − ∠.
又∠ = ∠,∠ = ∠,∴∠ = ∠
在△ 和△ 中,
三角形木架的形状、大小就不变了.就是说,三角形三条边的长度
确定了,这个三角形的形状、大小也就确定了.
例1:在右图所示的三角形钢架中, = ,是连接点与
中点的支架.求证△ ≅△ .
∵是的中点,∴ = .
在△ 和△ 中,
=
ቐ =

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

《三角形全等的判定》-完整版课件

《三角形全等的判定》-完整版课件
观察这些图片,你能看出形状、大小完全一样的几 何图形吗?
你能再举出生活中的一些类似例子吗?
请同学们把一块三角尺按在纸板上, 画下图形后,比较观察这两个三角形 有何关系?从同一张底片冲洗出来的 两张尺寸相同的照片上的图形,放在 一起也能够完全重合吗?
全等三角形的概念
全等三角形: 能够完全重合的两个三角
全等三角形对应角相等.
B
C
请说出目前判定三角形全 等的4种方法:
SAS,ASA,AAS,SSS
问题 任意画一个Rt△ABC,使∠C =90°,再画 一个Rt△A'B'C',使∠C'=90°,B'C'=BC, A'B'=AB,然后把画好的Rt△A'B'C'剪下来放到 Rt△ABC上,你发现了什么?
F
C
B
E
L
从上面的图形中可以看出,若已知 ∠A=60°,∠B=80°,相信你一 定可以求出△ABC的各个角的大小: ∠D=__6_0_°_,∠E=_8_0_°_, 40° ∠F=___.
已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm ; (2)若∠A =100°,则:
C1
比眼力:找全等.
8
Ⅰ 30o
9
8Ⅱ 30o
5
8 30o
8Ⅲ
5 30o
Ⅴ 8
8Ⅵ 30o8
8 Ⅶ
30o 9
Ⅳ8 5
8 Ⅷ
5
如图,有一池塘,为测量池塘两端A、B的距
离,设计了如下方案:如图,先在平地上取 一个可直接到达A、B的点C,再连结AC、
BC并分别延长AC至D、BC至E,使CD=CA,
CE=CB,最后测得DE的距离即为AB的 长.你知道其中的道理吗?

2.8 直角三角形全等的判定 课件(共16张PPT)

2.8 直角三角形全等的判定 课件(共16张PPT)

DA
证明: 作射线OP ∵ PD⊥OA, PE⊥OB(已知)
P
O
1 2
∴ ∠PDO=∠PEO=Rt∠ 又∵ OP=OP(公共边),PD=PE(已知) ∴ Rt△PDO≌Rt△PEO( HL )
EB
∴ ∠1=∠2,即点P在∠AOB的平分线上
讲授新课
角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
如图所示:
(1)作出△ABC两内角的平分线,其交
点为O1;
(2)分别作出△ABC两外角平分线,其
L1 交点分别为O2,O3,O4,
L3
L2
故满足条件的修建点有四处,即O1,O2,
O3,O4.
总结归纳
1.直角三角形全等的判定定理(HL) 斜边和一条直角边对应相等的两个直角三角形全等. 2.角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
(3)一个锐角和斜边对应相等;
( AAS )
(4)两直角边对应相等;
( SAS )
(5)一条直角边和斜边对应相等.
( HL )
举一反三
2. 如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证: AB//ED.
证明:∵C为AD的中点, ∴ AC=DC. ∵ BE⊥AD, ∴ △ACB和△DCB都是直角三角形. 又AB=DE, ∴ Rt△ACB≌Rt△DCE(HL). ∴ ∠A=∠D. ∴ AB // ED(内错角相等,两直线平行).
如果两个直角三角形的斜边和一条直角边对应相等, 那么这两个直角三角形全等。
问题2: 证明一个命题是真命题, 有哪几个步骤呢?
1.由题意作图形,标字母或符号;

三角形全等的判定ppt课件

三角形全等的判定ppt课件
追问1:这个尺规作图的方法利用了上节课中的哪个知识点?
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD

∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS




SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,

《三角形全等的判定》课件

《三角形全等的判定》课件
《三角形全等的判定》
知识回顾
1.什么叫全等三角形?
能够完全重合的两个三角形叫做全等三角形.
A
2.三边分别相等的两个三角形全等(可以
简写成“边边边”或“SSS”).
符号语言表示:在△ABC和△A'B'C'中,B
C
AB=A'B',
A'
AC=A'C',
BC=B'C',
∴△ABC≌△A'B'C' (SSS). B'
C'
3.两边和它们的夹角分别相等的两个三角形全等(可以
简写成“边角边”或“SAS”).
A
符号语言表示:在△ABC和△A′B′C′中,
AB=A′B′, ∠B=∠B′, BC=B′C′,
B
C
A'
∴△ABC≌△A′B′C′(SAS). B'
C'
4.两角和它们的夹边分别相等的两个三角形全等(可以
简写成“角边角”或者“ASA”).
FE
BE=CF,
A
B
∴Rt△ABE≌Rt△DCF(HL). ∴AE=DF.
随堂练习
1.已知,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90〫,
有如下几个条件:①AC=A′C′,∠A=∠A′;②AC=A′C′, AB=A′B′;③AC=A′C′,BC=B′C′;④ AB=A′B′,
∠A=∠A′.其中,能判定Rt△ABC≌Rt△A′B′C′的条件的
需寻找的条件
可证直角与已知锐角的夹边对 应相等或者与锐角(或直角)
的对边对应相等
可证一直角边对应相等或证一 锐角对应相等

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)

全等三角形的判定ppt课件完整版

全等三角形的判定ppt课件完整版

注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

打碎也成了三块,现在要到玻璃店去配一块完全一样
的玻璃,那么最省事的办法是
()
• A.带①去
B.带②去
• C.带③去 D.带①和②去
1、“量入图形”思想,即相关量在图形中标出 2、结合题中条件和结论,选择恰当的判定方法。 3、全等是说明线段或角相等的重要方法之一。 说明时注意以下三点: ①观察结论中的线段或角,在哪两个可能全等的三角形中。
A
A1
B
C
图1
E
E
D
C
B1
C1
D
图2
我学会了------我懂得了------还有------
• 作业
遨游了知识的海洋,老师发现你们 是很棒的,做作业可要小心细致呦!
• 作业1:教材复习题12第3题。 • 作业2:教材复习题12第8题。
生活真美,生活中有数学,我们爱生活, 我们爱数学,因为它可以使我们睿智。
A O
3.如图(3),若OB=OD,∠A=∠C,AB=3cm,
则CD=
.
A
E C
图(2)
D
O
B
C
图(3)
题型二 添条件判定全等
• 4、如图,已知AD平分∠BAC,要使△ABD≌△ACD,
【解析】
• 根据“SAS”需要添加条件 AB=AC

• 根据“ASA”需要添加条件 ∠ADB=ADC ;
• 根据“AAS”需要添加条件 ∠B=∠C
A
12
EC
请同学们 注意书写 格式哦!
B
D
大显身手:
如图所示,已知AB=AC,BD=CD,点E在AD 的延长线上,说明BE=CE的理由
B
A
D
E
C
例3.如图,有一湖的湖岸在A,B之间呈一段圆 弧状,A,B间的距离不能直接测得,你能用 已学过的知识或方法设计测量方案,求出 A,B间的距离吗?
A
C
E
.
关键:培养同学们对图形的观察能力,注意图形
语言和符号语言的相互转化,发展合情推理的能力
A
C B
复习过程:
定义→性质→判定
• ㈠全等形: • ㈡全等三角形 • ⑴定义: • ⑵性质: (三)全等三角形的判定方法
SSS

个 三
SAS

ห้องสมุดไป่ตู้
形 全
ASA

任意两角加一边对应

相等两三角形全等

AAS

方 法
全等形及全等三角形
塘坝中学 陈文友
复习目标:
1、了解全等三角形的概念与性质 2、回顾全等三角形的四种判定方法:
“角边角”、“角角边”、“边角边”、“边边边” 直角三角形中“HL” 3、通过复习,熟练掌握判定两个三角形全等的方法 4、体验合情推理的过程,发展合情推理的能力
重点:全等三角形的判定方法
难点:准确找出全等三角形的对应边和对应角
HL
典型例题分析:
例1、如图所示,:已知AC=AD,请你添加一个条件————, 使得△ABC≌△ABD
思路
隐含条件AB=AB
找另一边 (SSS) BC=BD
已 知 两 边
找夹角 (SAS) ∠CAB= ∠DAB
变式1:如图,已知∠C=∠D,请你添加一个条件————,使得
△ABC≌△ABD
思路
隐含条件AB=AB
②分析已有条件,欠缺条件,选择判定方法。
③公共边、公共角以及对顶角一般都是题中隐含的条件。
拓展提高:
如图1,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE (1)请说明△ABC ≌△CDE,并判断AC是否垂直CE?
(2)若将△ABC 沿BC方向平移至如图2的位置时, 且其余条件不变,则A1C1是否垂直于CE?请说明为什么?
边 一 角
找边对的另一角(AAS) ∠C=∠D
变式3、如图所示:已知∠B=∠C,请你添加一个条件————,使得
△ABE≌△ACD
∠A为公共角
思路
A
D
找夹边(ASA) AB=AC

知 两
B

找对边(AAS) AE=AD 或 BE=DC
E C
例2.如图,已知AB=AD,AC=AE,∠1=∠2,
求证:BC=DE
已 知 一 这边为角的对边 边 一 角
∠CAB=∠DAB 找任一角(AAS) 或
∠ABC=∠ABD
变式2:如图,已知∠CAB=∠DAB,请你添加一个条件————,使得
△ABC≌△ABD
隐含条件AB=AB
思路

找夹角的另一边(SAS) AC=AD
知 一
这边为角的邻边
找夹边的另一角(ASA) ∠ABC=∠ABD
B
D
题型展示
• 题型一 挖掘“隐含条件”判定全等
1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。 A D
【解析】
2.如图(2),点D在AB上,点E在AC上,CD与BE相
B
C
图(1)
交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则 B
D
∠C=
,BE=_____.

B
A
D
C
题型三 熟练转化“间接条件”判定全等
5.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△ CEB全等吗?为什么?
【解析】
A
D
F
E
6.如图(5)∠CAE=∠BAD,
∠B=∠D,AC=AE,
B
△ABC与△ADE全等吗?为什么?
【解析】
E
C
B
D
C
A
题型四 生活中的实际应用
⑴利用全等三角形配玻璃: 某同学把一块三角形的玻璃
相关文档
最新文档