考研数学二模拟试题2及答案解析word版本
考研数学二(解答题)模拟试卷120(题后含答案及解析)
考研数学二(解答题)模拟试卷120(题后含答案及解析)题型有:1.1.设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).正确答案:(1)由∫01xdx+∫12k(2一x)dx==1,得k=1.(2)因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=0;当0≤x<1时F(x)=∫0xf(t)dt=x2;当1≤x<2时F(x)=∫0xf(t)dt=∫01tdt+∫1x(2-t)dt=2x一x2-1;当x≥2时,F(X)=1.期F(x)=解析:考查利用概率密度计算分布函数的方法,是基本问题.注意到f(x)是分段函数,可根据x的不同取值范围直接利用公式F(x)=∫-∞xf(t)dt计算.知识模块:概率论与数理统计2.已知齐次线性方程组同解,求a,b,c的值.正确答案:方程组(Ⅱ)的未知量个数大于方程的个数,故方程组(Ⅱ)有无穷多个解.因为方程组(Ⅰ)与(Ⅱ)同解,所以方程组(Ⅰ)的系数矩阵的秩小于3.由此得a=2.此时,方程组(Ⅰ)的系数矩阵可通过初等行变换化为由此得(-1,-1,1)T是方程组(Ⅰ)的一个基础解系.将x1=-1,x2=-1,x3=1代入方程组(Ⅱ)可得b=1,c=2或b=0,c=1.当b=1,x=2时,对方程组(Ⅱ)的系数矩阵施以初等行变换,有比较(1)式与(2)式右边的矩阵可知,此时方程组(Ⅰ)与(Ⅱ)同解.当b=0,c=1时,方程组(Ⅱ)的系数矩阵可通过初等行变换化为比较(1)与(3)右边的矩阵可知,此时方程组(Ⅰ)与(Ⅱ)的解不相同.综上所述,当a=2,b=1,c=2时,方程组(Ⅰ)与(Ⅱ)同解.涉及知识点:线性方程组3.设(Ⅰ)求f’(x);(Ⅱ)f’(x)在点x=0处是否可导?正确答案:(Ⅰ)这是分段函数,分界点x=0,其中左边一段的表达式包括分界点,即x≤0,于是可得当x≤0时,f’(x)=+2cos2x,x=0处是左导数:f’-(0)=2;当x>0时,又=f(0),即f(x)在x=0右连续f’+(0)=2.于是f’(0)=2.因此(Ⅱ)f’(x)也是分段函数,x=0是分界点.为讨论f’(x)在x=0处的可导性,要分别求f’+(0)与f’-(0).同前可得按定义求f’’+(0),则有因f’’+(0)≠f’’(0),所以f’’(0)不存在,即f’(x)在点x=0处不可导.涉及知识点:一元函数的导数与微分概念及其计算4.设向量组的秩为2,求a,b.正确答案:记A=(a3,a4,a1,a2),并对矩阵A作初等行变换当且仅当a 一2=0且b一5=0时,向量组(a3,a4,a1,a2)的秩为2,即a=2,b=5.涉及知识点:矩阵5.设线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0),且β1=(一1,1,1)T,β2=(1,1,一1)T 是该方程组的两个解,写出此方程组的通解.正确答案:(1)方程组的增广矩阵的行列式为=(a4一a3)(a4—a2)(a4—a1)(a3一a2)(a3一a1)(a2—a1).由a1,a2,a3,a4两两不相等,故|B|≠0,即r(B)=4,而系数矩阵A的秩r(A)≤3,故r(A)≠r(B).即方程组无解.(2)当a1=a3=k,a2=a4=一k(k≠0)时方程组为解析:本题考查线性方程组的解的存在性的判定,解的结构及解的求法.知识模块:线性方程组6.设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.正确答案:由Aα=(E+ααT)α=α+ααTα=3α,于是得A的特征值λ3=3,其对应的特征向量为k1α,k1≠0为常数.又由A=E+ααT,得A—E=ααT,两边取行列式|A一E|=|ααT|=0,由此知λ2=1是A的另一个特征值.再由矩阵A的特征值的性质,trA=λ1+λ2+λ3=4+λ3,从而λ3=trA一4=3+αTα-4=1.由于λ2=λ3=1,对应的特征矩阵为A-E,由题设条件α=(a1,a2,a3)T≠0,不妨设a1≠0,则由此得方程组(A—E)x=0的同解方程组为a1x1=一a2x2一a3x3,解得λ2=λ3=1对应的特征向量为x=k2(一a2,a1,0)T+k3(一a3,0,a1)T,其中k2,k3,是不同时为零的任意常数.解析:本题考查抽象矩阵求特征值与特征向量的方法.可用定义Ax=λx,特征方程|λE-A|=0,trA=λ1+λ2+λ3.求A的特征值与特征向量.知识模块:矩阵的特征值和特征向量及方阵的相似对角化7.设函数求f(x)的最小值.正确答案:由题意令f’(x)=0,得唯一驻点x=1.当x∈(0,1)时f’(x)<0,函数单调递减;当x∈(1,∞)时f’(x)>0,函数单调递增.所以函数在x=1处取得最小值f(1)=1.涉及知识点:一元函数微分学8.已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.正确答案:若α1+α2+α3是矩阵A属于特征值λ的特征向量,即A(α1+α2+α3)=λ(α1+α2+α3).又A(α1+α2+α3)=Aα1+Aα2+Aα3=λ1α1+λ2α2+λ3α3,于是(λ-λ1)α1+(λ-λ2)α2+(λ-λ3)α3=0.因为α1,α2,α3线性无关,故λ-λ1=0,λ-λ2=0,λ-λ3=0.即λ1=λ2=λ3.涉及知识点:特征向量与特征值,相似,对角化9.设f(x)在x=0处n(n≥2)阶可导且=e4,求f(0),f’(0),…,f(n)(0).正确答案:1)先转化已知条件.由=e4知从而再用当x→0时的等价无穷小因子替换ln[1+f(x)]~f(x),可得2)用a(1)表示当x→0时的无穷小量,由当x→0时的极限与无穷小的关系=4+o(1),并利用xno(1)=o(xn)可得f(x)=4xn+o(xn).从而由泰勒公式的唯一性即知f(0)=0,f’(0)=0,…,f(n-1)(0)=0,=4,故f(n)(0)=4n!.涉及知识点:一元函数的泰勒公式及其应用10.设D是由曲线y=sin x+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.正确答案:y=π∫0π(sin x+1)2dx=。
考研数学(数学二)模拟试卷442(题后含答案及解析)
考研数学(数学二)模拟试卷442(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k= ( )A.mn+n.B.n+m.C.m+n.D.mn+n-1.正确答案:A解析:当x→0时,f(x)与xm为同阶无穷小,从而知存在常数A≠0,当x →0时,f(x)~Axm,从而,f(xn)~Axm.于是由题意可知,上式为不等于零的常数,故k=mn+n.2.设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的( )A.必要条件而非充分条件.B.充分条件而非必要条件.C.充分必要条件.D.既非充分又非必要条件.正确答案:D解析:下面举两个例子说明应选D.①设φ(x)在x=0处连续,但f(x)=|x|φ(x)在x=0处不可导的例子如下:取φ(x)≡1,但f(x)=|x|在x=0处不可导.②设φ(x)在x=0的某邻域内有定义,但在x=0处不连续,而f(x)=|x|φ(x)在x=0处却可导的例子如下:设φ(x)在x=0处不连续,但=-∞<x<+∞.所以f(x)在x=0处可导,fˊ(0)=1.3.sin(x2+y2)dy= ( )A.(cos 2-1).B.(-cos 2+1).C.(cos 2+1).D.(-cos 2-1).正确答案:B解析:积分区域D的边界曲线为y= |x|与,其交点为(1,1)与(-1,1).化为极坐标:4.设f(x)在x=0处存在二阶导数,且f(0)=0,fˊ(0)=0,f″(0)≠0.则( )A.B.C.D.正确答案:C解析:先作积分变量代换,令x-t=u,则由二阶导数定义,5.设下述命题成立的是( )A.f(x)在[-1,1]上存在原函数.B.gˊ(0)存在.C.g(x)在[-1,1]上存在原函数.D.F(x)=∫-1xf(t)dt在x=0处可导.正确答案:C解析:A不正确.f(x)在点x=0处具有跳跃间断点.函数在某点具有跳跃间断点.那么往包含此点的区间上.该函数必不存在原函数.B不正确.按定义容易知道gˊ(0)不存存.C正确.g(x)为[-1,1]上的连续函数,故存在原函数.D 不正确.可以具体计算出F(x),容易看Fˊ-(0)=0.Fˊ+(0)=0.故Fˊ(0)不存在.6.设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程所确定.又设题中出现的分母不为零,则( )A.0.B.z.C.D.1.正确答案:B解析:由题意,得7.设ξ1(1,-2,3,2)T,ξ2(2,0,5,-2)T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( ) A.α1=(1,-3,3,3) T.B.α2= (0,0,5,-2) T.C.α3=(-1,-6,-1,10) T.D.α4 =(1,6,1,0) T.正确答案:C解析:已知Ax=0的基础解系为ξ1,ξ2,则αi,i=1,2,3,4是Ax=0的解向量〈=〉αi可由ξ1,ξ2线性表出〈=〉非齐次线性方程组ξ1y1+ξ2y2=αi有解.逐个判别αi较麻烦,合在一起作初等行变换进行判别较方便.显然因r(ξ1,ξ2)=r(ξ1,ξ2|α3)=2,ξ1y1+ξ2y2=α3有解,故α1,α2,α3是Ax=0的解向量.8.设α=(1,2,3)T,β1=(0,1,1)T,β2= (-3,2,0) T,β3=(-2,1,1)T,β4=(-3,0,1)T,记Ai=αβiT,i=1,2,3,4.则下列矩阵中不能相似于对角矩阵的是( )A.A1.B.A2.C.A3.D.A4.正确答案:D解析:因Ai=αβiT≠O,r(Ai)=r(αβiT)≤r(α)=1,i=1,2,3,4.故λ=0至少是3阶方阵Ai (i=1,2,3,4)的二重特征值.则Ai (i=1,2,3,4)的第3个特征值分别是故知A4的特征值λ1=λ2=λ3=0,是三重特征值,但A4≠O,故A4不能相似于对角矩阵.应选D.填空题9.=______.正确答案:解析:10.椭圆绕x轴旋转一周生成的旋转曲面s的面积=______.正确答案:解析:11.曲线r=a(1+cosθ)(常数a>0)在点处的曲率k=______.正确答案:解析:将极坐标方程r=a(1+cosθ)化成参数式:于是有代入由参数式表示的曲率公式:并经较复杂但初等的运算,得12.在区间[0,1]上函数f(x)=nx(1-x)n(n为正整数)的最大值记为M(n),则=______.正确答案:e-1解析:f(x)=nx(1-x)n,fˊ(x)=n(1-x)n-n2x(1-x)n-1=n(1-x)n-1(1-x-nx).令fˊ(x)=0,得由于f(0)=f(1)=0,f(x)>0 (x∈(0,1)).在区间(0,1)内求得唯一驻点所以f(x1)为最大值.所以13.设函数f与g可微,z=f[xy,g(xy)+1nx],则______.正确答案:fˊ2解析:由14.设二次型f(x1,x2,x3,x4)= x12+2x1x2-x22+4x2x3-x32-2ax3x4+(a -1)2x42的规范形为y12+y22-y32;则参数a=______.正确答案:解析:f是四元二次型,由规范形知,其正惯性指数为2,负惯性指数为1,且有一项为零.故知其有特征值λ=0,故该二次型的对应矩阵A有|A|=0.因故应有a=.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学(数学二)模拟试卷420(题后含答案及解析)
考研数学(数学二)模拟试卷420(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(χ)二阶连续可导,g(χ)连续,且f′(χ)=lncosχ+∫0χg(χ-t)dt,=-2,则( ).A.f(0)为f(χ)的极大值B.f(0)为f(χ)的极小值C.(0,f(0))为y=f(χ)的拐点D.f(0)不是f(χ)的极值,(0,f(0))也不是y=f(χ)的拐点正确答案:C解析:显然f′(0)=0,=-2得g(0)=0,g′(0)=-2.由∫0χg(χ-t)dt∫0χg(u)du得f′(χ)=lncosχ+∫0χg(u)du.故(0,f(0))为y=f(χ)的拐点,选C.2.当χ>0时,f(lnχ)=,则∫-22χf′(χ)dχ为( ).A.B.C.D.正确答案:C解析:由f(lnχ)=得f(χ)=,故选C.3.设z=z(χ,y)由F(az-by,bχ-cz,cy-aχ)=0确定,其中函数F 连续可偏导且af′1-cf′2≠0,则=( ).A.aB.bC.cD.a+b+c正确答案:B解析:F(az-by,bχ-cz,cy-aχ)=0两边对χ求偏导得=0,解得;F(az -by,bχ-cz,cy-aχ)=0两边对y求偏导得,故,因此选B.4.设函数f(χ)在(-∞,+∞)上连续,其导函数的图形如图所示,则f(χ)有( ).A.一个极小值点和两个极大值点B.两个极小值点和一个极大值点C.两个极小值点和两个极大值点D.三个极小值点和一个极大值点正确答案:C解析:设导函数的图形与χ轴的交点从左至右依次为A,B,C,在点A左侧f′(χ)>0,右侧f′(χ)<0.所以点A为f(χ)的极大值点,同理可知点B 与C都是f(χ)的极小值点.关键是点0处,在它左侧f′(χ)>0,右侧f′(χ)<0,而f(χ)在点O连续,所以点O也是f(χ)的极大值点(不论在χ=0处f(χ)是否可导,见极值第一充分条件),选C.5.设D为y=χ,χ=0,y=1所围成区域,则arctanydχdy=( ).A.B.C.D.正确答案:B解析:因此选B.6.设函数u=f(χz,yz,χ)的所有二阶偏导数都连续,则=( ).A.0B.χzf〞11+yzf〞22+z2f〞12C.z2f〞12+zf〞32D.χzf〞11+yzf〞22正确答案:C解析:因此选C.7.设矩阵B的列向量线性无关,且BA=C,则( ).A.若矩阵C的列向量线性无关,则矩阵A的列向量线性相关B.若矩阵C的列向量线性无关,则矩阵A的行向量线性相关C.若矩阵A的列向量线性无关,则矩阵C的列向量线性相关D.若矩阵C的列向量线性无关,则矩阵A的列向量线性无关正确答案:D解析:设B为m×n矩阵,A为n×s矩阵,则C为m×s矩阵,且r(B)=n.因为BA=C,所以r(C)≤r(A),r(C)≤r(B).若r(C)=s,则r(A)≥s,又r(A)≤s,所以r(A)=s,A的列向量组线性无关,A项不对;若r(C)=s,则r(A)=s,所以A的行向量组的秩为s,故n≥s.若n>s,则A的行向量组线性相关,若n=s,则A的行向量组线性无关,B项不对;若r(A)=s,因为r(C)≤s,所以不能断定C的列向量组线性相关还是无关,C项不对;若r(C)=s,则r(A)=s,故选D.8.设n阶方阵A的n个特征值全为0,则( ).A.A=OB.A只有一个线性无关的特征向量C.A不能与对角阵相似D.当A与对角阵相似时,A=O正确答案:D解析:若A的全部特征值皆为零且与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=,于是A=O,选D.填空题9.=_______.正确答案:解析:10.设y=f(χ)与y=sin2χ在(0,0)处切线相同,其中f(χ)可导,则=_______.正确答案:解析:由y=f(χ)与y=sin2χ在(0,0)处切线相同得f(0)=0,f′(0)=2.由∫0χf(χ-t)dt∫0χf(u)du11.=_______.正确答案:10π解析:12.由方程χ+2y+z-2=0所确定的函数z=z(χ,y)在点(1,1,2)处的全微分dz=_______.正确答案:dχ-2dy解析:χ+2y+z-2=0两边对χ求偏导得1+=0,则,z+2y+z -2=0两边对y求偏导得2+=0,则=-2,于是dz=dχ-2dy.13.设函数y=y(χ)在(0,+∞)上满足△y=(+χsinχ)△χ+o(△χ),且,则y(χ)=_______.正确答案:χ(1-cosχ)解析:由可微的定义,函数y=y(χ)在(0,+∞)内可微,且y′=+χsin χ或y′-=χsinχ,由一阶非齐次线性微分方程的通解公式得y==(-cos χ+C)χ由得C=1,所以y=χ(1-cosχ).14.设矩阵A=不可对角化,则a=_______.正确答案:0或4解析:由|λE-A|==λ(λ-a)(λ-4)=0,得λ1=0,λ2=,λ3=4.因为A不可对角化,所以A的特征值一定有重根,从而a=0或a=4.当a=0时,由r(OE-A)=r(A)=2得λ1=λ2=0只有一个线性无关的特征向量,则A不可对角化,a=0合题意;当a=4时,4E-A=,由r(4E-A)=2得λ2=λ3=4只有一个线性无关的特征向量,故A不可对角化,a =4合题意.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二(多元函数微分学)模拟试卷2(题后含答案及解析)
考研数学二(多元函数微分学)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x0,y0)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有A.②→③→①.B.③→②→①.C.③→④→①.D.③→①→④.正确答案:A 涉及知识点:多元函数微分学2.设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y).B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).C.可确定两个具有连续偏导数的隐函数z=x(y,x)和z=z(x,y).D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,2).正确答案:D 涉及知识点:多元函数微分学3.已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则A.点(0,0)不是f(x,y)的极值点.B.点(0,0)是f(x,y)的极大值点.C.点(0,0)是f(x,y)的极小值点.D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.正确答案:A 涉及知识点:多元函数微分学4.设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是A.f(x0,y)在y=y0处的导数等于零.B.f(x0,y)在y=y0处的导数大于零.C.f(x0,y)在y=y0处的导数小于零.D.f(x0,y)在y=y0处的导数不存在.正确答案:A 涉及知识点:多元函数微分学填空题5.设z=ex-f(x-2y),且当y=0时,z=x2,则=________。
考研数学二真题及答案分析精选文档
证明:
若 ,求方程组 的通解。
【答案】(I)略;(II)通解为
【解析】
(I)证明:由 可得 ,即 线性相关,
因此, ,即A的特征值必有0。
又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0.
且由于A必可相似对角化,则可设其对角矩阵为
(15)(本题满分10分)求极限
【答案】
【解析】 ,令 ,则有
(16)(本题满分10分)设函数 具有2阶连续偏导数, ,求 ,
【答案】
【解析】
结论:
(17)(本题满分10分)求
【答案】
【解析】
(18)(本题满分10分)已知函数 由方程 确定,求 的极值
【答案】极大值为 ,极小值为
【解析】
两边求导得:【答案】 Nhomakorabea【解析】
(11) _______
【答案】1
【解析】
(12)设函数 具有一阶连续偏导数,且 , ,则
【答案】
【解析】 故
,
因此 ,即 ,再由 ,可得
【答案】
【解析】
(13)
【答案】 .
【解析】交换积分次序:
.
(14)设矩阵 的一个特征向量为 ,则
【答案】-1
【解析】设 ,由题设知 ,故
故 .
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
【解析】 在 处连续 选A.
(2)设二阶可导函数 满足 且 ,则()
【答案】B
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
2024年考研数学二模拟卷
2024年考研数学二模拟卷2024年考研数学二模拟卷指的是在2024年全国硕士研究生招生考试中,用于模拟测试考生数学二科目知识掌握程度的试卷。
这种试卷通常由填空题、计算题等题型组成,涵盖了数学二所要求的知识点,难度和题型与正式考试相仿。
以下是两道示例的2024年考研数学二模拟卷的选择题和一道填空题:计算题:1.题目:已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = 1 和 x = -1 时取极值,且 f(-2) = -4。
(1) 求 a、b 的值;(2) 求 f(x) 的单调区间。
答案:(1) a = 1,b = -3;(2) 单调递增区间为 (-∞,-1) 和 (1,+∞),单调递减区间为 (-1,1)。
判断题:1.题目:已知函数 f(x) = x^2 + 2x + m 在区间 [-3, 3] 上的最小值为 -3。
(1) 求 m 的值;(2) 求 f(x) 在区间 [-3, 3] 上的最大值。
答案:(1) m = -6;(2) 最大值为 15。
填空题:1.题目:已知函数 f(x) = x^3 - 3x^2 + 4 在区间 [0, a] 上有最大值 4,则 a的取值范围是 ___。
答案:a > 2 或 0 < a < 1总结:2024年考研数学二模拟卷指的是在2024年全国硕士研究生招生考试中,用于模拟测试考生数学二科目知识掌握程度的试卷。
这种试卷通常由选择题、填空题、计算题等题型组成,难度和题型与正式考试相仿。
通过做模拟卷可以帮助考生熟悉考试形式和题型,检查自己的知识掌握程度,提高解题技巧和应试能力。
2022考研数学二模拟试卷二答案解析
4
解 由题意知 r( A) 1,A 对称, 从而 A* 也对称.又因为 A (1,1,,1)T 3(1,1,,1)T ,所以 A*
的特征值为 3, 0, 0,, 0 , 对称阵不同的特征值对应的特征向量正交, Ax 0 的解与特征值 3 对应
的特征向量 (1,1, ,1)T 正交, Ax 0 与 x1 x2 x3 xn 0 同解. Ax 0 的通解为 x k1(1,1, 0,, 0)T k2 (1, 0,1,, 0)T kn1(-1,0,0,,1)T,ki 为任意实数.
(9) 答案:选(A).
解 记 A (1,2,3,4 ) ,由已知的向量表示可知
0 1 2 1
(1,2 ,3,4 )
(1,2 ,3,4 )
1 2
0 2
1 0
4 1
,
1
5
4
0
记作 A AB ,从而 A(B E) O ,故 r(A) r(B E) 4 ,又 r(B E) 3 ,故 r(A) 1.再因为
解
z x
f1
f2
,
z y
cf1
cf
2
;
2z x2
f11 2 f12
f
22
,
2z y 2
c2
f11
c2
f12
c2
f
21
c2
f
22
c2 f11
2c2
f12
c2
f
22
,
2z x2
1 c2
2z y 2
4
f12.
(14)答案:填 .
解 F(t)
f (x 2 y 2)dxdy 2 d t f (r 2)rdr 2 t f (r 2)rdr ,所以
考研数学模拟试卷(数学二)(附答案,详解)
考研数学模拟试卷(数学二)(附答案,详解)一、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合题目要求,把所选项的字母填在题后的括号内)1.设()f x 在(,)-∞+∞内是可导的奇函数,则下列函数中是奇函数的是( ). (A )sin ()f x '(B )sin ()x t f t dt ⋅⎰(C )(sin )x f t dt ⎰(D )[sin ()]x t f t dt +⎰2.设111e ,0,()1e 1,0,x xx f x x ⎧+⎪≠⎪=⎨-⎪⎪=⎩ 则0x =是()f x 的( ).(A )可去间断点(B )跳跃间断点(C )第二类间断点(D )连续点 3.若函数()f x 与()g x 在(,)-∞+∞内可导,且()()f x g x <,则必有( ). (A )()()f x g x ->- (B )()()f x g x ''< (C )0lim ()lim ()x x x x f x g x →→< (D )()()x xf t dtg t dt <⎰⎰4.设()f x 是奇函数,除0=x 外处处连续,0=x 是其第一类间断点,则⎰xdt t f 0)(是( ).(A )连续的奇函数 (B )连续的偶函数(C )在0=x 间断的奇函数 (D )在0=x 间断的偶函数. 5.函数x x x x x f ---=32)2()(不可导点有( ). (A )3个 (B )2个 (C )1个 (D )0个.6.若)(),()(+∞<<-∞=-x x f x f ,在)0,(-∞内0)('>x f ,0)(''<x f ,则()f x 在),0(+∞内 有( ).(A )0)('>x f ,0)(''<x f (B )0)('>x f ,0)(''>x f(C )0)('<x f ,0)(''<x f (D )0)('<x f ,0)(''>x f7. 设A 为4阶实对称矩阵,且2A A O +=.若A 的秩为3,则A 相似于( ).(A) 1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ (B) 1110⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭(C) 1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭ 8.设3阶方阵A 的特征值是1,2,3,它们所对应的特征向量依次为123,,ααα,令312(3,,2)P ααα=,则1P AP -=( ).(A )900010004⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )300010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )100020003⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )100040009⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上) 9. 设()f x 二阶可导,2)0(",1)0(',0)0(===f f f ,则2()limx f x xx→-= . 10.微分方程(e 1)1xy y -'+-=的通解为 . 11.曲线xx xx y cos 25sin 4-+=的水平渐近线为 .12. 设()f x 是连续函数,且1()2()f x x f t dt =+⎰,则()f x = .13.若0sin lim(cos )5x x xx b e a→-=-,则=a ,=b .14.设A 为n 阶矩阵,其伴随矩阵的元素全为1,则齐次方程组0Ax =的通解为 . 三、解答题(本题共9小题,满分94分。
考研数学二模拟题及答案
*4.微分方程 y2 yx e 2x 的特解 y 形式为() .*2x*2 x(A) y(ax b)e (B) y ax e(C) y*ax 2 e2x(D) y*( ax2bx)e2 x2016 年考研数学模拟试题(数学二)参考答案一、选择题(本题共 8 小题,每小题 4 分,满分 32 分,每小题给出的四个选项中,只有一 项符合题目要求,把所选项的字母填在题后的括号内) 1.设 x 是多项式 0 P( x)x4ax3bx2cx d 的最小实根,则() .(A ) P ( x 0 ) 0 ( B ) P ( x 0 ) 0 (C ) P ( x 0 ) 0 (D ) P (x 0 ) 0 解 选择 A. 由于 lim P( x)xx 0,又 x 0 是多项式 P(x) 的最小实根,故 P (x 0 )0 .2. 设 limx af ( x) 3x f (a)a1 则函数 f ( x) 在点 x a () .(A )取极大值( B )取极小值( C )可导( D )不可导oo解 选择 D. 由极限的保号性知,存在 U (a) ,当 x U (a) 时,f ( x) 3x f (a)a0 ,当 x a时, f ( x)f (a) ,当 x a 时, f ( x) f (a) ,故 f ( x) 在点 x a 不取极值 .limf ( x) f (a) alimf ( x) f (a)a1x ax x a3x 3( x a)2,所以 f ( x) 在点 x a 不可导 .3.设 f ( x, y) 连续,且满足 f ( x, y) f ( x, y) ,则f (x, y) dxdy (). x 2 y 2 1(A ) 2 1 1 x 21 1 y20 dxf ( x, y)dy ( B ) 2 0dy 1 y 2f ( x, y)dx 1 1 x 2 1 1 y2(C ) 2dx1 x2f ( x, y)dy( D ) 2dyf ( x, y)dx解 选择 B. 由题设知f ( x, y)dxdy 2f ( x, y)dxdy 2 1 0 dy1 y2 1 y 2f ( x, y)dx .x 2 y 2 1 x 2 y 2 1, y 0解 选择 D.A 与B 相似可以推出它们的多项式相似, 它们的特征多项式相等, 故 A ,C 正确,又 A 和 B 为实对称矩阵,且 A 与 B 相似,可以推出 A 与 B 合同,故 B 正确 .8. AA m n , R( A) r , b 为 m 维列向量,则有() .(A) 当 r m 时,方程组 Ax b 有解(B) 当 r n 时,方程组 Ax b 有唯一解(C) 当 m n 时,方程组 Ax b 有唯一解 (D) 当 r n 时,方程组Ax b 有无穷多解解 选择 D. 特征方程 r22r0 ,特征根 r 0, r 2 ,2 是特征根,特解 y *形式为y*x(ax b) e 2 x.5. 设函数 f ( x) 连续,则下列函数中,必为偶函数的是().x x(A )f (t 2)dt( B )f 2(t) dtxx(C )t[ f (t ) f ( t )] dt( D )t [ f (t ) f ( t )] dt解 选择 C. 由于 t[ f (t ) f ( t)] 为奇函数,故x 0t[ f (t) f ( t)]dt 为偶函数 .6. 设在全平面上有 f ( x, y) x0 ,f ( x, y ) y0 ,则保证不等式 f ( x 1 , y 1)f ( x 2 , y 2 ) 成立的条件是( ) (A ) x 1 x 2 , y 1 y 2 . (C ) x 1x 2 , y 1y 2 .(B ) x 1 x 2 , y 1 y 2 . (D ) x 1x 2 , y 1y 2 .解 选择 A.f ( x, y ) xf ( x, y) 关于 x 单调减少,f ( x, y) yf (x, y) 关于 y 单调增加,当 x 1x 2 , y 1y 2 时, f ( x 1 , y 1) f ( x 2 , y 1 ) f ( x 2 , y 2 ) .7.设 A 和 B 为实对称矩阵,且 A 与 B 相似,则下列结论中不正确的是().(A) AE 与 B E 相似 (B)A 与B 合同 (C)AEBE(D)AE BE3233解 选择 A. 当r m 时, r A,b r ( A) ,方程组 Ax b 有解.二、 填空题(本题共 6 小题,每小题 4 分,满分 24 分,把答案填在题中横线上)1 9. lim (1x)xe.x 0x解 答案为e .21 11(1 x)xee xln(1 x) ln(1 ee xx) 1 1limlimelimx 0xx 0x x 0xelim 1 ln(1 x x) 1 elim ln(1 x) x 1 1 elim1 xex 0 x x 0 x 2x 0 2x22u10 设 f 有二阶连续偏导数, uf (x, xy, xyz) ,则.z y22解 答案为 xf 3 x yf x yzf .u xyfz32uxfxy( fx fxz) xfx 2yfx 2yzf3323333233z y11. 设微分方程yy x ( ) 的通解为 y xyx ln Cx,则 ( x).解 答案为1 2 . 将 yxx ln Cx代入微分方程,得(ln Cx)1 ln 2Cx,故(x)1 .x212. 数列nn 中最大的项为.3解 答案为 3 .【将数列的问题转化为函数的问题,以便利用导数解决问题】11ln x 1 ln x1 ln x设 f (x)x x xex, f ( x)e x0 x e ,x2x e 时, f (x) 0 , f (x) 单调增加,故 n e 时, f ( n)nn 递增, 2 最大,x e 时, f (x) 0 , f (x) 单调减少,故 n e 时, f ( n)nn 递减, 33 最大,x3 6 6又 3 9 8 2 ,数列n 3n 的最大项为3 .13. 方程5x 2x dt8 0 在区间(0,1) 内的实根个数为.0 1 t解答案为1. 令f (x) 5x 2 x dt ,f (0) 2 0, f (1) 3 1 dt 0 ,0 1 t 8 0 1 t 8由零点定理知,此方程在区间(0,1) 内至少有一个实根,又调增加,故此方程在区间(0,1) 内有且仅有一个实根. f (x) 511 x80 ,f ( x) 单14. 设n 阶矩阵A 的秩为n 2 ,1, 2 , 3 是非齐次线性方程组Ax b 的三个线性无关的解,则Ax b 的通解为.解答案为1k1 ( 2 1 )k2 ( 3 1 ) ,k1 ,k2 为任意常数.1, 2 , 3 是非齐次线性方程组Ax b 的三个线性无关的解,则21, 3 1 是Ax 0的两个解,且它们线性无关,又n r ( A) 2 ,故 2 1, 3 1 是Ax 0 的基础解系,所以Ax b的通解为1k1 ( 2 1 )k2 ( 3 1 ) .三、解答题(本题共9 小题,满分94 分。
考研数学二(解答题)模拟试卷202(题后含答案及解析)
考研数学二(解答题)模拟试卷202(题后含答案及解析)题型有:1.1.求极限:正确答案:涉及知识点:函数、极限、连续2.设n阶矩阵A≠0,存在某正整数m,使Am=O,证明:A必不相似于对角矩阵.正确答案:可用反证法:设λ为A的任一特征值,x为对应的特征向量,则有Ax=λx,A2x=λAx=λ2x,…,Amx=λmx,困Am=O,x≠0,得λ=0.故A的特征值都是零,因此,若A可相似对角化,即存在可逆矩阵P,使P-1AP=diag(0,0,…,0)=O,则A=POP-1=O,这与A≠0矛盾.涉及知识点:矩阵的特征值和特征向量3.设=e3,其中f(χ)连续,求.正确答案:涉及知识点:函数、极限、连续4.求证:x∈(0,1)时正确答案:令g(x)=,则当x>0时有故g(x)在(0,1)内单调下降.又g(x)在(0,1]连续,且g(1)=-1,g(x)在x=0无定义,但若补充定义g(0)=,则g(x)在[0,1]上连续.又g’(x)<0,0<x<1,因此g(x)在[0,1]单调下降.所以,当0<x <1时g(1)<g(x)<g(0),即成立.涉及知识点:微分中值定理及其应用5.求|cos(x+y)|dxdy,其中D={(x,y)|正确答案:直线x+y=将区域D分为D1,D2,其中D1={(x,y)|0≤x≤D2={(x,y)|0≤x≤则涉及知识点:重积分6.求y’2一yy”=1的通解.正确答案:涉及知识点:微分方程7.设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O.正确答案:由A2=A,B2=B及(A+B)2=A+B=A2+B2+AB+BA得AB+BA=O 或AB=-BA,AB=-BA两边左乘A得AB=-ABA,再在AB=-BA两边右乘A得ABA=-BA,则AB=BA,于是AB=O 涉及知识点:线性代数部分8.已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.正确答案:Vmax= 涉及知识点:高等数学设二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。
2017考研数学模拟测试题完整版及答案解析(数二)
2017考研数学模拟测试题完整版及答案解析(数二)一、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 当0x →时,下面4个无穷小量中阶数最高的是 ( )23545x x x ++ (C)33ln(1)ln(1)x x +--(D)1cos 0-⎰【答案】(D )【解析】(A )项:当0x →22x =(B )项:显然当0x →时,235245x x xx ++(C )项:当0x →时,333333333122ln(1)ln(1)ln ln12111x xx x x x x x x⎛⎫++--==+ ⎪---⎝⎭(D )项:1cos 31100001(1cos )2limlim lim k k k x x x x xx x x kxkx ---→→→→-⋅===⎰所以,13k -=,即4k =时1cos 0limkx x -→⎰存在,所以41cos 08x -⎰(2)设0δ>,函数在(),δδ-有连续的三阶导数,()()000f f '''==,且()lim2x f x x→'''=,则下类选项中正确的是 ( ) (A)(0)f 是的极大值 (B)(0)f 是()f x 的极小值 (C)()0,(0)f 是()y f x =的拐点()f x ()f x(D)0x =不是的极值点,()0,(0)f 也不是()y f x =的拐点 【答案】(C ) 【解析】由0()lim2x f x x →'''=00δ⇒∃>,当00x δ<<时,()0f x x'''>,即()0f x '''>, ()f x ''⇒在()00,δδ-单调上升,000,0()0,00,0x f x x x δδ<-<<⎧⎪''⇒==⎨⎪><<⎩()0,(0)f ⇒是()y f x =的拐点。
2022年全国硕士研究生招生考试302数学二预测卷2和答案解析
2022年全国硕士研究生招生考试数学(二)预测卷(二)(科目代码:302)考生注意事项1.答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超岀答题区域书写的答案无效;在草稿纸、试题册上答题无效。
3.填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2E铅笔填涂。
4.考试结束,将答题卡和试题册按规定交回。
(以下信息考生必须认真填写)考生编号考生姓名一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的.1-函数fS=lim[(号)+(专)+°"]"在(0,+*)内A.处处连续但有一个不可导点.B.处处连续且可导.C.处处连续但有两个不可导点.D.有一个不连续点.2.若当h0时,/'(h)=[(e*3"*—e sinz)di与如?是等价无穷小,则常数a,怡的值分另!]为J0A.-I-?3.B.C・.D・当,4.62843.设二阶可导函数*工)满足f(-i)=/(i)=o,/(o)=1,且/axo,则A.J/(jr)dz>>1.B.J/(j7)dz<C1.co ri ro riC./(jc)djr=.D./(a:)dr・J-1J o J-1J o4.设函数yCz)在工=0处可导,且lim W)好许)一2好(工)=2,则=0XA.—1.r-T c.o. D.1.5.设函数/(a-)在点x=0的某一邻域内具有二阶连续导数,且lim*刃=0,jr-»-03C lim/(r r_)+//(x)=],则j?-^03CA./(0)是函数的极大值.B.f(0)是函数/Cr)的极小值.C.(0,/(0))是曲线夕=/(jc)的拐点.D.7(0)不是函数f3的极值,(0J(0))也不是曲线J=2)的拐点.6.设人=「匚—山(1+工)山丄=『—也,则J o x J o x一ln(l十工)A.I l<I2<1.B.1<^<I2.C.1}<1<12.D.I2<1<7.设兀鼻)为连续函数,FU)=£d3/J"7u)d^,则F'd)=A.*/).B.C.—fCt).D.—f(—i).&设3维列向量组线性无关,«2,«3也线性无关,而«!,«3线性相关,且血工03,则下列向量组中一定线性无关的是A.ai+。
考研数学(数学二)模拟试卷388(题后含答案及解析)_0
考研数学(数学二)模拟试卷388(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f〞(χ)在χ=0处连续,=1,则( ).A.f(0)是f(χ)的极大值B.f(0)是f(χ)的极小值C.(0,f(0))是曲线y=f(χ)的拐点D.f(0)非f(χ)的极值,(0,f(0))也非y=f(χ)的拐点正确答案:C解析:由=1得f〞(0)=0由极限保号性,存在δ>0当|χ|<δ时,>0.当χ∈(-δ,0)时,因为ln(1+χ)<0,所以f〞(χ)<0;当χ∈(0,δ)时,因为ln(1+χ)>0,所以f〞(χ)>0,于是(0,f(0))为y=f(χ)的拐点,选C.2.设y=χ3+3aχ2+3bχ+c在χ=-1处取最大值,又(0,3)为曲线的拐点,则( ).A.a=1,b=1,c=3B.a=0,b=-1,c=3C.a=-1,b=1,c=3D.a=1,b=1,c=3正确答案:B解析:y′=3χ2+6aχ+3b,y〞=6χ+6a,则有解得a=0,b=-1,c =3,选B.3.设z=χy+χF(),其中F为可微函数,则为( ).A.z-χyB.z+χyC.z-2χyD.z+2χy正确答案:B解析:由得=χy+χF-yF′+χy+yF′=2χy+χF=2χy+z-χy=z +χy,故选B.4.设D为xOy平面上的有界闭区域,z=f(χ,y)在D上连续,在D内可偏导且满足=-z,若f(χ,y)在D内没有零点,则f(χ,y)在D上( ).A.最大值和最小值只能在边界上取到B.最大值和最小值只能在区域内部取到C.有最小值无最大值D.有最大值无最小值正确答案:A解析:因为F(χ,y)在D上连续,所以F(χ,y)在D上一定取到最大值与最小值,不妨设F(χ,y)在D上的最大值M在D内的点(χ0,y0)处取到,即f(χ0,y0)=M≠0,此时=0,这与=-z≠0矛盾,即f(χ,y)在D上的最大值M 不可能在D内取到,同理f(χ,y)在D上的最小值m不可能在D内取到,选A.5.曲线y=χ2与y=所围成的图形绕χ轴旋转一周的旋转体的体积为( ).A.B.C.D.正确答案:C解析:6.设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为( ).A.y〞′-y〞-y′+y=0B.y〞′+y〞-y′-y=0C.y〞′+2y〞-y′-2y=0D.y〞′-2y〞-y′+2y=0正确答案:A解析:因为y1=eχ,y2=2χeχ,y3=3e-χ为三阶常系数齐次线性微分方程的三个特解,所以其对应的特征方程的特征值为λ1=λ2=1,λ3=-1,其对应的特征方程为(λ-1)2(λ+1)=0,即λ3-λ2-λ+1=0则微分方程为y〞′-y〞-y′+y=0,故选A.7.设四阶矩阵A=(α1,α2,α3,α4),其中α1,α2,α3线性无关,而α4=2α1-α2+α3,则r(A*)为( ).A.0B.1C.2D.3正确答案:B解析:由α1,α2,α3线性无关,而α1=2α1-α2+α3得向量组的秩为3,于是r(A)=3,故r(A*)=1,故选B.8.对三阶矩阵A的伴随矩阵A*先交换第一行与第三行,然后将第二列的一2倍加到第三列得-E,且|A|>0,则A等于( ).A.B.C.D.正确答案:A解析:由-E=E13A*E23(-2)得A*=-E13-1E23-1(-2)=-E13E23(2),因为|A*|=|A|2=1且|A|=1,于是A*=A-1,故A=(A*)-1=-E23-1(2)E23-1=-E23(-2)E13=-选A.填空题9.sin(χt)2dt=________.正确答案:解析:.10.设y=y(χ)由确定,则=________.正确答案:解析:当t=0时,χ=1. y==2ln2-1 eχsint-χ+1=0两边对t 求导,得eχsint=e;y=∫0χ+1(1+u)du两边对t求导,=ln(t+2),于是=ln2.故.11.=________正确答案:解析:因为ln(χ+)为奇函数,所以.12.=________正确答案:解析:改变积分次序得13.y〞-2y′一3y=eχ的通解为________.正确答案:解析:特征方程为λ2-2λ-3=0,特征值为λ1=-1,λ2=3,则方程y〞-2y′-3y=0的通解为y=C1e-χ+C2e3χ.令原方程的特解为y0(χ)=Aχeχ,代入原方程得A=-,于是原方程的通解为y=.14.设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组Aχ=0的解,α2=(m,1,1-m)T是方程组(A+E)χ=0的解,则m=________.正确答案:1解析:由AX=0有非零解得,r(A)<3,从而λ=0为A的特征值,α1(m,-m,1)T为其对应的特征向量;由(A+E)X=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其对应的特征向量为α2=(m,1,1-m)T,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有,m=1.解答题解答应写出文字说明、证明过程或演算步骤。
考研高数2试题及答案
考研高数2试题及答案模拟试题:考研高等数学(二)一、选择题(每题3分,共30分)1. 下列函数中,满足条件f(-x) = -f(x)的是()A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 设函数f(x)在区间(a, b)内可导,且f'(x) > 0,则f(x)在该区间内是()A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 曲线y = x^3 - 6x^2 + 12x + 5在点(2,12)处的切线斜率为()A. -3B. 0C. 3D. 64. 设数列{an}是等差数列,且a3 + a7 + a11 = 27,a4 + a8 > 0,a10 < 0,则此等差数列的公差d为()A. -1B. 1D. 25. 函数f(x) = ln(x^2 - 4x + 3)的值域是()A. (-∞, 0)B. RC. (0, +∞)D. [0, +∞)6. 设函数F(x) = ∫(0, x) f(t) dt,则F(x)是f(x)的一个()A. 原函数B. 导数C. 定积分D. 微分7. 曲线y^2 = 4x与直线x = 2y联立后,它们的交点个数是()A. 0B. 1C. 2D. 无穷多8. 已知某工厂生产函数为Q = K^(1/3)L^(2/3),其中K是资本,L是劳动。
若劳动增加20%,资本不变,则产量增加()A. 少于20%B. 20%C. 多于20%D. 40%9. 设随机变量X服从参数为λ的泊松分布,P(X=1) = λ。
则λ的值为()A. 1C. 3D. 410. 微分方程y'' - 2y' + y = 0的通解是()A. y = e^(t) + e^(2t)B. y = e^(t) + e^(-t)C. y = e^(t) + e^(3t)D. y = e^(t) + e^(t/2)答案:1. C2. A3. B4. A5. D6. A7. C8. A9. B10. B二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 3x在区间[-1, 2]上的最大值为M,则M = ____。
考研数学二(矩阵)模拟试卷2(题后含答案及解析)
考研数学二(矩阵)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为A.B.C.D.正确答案:D 涉及知识点:矩阵2.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则A.交换A*的第1列与第2列得B*.B.交换A*的第1行与第2行得B*.C.交换A*的第1列与第2列得-B*.D.交换A*的第1行与第2行得-B*.正确答案:C 涉及知识点:矩阵3.设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则A.C=p-1AP.B.C=PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B 涉及知识点:矩阵4.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(a1,a2,a3),Q=(a1+a2,a2,a3),则QTAQ为A.B.C.D.正确答案:A 涉及知识点:矩阵5.设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=A.P1P2.B.P1-1P2.C.P2P1.D.P2P1-1.正确答案:D 涉及知识点:矩阵6.设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=若P=(a1,a2,a3),Q=(a1+a2,a2a3),则Q-1AQ=A.B.C.D.正确答案:B 涉及知识点:矩阵7.设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则A.E-A不可逆,E+A不可逆.B.E-A不可逆,E+A可逆.C.E-A可逆,E+A可逆.D.E-A可逆,E+A不可逆.正确答案:C 涉及知识点:矩阵8.设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有A.ACB=E.B.CBA=E.C.BAC=E.D.BCA=E.正确答案:D 涉及知识点:矩阵9.设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于A.A-1+B-1.B.A+B.C.A(A+B)-1B.D.(A+B)-1.正确答案:C 涉及知识点:矩阵10.设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有A.a=b或a+2b=0.B.a=b或a+26≠0.C.a≠b且a+2b=0.D.a≠b且a+26≠0.正确答案:C 涉及知识点:矩阵11.已知,P为3阶非零矩阵,且满足PQ=0,则A.t=6时P的秩必为1.B.t=6时P的秩必为2.C.t≠6时P的秩必为1.D.t≠6时P的秩必为2.正确答案:C 涉及知识点:矩阵12.设矩阵B=,已知矩阵A相似于曰,则秩(A-2E)与秩(A-E)之和等于A.2B.3C.4D.5正确答案:C 涉及知识点:矩阵填空题13.设A和B为可逆矩阵,X=为分块矩阵,则X-1=____________。
考研数学二模拟试题2及答案解析
数学二模拟试题二参考答案
校区
学管师
班级
姓名
分数
一、选择题:1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一
项符合题目要求,把所选项前的字母填在答题纸指定位置上.
1.设函数
f
(x)
lim
n
x2 e(n1) x 1 enx
,则点 x
0为
f
(x) 的(
)
)
0
x2 y2 0
(A)连续,但偏导数不存在
(B)不连续,但偏导数存在
(C)连续且偏导数存在
(D)不连续且偏导数不存在
解:应选(B)
由于 lim x0 yx2
f (x, y)
lim x0
x4 x4 x4
1 2
f (0, 0)
,故
f (x, y) 在点 (0, 0) 处不连续
(1)曲线 L 的参数方程确定的函数 y y(x) 的定义域;
(2)曲线 L 与 x 轴围成的平面图形绕 y 轴旋转一周而形成的旋转体体积Vy ;
(3)设曲线 L 的形心坐标为 (x, y) ,求 y.
10
21.(本题满分 11 分)
设函数 f (x) 在[0,1] 上具有二阶连续导数,且 f (0) f (1) 0 ,证明:
(A) 2, 0
(B) 0, 2
(C)1,1
(D)依赖于 a 的取值
4
9.设
f
(x) 为可导的偶函数,lim x0
f
(cos x) x2
2 ,则曲线
y
f
(x) 在点 (1,
f
2024年考研数学二模拟试卷
2024年考研数学二模拟试卷一、选择题(每题1分,共5分)1.设函数f(x)在区间[0,1]上连续,则下列积分中正确的是()A.∫(0to1)f(x)dx=0B.∫(0to1)f(x)dx=f(0)+f(1)C.∫(0to1)f(x)dx=f(1)f(0)D.无法确定2.设矩阵A为对称矩阵,则下列结论正确的是()A.A的逆矩阵也是对称矩阵B.A的特征值都是实数C.A的行列式值为0D.A的对角线元素相等3.设函数f(x)在区间[0,1]上可导,且f(0)=0,f(1)=1,则下列结论正确的是()A.∃c∈(0,1),使得f(c)=0B.∃c∈(0,1),使得f'(c)=0C.∃c∈(0,1),使得f(c)=cD.无法确定4.设数列{an}的前n项和为Sn,则下列结论正确的是()A.若{an}为等差数列,则Sn为等差数列B.若{an}为等比数列,则Sn为等比数列C.若Sn为等差数列,则{an}为等差数列D.无法确定5.设函数f(x)在区间[0,1]上可导,且f'(x)>0,则下列结论正确的是()A.f(x)在[0,1]上单调递增B.f(x)在[0,1]上单调递减C.f(x)在[0,1]上存在极值点D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在区间[0,1]上可导,则f(x)在[0,1]上连续。
()2.若矩阵A为对称矩阵,则A的特征值都是实数。
()3.若函数f(x)在区间[0,1]上单调递增,则f'(x)>0。
()4.若数列{an}为等差数列,则其前n项和Sn为等差数列。
()5.若函数f(x)在区间[0,1]上可导,且f'(x)>0,则f(x)在[0,1]上单调递增。
()三、填空题(每题1分,共5分)1.设函数f(x)在区间[0,1]上连续,则∫(0to1)f(x)dx表示的是________。
2.设矩阵A为对称矩阵,则A的特征值________。
考研数学(数学二)模拟试卷279(题后含答案及解析)
考研数学(数学二)模拟试卷279(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若函数y=f(x)有f’(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是( ).A.与△x等价的无穷小B.与△x同阶的无穷小C.比△x低阶的无穷小D.比△高阶的无穷小正确答案:B解析:由导数与微分的关系dy/dx=f’(x0)=1/2 →1/2(当△x=dx→0),dy是与△x同阶且不等价的无穷小.应选(B).2.设,则存在函数u=u(x),使( ).A.I1=I2+xB.I1=I2-xC.I2=-I1D.I2=I1正确答案:D解析:故应选(D).3.=( ).A.1B.0C.aD.不存在正确答案:B解析:答案为(B).由函数性质,x>0,使当x>X>0时,有应用夹逼定理得4.设,其中f为连续的奇函数,D是由y=-xI3,x=1,y=1所围成的平面闭域,则k等于( ).A.0B.2/3C.-(2/3)D.2正确答案:B解析:如图:加一条曲线y=x3,将D分为D1和D2,因为f为奇函数,所以f(-xy)=-f(xy),而D1,D2分别对称y轴和x轴,故有从而原积分故应选(B).5.已知f(x)=,设F(x)=∫1xf(t)dt(0≤x≤2),则F(x)为( ).A.B.C.D.正确答案:D解析:当0≤x<1时,当1≤x≤2时,F(x)=故应选(D).6.设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=( ).A.-1B.0.1C.1D.0.5正确答案:D解析:由于增量的线性主部等于函数的微分,因此由题设△y=△f(x2)=2xf’(x2)△x+0(△x),将x=-1,△x=-0.1代入得△y|x=-1=-2f(1)△x+0(△x)=0.2f’(1)+D(△x)=0.1+o(△x),所以0.2f’(1)=0.1,f’(1)=1/2,选(D).7.A是n阶矩阵,且A3=0,则( ).A.A不可逆,E-A也不可逆B.A可逆,E+A也可逆C.A2-A+E与A2+A+E均可逆D.A不可逆,且A2必为0正确答案:C解析:由行列式性质|A|3=|A3|=0,可知A必不可逆,但从(E-A)(E+A+A2)=E-A3=E,(E+A)(E-A+A2)=E+A3=E,知E-A,E+A,E+A+A2,E-A+A2均可逆.当A3=O时,A2是否为0是不能确定的,例如:A1=,有A13=0,但A12≠0,A23=0,且A22=0,故选(C).8.已知A=(aij),B=(bij)m×n且有关系bij=aij+aijbik(i,j=1,2,…,n).则下列关系式正确的是( ).A.A(B+E)=BB.(B+E)A=BC.B(A-E)=AD.(E-A)B=A正确答案:B解析:由关系得B=A+BA,从而得B=(E+B)A.故应选(B).填空题9.设常数=__________.正确答案:解析:由题设,原式=10.设z=xyf(y/x),f(u)可导,则xzx’+yzy’=__________.正确答案:解析:利用复合函数求偏导的方法,得11.微分方程y’’+y=-2x的通解为__________.正确答案:c1cosx+c2sinx-2x.解析:特征方程λ2+1=0,λ=±i,于是齐次方程通解为设特解为y*=Ax,代入方程得y*=-2x,所以y=c1cosx+c2sinx-2x.12.=__________.正确答案:2/3解析:13.在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y≥0),则区域D绕x轴旋转一周所成的几何体的体积为__________.正确答案:13π/15解析:过曲线y=(x-1)2上点(2,1)的法线方程为y=-(1/2)x+2,该法线与x轴的交点为(4,0),则由该法线、x轴及该曲线所围成的区域D绕x轴旋转一周所得的几何体的体积为14.设矩阵A,B满足A*BA=2BA-8E,其中A=,层为单位矩阵,A*为A 的伴随矩阵,则B:__________.正确答案:解析:由已知A=,则|A|=-2≠0,由公式AA*=A*A=|A|E化简矩阵方程A*BA=2BA-8E.即分别以A左乘该方程,以A-1右乘该方程得-2B=2AB-8E.从而2(A+E)B=8E,即(A+E)B=4E,因此B=4(A+E)-1,其中A+E=解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
(x)
x
3 ,则(
)
(A) f (0) 1, f (0) 5 2
(B) f (0) 1, f (0) 5 2
(C) f (0) 1, f (0) 5 2
(D) f (0) 1, f (0) 5 2
4.设 I cos x2dx , J cos xesin2 xdx ,则( )
0
0
(A) I 0, J 0
(B) I 0, J 0
(C) I 0, J 0
(D) I 0, J 0
2
x2y
5.设函数
f
(x,
y)
x4
y2
x2 y2 0 ,则 f (x, y) 在点 (0, 0) 处(
)
0
x2 y2 0
(A)连续,但偏导数不存在
(B)不连续,但偏导数存在
2
4
(2)至少存在一点 (0,1) ,使得
f (1) f (0)
f () .
4
22.(本题满分 11 分)
已知 1,2 ,3
为三个三维列向量,
A
11T
2
T 2
3
T 3
.
(1)证明存在矩阵 B 使得 A BT B ;
(2)当1,2 ,3 线性无关时,证明 R( A) 3 ;
1 2 3
(3)当 1
y
f
(x) 在点 (1,
f
(1)) 处的法
线方程为________.
10.
cos 1
x sin cos2
3x x
dx
________.
5
11.
lim(arctan
1
)
4 3
(1
3
2
3
3
3
n)
________.
n
n
12.微分方程 y 4 y 2 cos2 x 的特解形式为________.
6
13.设函数 z z(x, y) 由方程 x az (y bz) 确定,其中 可导, a, b 为常数,且 a b 0 ,则 a z b z ________.
1
2 dx
1( x1)2 1 x
f (x, y)dy
2
dx
1
1( x1)2 0
f (x, y)dy
2
2
1 y2
1
1 y2
(C) 2 dy
0
y
f (x, y)dx 2 dy 1 y 2 f (x, y)dx
2
(D)
2
2 dy
1 1 y2
f (x, y)dx
0
1 y
1
1 1 y2
x y
1 2
14.设
2
,
,对任意的正整数
n
,矩阵 (E
T)n
________.
3 0
7
15.(本题满分 10 分)
设0
x
1,证明(1)ln(1
x)
x(2x 1) (x 1)2
;(2) (1
1)x (1 x
1
x) x
4
16.(本题满分 10 分)
将 yoz 坐标面上的曲线段 y f (z) ( f (z) 0, 0 z 12) 绕 z 轴旋转一周所得旋转曲面 与 xoy 坐标面围成一个无盖容器,已知它的底面积为16 (m2) ,如果以 3(m3 / s) 的速度 把水注入容器内,在高度为 z(m) 的位置,水的上表面积以 3 (m2 / s) 的速度增大,求:
8.已知二次型 f (x1, x2 , x3 ) x12 x22 2ax1x3 4x2x3 的秩为 2 ,则该二次型的正负惯性指
数分别为( )
(A) 2, 0
(B) 0, 2
(C)1,1
(D)依赖于 a 的取值
4
9.设
f
(x) 为可导的偶函数,lim x0
f
(cos x) x2
2 ,则曲线
(C)可去间断点
(D)无穷间断点
2.设 f (x) 是连续且单调增加的奇函数, F (x)
x
(2u
x)
f
(x
u)du
,则
F (x)
是(
)
0
(A)单调增加的奇函数
(B)单调减少的奇函数
(C)单调增加的偶函数
(D)单调减少的偶函数
1
3.设函数
f
(
x)
具有一阶连续导数,且
lim
x0
e
x x2
1
D
9
19.(本题满分 10 分)
设函数 y y(x) 满足 y
1 x
x o(x) ,且 y(1) 1 ,计算
2
y ( x)dx.
2x x2
1
20.(本题满分 11 分)
x t sin t
设曲线
L
的参数方程
y
1
cos
t
(0 t 2 ) ,求:
(1)曲线 L 的参数方程确定的函数 y y(x) 的定义域;
(C)连续且偏导数存在
(D)不连续且偏导数不存在
6.将极坐标系下的二次积分
3
4 d
1 f (1 r cos , r sin )rdr 转化为直角坐标系下的二
0
0
次积分为( )
0
1 x2
1
1 x2
(A) 2 dx x
f (x, y)dy dx
0
0
f (x, y)dy
2
(B)
2 dy 1 1 y 2 f (x, y)dx
2
3
1 1 1
7.设
A,
B
为三阶非零矩阵,满足
AB
O
,其中
B
2a
1 a
2a
,则(
)
a a a 2 2
(A) a 2 时,必有 R( A) 1
(B) a 2 时,必有 R( A) 2
(C) a 1 时,必有 R( A) 1
(D) a 1 时,必有 R( A) 2
z 1 (1)曲线 y f (z) 的方程;(2)若将容器内水装满,需要多少时间?
8
17.(本题满分 10 分)
已知平面上两点 A(4, 6), B(6, 4) , C 为椭圆 x2 y2 1上的点,求 ABC 面积的最大值 5 20
和最小值.
18.(本题满分 10 分)
设区域 D : 0 x 1, 0 y 2 ,计算 I [( y 1)e x2 y1 x y ]d.
数学二模拟试题二
校区
学管师
班级
姓名
分数
一、选择题:1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一
项符合题目要求,把所选项前的字母填在答题纸指定位置上.
1.设函数
f
(x)
lim
n
x2 e(n1) x 1 enx
,则点 x
0为
f
(x) 的(
)
(A)连续点
(B)跳跃间断点
(2)曲线 L 与 x 轴围成的平面图形绕 y 轴旋转一周而形成的旋转体体积Vy ;
(3)设曲线 L 的形心坐标为 (x, y) ,求 y.
10
21.(本题满分 11 分)
设函数 f (x) 在[0,1] 上具有二阶连续导数,且 f (0) f (1) 0 ,证明:
(1)至少存在一点 (0,1) ,使得 2 f ( 1) f (0) f (1) f () ;
2
,
2
2
,
3
4
时,求
Ax
0
的通解.
3
1
4
11
23.(本题满分 11 分)