锐角三角函数的计算 -

合集下载

锐角三角函数公式值

锐角三角函数公式值

锐角三角函数公式值
锐角三角函数公式值指的是在直角三角形中,对于一个角度小于90度的锐角,其正弦、余弦、正切、余切、正割、余割的数值,可以通过特定的公式进行计算得出。

具体公式如下:
正弦(sin): sinθ=对边/斜边
余弦(cos): cosθ=邻边/斜边
正切(tan): tanθ=对边/邻边
余切(cot): cotθ=邻边/对边
正割(sec): secθ=斜边/邻边
余割(csc): cscθ=斜边/对边
其中,对边、邻边、斜边分别指直角三角形中的三条边,对边指与角度相对的边,邻边指与角度相邻的边,斜边指直角三角形的斜边。

需要注意的是,上述公式中的角度单位为弧度制。

如果给出的角度是度数,则需要先将其转化为弧度制,即弧度=角度×π/180。

- 1 -。

(课件)1.2锐角三角函数的计算(2)

(课件)1.2锐角三角函数的计算(2)

这节课你收获了什么?
1.(3分)用计算器求tanA=0.5234中的锐角A(精确到1°)时,按键
顺序正确的是 (C )
A. tan 0 ·5 2 3 4 =
B. 0 ·5 2 3 4 = SHIFT tan
C. SHIFT tan 0 ·5 2 3 4 =
D. tan SHIFT 0 ·5 2 3 4 =
(1)sin α=0.4511
shift sin 0 . 4 5 1 1 = 0'''
(2)cos α=0.7857
shift cos 0 . 7 8 5 7 = 0'''
(3)tan α=1.4036
shift tan 1 . 4 0 3 6 = 0'''
提示:上表的显示结果是以度为 单位的,再按 0''' 键即可显示以“度, 分,秒”为单位的结果.
7.如图,工件上有一V型槽,测得它的上口宽20mm, 深19.2mm.求V型角(∠ACB)的大小(结果精确到 10 ).
解 :Q tan ∠ACD AD 10 0 .5208 ,
CD 19 . 2
∴∠ACD≈27.50 .
∴∠ACB=2∠ACD≈2×27.50 =550.
∴V型角的大小约550.
2
∠A= 450
cos A 1 2
∠A= 600 cos A
2 2
∠A=
450 cos A
3 2
∠A= 300
tan A 3 3
∠A= 300 tan A 3 ∠A= 600
tan A 1 ∠A= 450
1.sin700= 0.9397

(课件)1.2 锐角三角函数的计算

(课件)1.2 锐角三角函数的计算
A.asin40°米 B.acos40°米
C.atan40°米 D.tan4a0°米
,第5题图)
6. 如图,根据图中已知数据,求
A
△ABC其余各边的长,各角的 a
度数和△ABC的面积.

β
C
2模型:
7. 如图,根据图中已知
A
数据,求AD.
你能得到作为“模型”的它给你
α
Ba
β
C
┌ D
带来的成功.
a
0.25×0.6249=0.156225,∵10秒钟电梯上升了20级,
∴小明上升的高度为:20×0.156225≈3.12米.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
谢谢观赏
You made my day!
我们,还在路上……
B 45° A
30° C
30° 45°┌
体会这两个图形的 B 4cm C D “模型”作用.将会助 你登上希望的峰顶.
这节课你收获了什么?
1.(4分)利用计算器求sin30°时,依次按键 sin 3 0 = ,则计 算器上显示的结果是 (A )

锐角三角函数

锐角三角函数

初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。

222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。

“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。

三角函数的计算

三角函数的计算

三角函数的计算一、锐角三角函数的概念与计算方法1.正弦(sine)函数:正弦函数是指在直角三角形中,锐角的对边与斜边的比值。

其计算公式为:sinθ = 对边 / 斜边。

2.余弦(cosine)函数:余弦函数是指在直角三角形中,锐角的邻边与斜边的比值。

其计算公式为:cosθ = 邻边 / 斜边。

3.正切(tangent)函数:正切函数是指在直角三角形中,锐角的对边与邻边的比值。

其计算公式为:tanθ = 对边 / 邻边。

二、钝角三角函数的概念与计算方法1.余切(cotangent)函数:余切函数是指在直角三角形中,钝角的对边与邻边的比值的倒数。

其计算公式为:cotθ = 邻边 / 对边。

2.余弦(secant)函数:余弦函数是指在直角三角形中,钝角的邻边与斜边的比值的倒数。

其计算公式为:secθ = 斜边 / 邻边。

3.正割(cosecant)函数:正割函数是指在直角三角形中,钝角的对边与斜边的比值的倒数。

其计算公式为:cscθ = 斜边 / 对边。

三、特殊角的三角函数值1.30°角的三角函数值:sin30°= 1/2,cos30° = √3/2,tan30°= 1/√3,cot30° = √3,sec30° = 2/√3,csc30° = 2。

2.45°角的三角函数值:sin45° = cos45° = tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2。

3.60°角的三角函数值:sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = 2/√3。

四、三角函数的周期性1.正弦函数的周期性:正弦函数的周期为2π,即sin(θ + 2π) = sinθ。

26.2 锐角三角函数的计算课件(共16张PPT)

26.2 锐角三角函数的计算课件(共16张PPT)
例1 用计算器求三角函数值:(精确到0.000 1).(1)sin 10°; (2) cos 50°18' .
例题示范
解:(1) ∴ sin 10°≈ 0.173 6.(2) ∴ cos 50°18' ≈ 0. 638 8.
例2 用计算器求下列各锐角的度数:(结果精确到1")(1)已知cosα=0.523 7,求锐角α.
第二十六章 解直角三角形
26.2 锐角三角函数的计算
学习目标
学习重难点
重点
难点
1.会用计算器求锐角的三角函数值.2.会用计算器根据一个锐角三角函数的值求对应的锐角.
会用计算器求锐角的三角函数值.
正确使用计算器求锐角的三角函数值.
回顾复习
根据前面学习的特殊角的三角函数值,完成下面的表格.
问题引入
我们已经知道30°,45°,60°的三角函数值,那么,怎样计算任意锐角的函数值呢?反过来,已知一个锐角的三角函数值,怎样求出这个锐角呢?如何求它的三角函数值呢?
新知引入
思考 如何用计算器求锐角的三角函数值呢?

计算器上只要有sin,cos,tan键,就可以用来求锐角的三角函数值.
不同计算器的按键方法各有不同,现在介绍一种计算器,先按ON/C键,再按MODE键,使显示器屏幕出现“DEG”,然后再按有关三角函数的键.
拓展练习
1.用计算器求sin 16°,cos 42°,tan 85°,sin 72°38′25″的值.
按键顺序
显示结果
sin 16°
0.275 637 355
cos 42°
0.743 144 825
tan 85°
11. 430 052 3
sin72°38′25″

数学 锐角三角函数

数学 锐角三角函数

个性化学科优化学案锐角三角函数知识回顾1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)定 义 表达式 取值范围 关 系正弦斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦斜边的邻边A A ∠=cos cbA =cos 1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A A baA =tan0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot abA =cot0cot >A(∠A 为锐角))90cot(tan A A -︒=)90tan(cot A A -︒=B A cot tan = B A tan cot =)90cos(sin A A -︒=)90sin(cos A A -︒=BA cos sin =BA sin cos =对边邻边b斜边 ACBb a cA 90B 90∠-︒=∠︒=∠+∠得由B AA90B 90∠-︒=∠︒=∠+∠得由B A三角函数 0° 30° 45° 60° 90° αsin0 1 αcos1 0 αtan 0 不存在αcot不存在6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

锐角三角函数公式和面积公式

锐角三角函数公式和面积公式

锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边面积公式长方形,正方形以及圆的面积公式面积公式包括扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。

扇形面积公式在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:S=nπR^2÷360比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:C=2R+nπR÷180=2×1+135×3.14×1÷180=2+2.355=4.355(cm)=43.55(mm)扇形的面积:S=nπR^2÷360=135×3.14×1×1÷360=1.1775(cm^2)=117.75(mm^2)扇形还有另一个面积公式S=1/2lR其中l为弧长,R为半径三角形面积公式任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。

证明:证一勾股定理分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。

证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴S△ABC = aha= a× = 此时S△ABC为变形④,故得证。

证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。

斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ha 2 = t 2 = -∴S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。

求锐角三角函数值的几种方法

求锐角三角函数值的几种方法

c 。 s / - C A D
, A B的长可 以根 据 勾股定理 求
例7 已知 AA B C中 , C = 9 0 。 ,
s l n A


得, 即可求得 s i n /AC D .
解: 在 Rc △A B C中, 。 . ‘ A c = ~ , B C = 2 ,
评 注 :注 意锐 角三 角 函数 的 定 义 只适 用 于 直角三 角形 ,在斜 三角形 中不能直接 用锐 角三 计算起来稍麻烦 . 若根据 直 角三 角形 两锐 角之 角 函数 的 定 义 求 三 角 函 数值 ,需要 将 斜 三 角 形 间的关 系, 可得 s i n ZAC D = c o s C A D, 只要 求得 转化成 直角三 角形再求值. 七 、 方程法 C O S 0t D 的 值 即 可 .而 在 Rt △A B C中 ,

, t a n A=

六、 构造法
. .

+ _ _ _ : + : 丛 : 5
t a n A a 0 a
S l n A
例 6 如图 2 , 已知 A D为 等腰三角形 A B C 底边上 的高 ,
且 t a n厶 B = 4

即 b + c = S a , 联 立 方 程 { ≥ ,
利用公式 , 得:
t a
嘉 1 5.
— 一
A . 音 B .
解: ‘ . ’ t a n A = 羔,
・ . .
c .
D .
分析 :由 已知锐 角三 角函数 式 ,设 比值 h 二、 定 义 法 ( k >0 ) , 用含 的式子表 示两边 , 再利用 勾股定 然后用锐角三角函数 的定义求解 . 例 2 在 AA B C中 ,已知 C = 9 0 。 , s i n A= 理求 出第三边,

《锐角三角函数的计算》PPT课件教学课件

《锐角三角函数的计算》PPT课件教学课件
(3)csoinsαα=tan α
第二十四章 解一元二次方程
一元二次方程根与系数的关系
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习一元二次方程的根的判别式和求根公式. 2.理解并掌握一元二次方程根与系数的关系. (重点) 3.能够运用一元二次方程根与系数的关系解决问题.(难点)
导入新课
知识回顾 问题1 一元二次方程的解法有哪些,步骤呢?
A.tan 26°<cos 27°<sin 28° B.tan 26°<sin 28°<cos 27° C.sin 28°<tan 26°<cos 27° D.cos 27°<sin 28°<tan 26°
4.(3 分)在△ABC 中,∠B=74°37′,∠A=60°23′,
则∠C=_4__5_°____,sin A+cos B+tan C≈__1_3_4_6___.
12.(8分)已知三角函数值,求锐角(精确到1″). (1)已知sin α=0.5018,求锐角α;
(1)30°7′9″
(2)已知tan θ=5,求锐角θ.
(2)78°41′24″
【易错盘点】
【例】计算:sin 248°+sin 242°-tan 44°·tan 45°·tan 46°=________.
b2 (b2 4ac) 4a2
4ac 4a2 c
a
拓广探索 韦达定理的两个重要推论: 推论1:如果方程x2+px+q=0的两个根是x1,x2,那么 x1+x2=-p,x1·x2=q.
推论2:以两个数x1,x2为根的一元二次方程(二次项 系数为1)是x2-(x1+x2)·x+x1·x2=0
二 一元二次方程根与系数关系的应用

锐角三角函数的解题技巧

锐角三角函数的解题技巧
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
答案:D
分析:
(1)要求sinα与cosα的关系的值,而已知tanα的值,故可通过 来求值.
(2)已知tanα的值,也可通过 ,把要求的式子的分子,分母同时除以cos2α转化成关于tanα的关系,这样便可求出结论.
点评:在进行三角函数有关计算时,常利用有关公式进行变换.
2、化简计算
例3、计算
分析:
这是一组有关特殊角三角函数值的计算题,计算中最关键是将它们先化成具体的数值,同时还要应用其它一些知识帮助求值,如(1)注意分母有理化,(2)应掌握整数指数幂的意义.
(5)0<sinA<1,0<cosA<1
2、同名三角函数值的变化规律
当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.
三、解题方法技巧点拨
1、求锐角三角函数的值
例1、(1)在Rt△ABC中,∠C=90°,若 ,求cosB,tanB的值.
分析:本题主要考查锐角三角函数的定义,结合图形求解可化繁为简,迅速得解.
5、求线段长与面积
例6、如图,在△ABC中,∠A=30°,∠B=45°,AC=4,求BC的长.
分析:
题中有30°,45°特殊角,想把它们放到直角三角形中,利用三角函数来解题.
点评:
(1)在作高线构造直角三角形时,一般不过特殊角的顶点作垂线,这样便于利用特殊角解题.

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。

学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。

本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。

一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。

一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。

解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。

例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。

因此,我们只需要根据这个定义和公式进行计算即可。

举个例子,题目给出角度A=30度,要求求出其正弦值sinA。

根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。

二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。

例如,正切函数的基本关系式是tanA=sinA/cosA。

这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。

解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。

例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。

解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。

四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。

锐角三角函数的定义

锐角三角函数的定义
BC AB AC
① B 'C ' BC ,在 RtABC C 90 ,当 A 确定时,它的对边与斜边的比是一个定
AB ' AB 值;
② AC ' AC ,在 RtABC C 90 ,当 A 确定时,它的邻边与斜边的比是一个定
AB ' AB 值;
③ B 'C ' BC ,在 RtABC C 90 ,当 A 确定时,它的对边与邻边的比仍然是一
【答案】 1 【解析】 原式 sin 53 sin 53 cos53 s cos53 sin2 53 cos2 53 1. 13、(2014 中考丰台二模)如图,将一副三角板按图中方式叠放, BC 4 ,那么 BD __________
【答案】
第 10 页,共 26 页
锐角三角函数
30° 【解析】 ∵ sin 60 co( s 90 60), ∴ cos co( s 90 60) cos30 ,即锐角 30 .
12、 sin 53cos37 cos53sin 37 _________
AC 5 5 故选 C. 2、(2014 初三上期末通州区)如图,在边长为 1 的小正方形组成的网格中,△ABC 的三个
第 5 页,共 26 页
锐角三角函数
顶点均在格点上,E 为 BC 中点,则 sin AEB 的值是( )
A. 5 5
B. 3 4
C. 3 5
D. 4 5
【答案】 D 【解析】 该题考查的是三角函数的定义.
锐角的正弦和正切随角度的增大而增大,锐角的余弦随角度的增大而减小. 四、 三角恒等式
①若 A 与 B 互余:则 sin A cos B , tan A 1 . tan B

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案11页)用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=abab,cosA=,tanA=,cotA=.ccba锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0&lt;sinα&lt;1,o&lt;cosα&lt;1(0°&lt;α&lt;90°)1(2)tanα·cotα=1或tanα=(3)tanα=1;cot?sin?cos?,cotα=.cos?sin?(4)sinα=cos(90°-α),tanα=cot(90°-α).有关锐角三角函数的问题,常用下面几种方法:一、设参数例1. 在?ABC中,?C?90?,如果tanA?5,那么sinB的值等于()12D.12 5A.513B.1213C.512解析:如图1,要求sinB的值,就是求AC5的值,而已知的tanA?,也就是AB12BC5? AC12可设BC?5k,AC?12k则AB?(5k)2?(12k)2?13k?sinB?12k12?,选B 13k13二、巧代换例2. 已知tan??3,求sin??2cos?的值。

5sin??cos?解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式sin??3,作代换sin??3cos?,代入即可达到约分的目的,也可以把所求的cos?分式的分子、分母都除以cos?。

tan??2sin??2sin??2cos? ?cos?sin5sin??cos?5?1cos?再把sin?1?3代入,得:原式? cos?16三、妙估计例3. 若太阳光与地面成37?角,一棵树的影长为10m,则树高h的范围是(取?1.7)A. 3?h?5B. 5?h?10C. 10?h?15D. h?15 解析:如图2,树高h?10tan37?,要确定h的范围,可根据正切函数是增函数,估计tan30??tan37??tan45?即10tan30??10tan37??10tan45??10??h?10 3?5?h?10,故选B四、善转化例4. 在?ABC中,1?A?30?,tanB?BC?,求AB的长。

锐角三角函数锐角三角函数

锐角三角函数锐角三角函数

03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。

锐角三角函数公式

锐角三角函数公式

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
=3sina-4sin&sup3;a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos&sup2;a-1)cosa-2(1-sin&sup2;a)cosa

《锐角三角函数的计算》PPT下载

《锐角三角函数的计算》PPT下载

知识讲解
(2)在计算器开机状态下,按键顺序为
2ndF tan-1 1 . 6 4 显示结果为58.750 786 43. 即β≈58.750 786 43°.
80=
再继续按键: 2ndF
DEG
显示结果为58□45□2.83.
即β≈58°45‘ 3″. 知识讲解例3 如图所示,在Rt△ABC中,∠C=90°,AB=5,BC=4.
2.求cos72°的值. 第一步:按计算器 cos 键,
第二步:输入角度值72, 第三步:输入 键, 屏幕显示结果为0.309 016 994.
即cos 72°=0.309 016 994.
3.用计算器求 tan30°36′ 的值; 解:方法1:
第一步:按计算器 tan 键;
第二步:输入角度值30.6 (因为30°36′ = 30.6°); 屏幕显示结果为 0.591 398 351 方法2:
解:(1)在计算器开机状态下,按键顺序为
2ndF
cos-1

5 2 3 7=
显示结果为58.419 230 95. 即α≈58.419 230 95°.
若将其化为度、分、秒表示,可继续按键:
2ndF DEG
知识讲解
显示结果为58□25□9.23. 即α≈58°25‘ 9″. 注:显示屏上显示结果58□25□9.23,实际上表 示的就是58°25‘ 9.23″.
(2)cos A=0.625 2,cos B=0.165 9; ∠A=51°18′11″ ∠B=80°27′2″
(3)tan A=4.842 8,tan B=0.881 6. ∠A=78°19′58″ ∠B=41°23′58″
课堂小结
用计算器求锐
三角函数 的计算

锐角三角函数

锐角三角函数

锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A A baA =tan0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot abA =cot0cot >A(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、30°、45°、60°特殊角的三角函数值三角函数30° 45° 60° αsin)90cot(tan A A -︒=)90tan(cot A A -︒=B A cot tan =B A tan cot =)90cos(sin A A -︒=)90sin(cos A A -︒=BA cos sin =BA sin cos =A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边斜边A CB ba c A 90B 90∠-︒=∠︒=∠+∠得由B Aαcosαtan典例一、锐角三角函数1、在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B.C. D.【变式训练】如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是()A.B.C.D.典例二、特殊角的函数值计算2、如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.【变式训练】关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°典例三、相关计算的应用3、如图,在距离铁轨200米的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60°方向上;10秒钟后,动车车头到达C 处,恰好位于B 处的西北方向上,则这时段动车的平均速度是( )米/秒.A .20(+1)B .20(﹣1)C .200D .300【变式训练】△ABC 中,AB=12,AC=,∠B=30°,则△ABC 的面积是 .1. (2019·天津)2sin60︒的值为( ) A.3 B. 2 C. 1 D. 22. (2019·怀化)已知α为锐角,且1sin 2α=,则α的度数为( ) A. 30° B. 45° C. 60° D. 90°3. (2019·宜昌)如图,在正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( ) A.43 B. 34 C. 35 D. 454. (2019·湘西州)如图,在ABC ∆中,90C ∠=︒,12AC =,AB 的垂直平分线EF 交AC 于点D ,连接BD .若5cos 7BDC ∠=,则BC 的长是( ) A. 10 B. 8 C. 3 D. 65. (2019·凉山州)如图,在ABC ∆中,14,cos 4CA CB C ===,则sin B 的值为( )A.B. C. D. 6. (2019·雅安)在Rt ABC ∆中,90C ∠=︒,5,4AB BC ==,则sin A = .7. (2019·甘肃)在ABC ∆中,90C ∠=︒,tan A =,则cos B = .8. (2019·柳州)如图,在ABC ∆中,1sin 3B =,tan C =,3AB =,则AC 的长为 .9. ( 2019·乐山)如图,在ABC ∆中,30B ∠=︒,2AC =,3cos 5C =,则边AB 的长为 .10. (2019·盐城)如图,在ABC ∆中,BC =,45C ∠=︒,AB =,则AC 的长为 .11. (2019·杭州)在直角三角形ABC 中,若2AB AC =,则cos C = .12. (2019·绵阳)在ABC ∆中,若45B ∠=︒,AB =,AC =则ABC ∆的面积是 . 13. (2019·宿迁)如图,60MAN ∠=︒.若ABC ∆的顶点B 在射线AM 上,且2AB =,点C 在射线AN 上运动,当ABC ∆是锐角三角形时,BC 长的取值范围是 .14. (2019·舟山)如图,在ABC ∆中,若45A ∠=︒,222AC BC AB -=,则tan C = .15. (2018·德阳)如图,D 为ABC ∆的边AB 的中点,E 为AD 的中点,ADC ∆为正三角形,给出下列结论:①2CB CE =;②3tan 4B =;③ECD DCB ∠=∠;④若2AC =,P 是AB 上的一动点,点P 到边,AC BC 的距离分别为12,d d ,则2212d d +的最小值是3.其中正确的结论是 (填序号).16. (2018·上海)如图,在ABC ∆中,5AB BC ==,3tan 4ABC ∠=. (1)求边AC 边的长;(2)设BC 的垂直平分线DF 与边AB 的交点为D ,求ADBD的值.17. (2019·梧州)如图,在Rt ABC ∆中,90C ∠=︒,D 为BC 上一点,5,1AB BD ==,3tan 4B =.求: (1)AD 的长; (2)sin α的值.18. (2018·贵阳)如图①,在Rt ABC ∆中,以下是小亮探究sin a A 与sin bB之间关系的方法: ∵sin a A c =,sin b B c =, ∴sin a c A =,sin bc B=,∴sin sin a bA B. 根据你掌握的三角函数知识,在图②的锐角三角形ABC 中,探究sin a A ,sin b B ,sin cC之间的关系,并写出探究过程.1. 如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC 的余弦值是( )A .2B .C .D .2. 在Rt △ABC 中,cosA=,那么sinA 的值是( ) A .B .C .D .3. 如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD=( )A.B.C.D.4.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.5.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.6. 如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.7.(2017内江)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)9.(2017湖北荆州)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)10.(2017呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45° C
B
巩固练习
1.在 Rt△ABC 中,∠C=90°,BC= 7 AC= 21 ,求∠A,∠B的度数。 B 2.计算下列各式的值。
2 1sin 45 2
,
C
A
2sin45cos60 - cos45
41 - cos 30 tan 30
sin 60
(3)cos245°+tan60°cos30°
九年级
下册
锐角三角函数的计算
课件说明
• 学习目标: 1.熟练掌握解正弦、余弦、正切的计算方法; 2.熟练应用特殊角的瑞骄傲三角函数值进行混合运算 • 3.能灵活运用解直角三角形解决与直角三角形有关的 图形计算问题 • 学习重点: 灵活运用解直角三角形解决与直角三角形有关的图形 计算问题.
知识梳理
根据图形说出正弦、余弦、正切 的表示方法。 B
c
b
a
C
A
知识梳理
根据不同的已知条件,归纳相应的解直角三角形的 方法,完成下表填空. 已知条件 斜边 c 和 一条边 锐角∠A 和一个 直角边 a 锐角 和锐角∠A 两条直角边 a和b 两条边 直角边 a 和斜边 c 解法 ∠B= , a= , b=______ ∠B=______,b=______, c=______ c=______,由______ 求∠A=______,∠B=______ b=______,由______ 求∠A=_____,∠B=______
C B
A
D 第 1题
B
A 第 2题
D
布置作业
6.在 Rt△ABC 中,∠C=°,BC= AC= 21 ,求∠A,∠B的度数。
7
B C
,
A ,
7.在 Rt△ABC 中,∠C=90°,BC= AC= 2 ,解这个直角三角形。
6
8.在 Rt△ABC 中,∠C=90°, ∠B=30°,a= 7 ,解这个直角三角形
巩固练习
3.在 Rt△ABC 中,∠C=90°,BC= AC= 2 ,解这个直角三角形。
4.在 Rt△ABC 中,∠C=90°, ∠B=30°,a= 7 ,解这个直角三角形
6 ,
课堂小结
通过今天的复习,谈谈你的收获和体会!
布置作业
提高题
5.已知,如图,在△ABC 中,∠ACB=90°, CD⊥AB,垂足为 D,若∠B=30°,CD=6,求 AB 的长. 6.如图,AD⊥CD,AB=10,BC=20,∠A=∠C= 30°,求 AD,CD 的长. C
典型例题
例1 在 Rt△ABC 中,∠C=90°, BC=6,AB=10. 求 sinA, cosA, tanA. B
C
A
典型例题
例2.求下列各式的值。 1. cos260°+sin260°
cos 45 2. tan 45 sin 45
3.1 - 2sin30 cos30
4.3 tan 30 tan 45 2 sin 60
布置作业
9、如图,在△ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的角平分线,与 BC 相交于点 D,且 AB=4, 求 AD 的长.
A
C
D
B
典型例题
例3 在 Rt△ABC 中,∠C=90°,根据下列条件解 直角三角形: (1)a= 3 ,c= 6 ; (2)∠B=60°,b=4; (3)∠A=60°,△ABC 的面积 S=12 3 .
典型例题
例4 如图,在△ABC 中,∠B=30°,∠C=45°, AC=4,求 AB 和 BC. A 30°
相关文档
最新文档