新初二数学下期末试题(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初二数学下期末试题(附答案)
一、选择题
1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)
25
30
36
50
28
8
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数 C .众数 D .方差 2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )
A .7
B .6
C .5
D .4
3.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,
2l 的函数表达式为222y k x b =+.下列说法中错误的是( )
A .12k k =
B .12b b <
C .12b b >
D .当5x =时,
12y y >
4.下列说法:
①四边相等的四边形一定是菱形
②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形
④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有( )个. A .4
B .3
C .2
D .1
5.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 6.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3)
B .它的图象经过一、二、三象限
C .当x >
1
2
时,y >0 D .y 值随x 值的增大而增大
7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数
B .平均数
C .中位数
D .方差
8.下列计算中正确的是( ) A .325+= B .321-=
C .3333+=
D .
33
4=
9.函数的自变量取值范围是( ) A .x ≠0
B .x >﹣3
C .x ≥﹣3且x ≠0
D .x >﹣3且x ≠0
10.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )
A .10m
B .15m
C .18m
D .20m
11.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米
A .0.4
B .0.6
C .0.7
D .0.8
12.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°
,AE=6,BE=8,则阴影部分的面积是( )
A .48
B .60
C .76
D .80
二、填空题
13.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线
△恰为等段OC于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得ABD
腰直角三角形,则b的值为_______.
14.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:
候选人甲乙
面试8692
测试成绩(百分制)
笔试9083
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
根据两人的平均成绩,公司将录取___.
15.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.
16.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.
AE=,17.如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F.若4
AF=,且□ABCD的周长为40,则□ABCD的面积为_______.
6
ABCD O是BC边上一点,P为CD中点,沿AO折叠使得18.如图,已如长方形纸片,
∠的度数是______.
顶点B落在CD边上的点P处,则OAB
19.(多选)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系,下列说法正确的是( )
A .甲乙两车出发2小时后相遇
B .甲车速度是40千米/小时
C .相遇时乙车距离B 地100千米
D .乙车到A 地比甲车到B 地早
5
3
小时 20.已知3a b +=,2ab =,则
a b
b a
+
的值为_________. 三、解答题
21.如图,ABCD Y 中,延长AD 到点F ,延长CB 到点E ,使DF BE =,连接AE 、
CF .
求证:四边形AECF 是平行四边形.
22.甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
选手A平均数中位数众数方差
甲a88c
乙7.5b6和9 2.65
(1)补全甲选手10次成绩频数分布图.
(2)a=,b=,c=.
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)
数与代数空间与图形统计与概率综合与实践
学生甲93938990
学生乙94929486
(1)分别计算甲、乙同学成绩的中位数;
(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?
24.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:
(1)在图(1)中,作与MN平行的直线AB;
(2)在图(2)中,作与MN垂直的直线CD.
25.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进
行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,
(1)请直接写出y与x之间的函数关系式;
(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?
(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
故选C.
点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
2.C
解析:C
【解析】
【分析】
【详解】
∵等腰三角形ABC中,AB=AC,AD是BC上的中线,
∴BD=CD=1
2
BC=3,
AD同时是BC上的高线,∴AB22
AD BD
故它的腰长为5. 故选C.
3.B
解析:B 【解析】 【分析】
根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】
∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,
∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,
∴当x 5=时,12y y > 故选B . 【点睛】
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
4.C
解析:C 【解析】 【分析】 【详解】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C .
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判
定.
5.D
解析:D
【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;
B、对角线垂直且相等的平行四边形是正方形,故选项B错误;
C、两条对角线相等的平行四边形是矩形,故选项C错误;
D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;
故选D.
6.C
解析:C
【解析】
【分析】
利用k、b的值依据函数的性质解答即可.
【详解】
解:当x=1时,y=3,故A选项正确,
∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,
∴B、D正确,
∵y>0,
∴2x+1>0,
∴x>﹣1
2
,
∴C选项错误,
故选:C.
【点睛】
此题考查一次函数的性质,熟记性质并运用解题是关键.
7.D
解析:D
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
8.D
解析:D
【解析】
分析:根据二次根式的加减法则对各选项进行逐一计算即可.
详解:A 、2与3不是同类项,不能合并,故本选项错误; B 、2与3不是同类项,不能合并,故本选项错误; C 、3与3不是同类项,不能合并,故本选项错误; D 、
34=33=24
,故本选项正确. 故选:D .
点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.
9.B
解析:B 【解析】 【分析】 【详解】
由题意得:x +3>0, 解得:x >-3. 故选B .
10.C
解析:C 【解析】
∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,
∴这棵树原来的高度=BC+AC=5+13=18m. 故选C.
11.D
解析:D 【解析】 【分析】 【详解】
解:∵AB =2.5米,AC =0.7米,∴BC 22AB AC -(米).
∵梯子的顶部下滑0.4米,∴BE =0.4米,∴EC =BC ﹣0.4=2(米), ∴DC 22DE EC -(米),
∴梯子的底部向外滑出AD =1.5﹣0.7=0.8(米).
故选D . 【点睛】
此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.
12.C
解析:C 【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8, ∴
10==
∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1
682
⨯⨯ =100-24 =76. 故选C. 考点:勾股定理.
二、填空题
13.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D
解析:3或6 【解析】 【分析】
先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可. 【详解】
解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,, ∴∠DBC=∠BAO ,
由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b , ∵点C (0,6), ∴OC=6, ∴BC=6-b ,
在△DBC 和△BAO 中,
DBC BAO DCB AOB BD AB ∠∠⎧⎪
∠∠⎨⎪⎩
=== ∴△DBC ≌△BAO (AAS ), ∴BC=OA ,
即6-b=b,
∴b=3;
②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,
∴CD=AF=6,BC=DF,
∵OB=b,OA=b,
∴BC=DF=b-6,
∵BC=6-b,
∴6-b=b-6,
∴b=6;
③当∠DAB=90°时,如图3,
作DF⊥OA于F,
同理证得△AOB≌△DFA,
∴OA=DF,
∴b=6;
综上,b的值为3或6,
故答案为3或6.
【点睛】
本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
14.乙【解析】【分析】根据题意先算出甲乙两位候选人的加权平均数再进行比较即可得出答案【详解】甲的平均成绩为:(86×6+90×4)÷10=876(分)乙的平均成绩为:(92×6+83×4)÷10=884
解析:乙
【解析】
【分析】
根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
【详解】
甲的平均成绩为:(86×
6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数最高,所以乙将被录取.
故答案为:乙.
【点睛】
本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
15.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言:
解析:23y x =-.
【解析】
【分析】
根据直线的平移规律“上加下减,左加右减”求解即可.
【详解】
解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.
【点睛】
本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.
16.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱
解析:【解析】
【分析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
【详解】
∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长=4BC=4×6=24.
故答案为24.
【点睛】
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
17.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于
EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得
CD=8∴▱ABC
解析:48
【解析】
∵▱ABCD的周长=2(BC+CD)=40,
∴BC+CD=20①,
∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
∴S▱ABCD=4BC=6CD,
整理得,BC=3
2
CD②,
联立①②解得,CD=8,
∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.
故答案为48.
18.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△A PO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边
解析:30°
【解析】
【分析】
根据题意先通过△ADP求出∠DAP的,因为△ABO≌△APO,即可求出∠OAB的度数.【详解】
解:∵ P是CD的中点,沿AO折叠使得顶点B落在CD边上的点P
∴DP=PC=1
2
CD, △ABO≌△APO
∵四边形ABCD为长方形
∴∠D=∠DAB=90°,AB=CD=AP=2DP ∴∠DAP=30°
∵△ABO≌△APO
∴∠PAO=∠OAP=1
2
∠BAP
∴∠OAP=1
2
∠BAP=
1
2
(∠DAB-∠DAP)=
1
2
(90°-30°)=30°
故答案为:30°
【点睛】
此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.
19.ABD【解析】【分析】根据图象的信息依次进行解答即可【详解】A出发2h 后其距离为零即两车相遇故正确;B甲的速度是千米/小时故正确;C相遇时甲行驶的路程为2×40=80km故乙车行驶路程为120千米故
解析:ABD
【解析】
【分析】
根据图象的信息依次进行解答即可.
【详解】
A、出发2h后,其距离为零,即两车相遇,故正确;
B、甲的速度是200
40
5
=千米/小时,故正确;
C、相遇时,甲行驶的路程为2×40=80km,故乙车行驶路程为120千米,故离B地80千米,故错误;
D、乙车2小时行驶路程120千米,故乙的速度是120
60
2
=千米/小时,
故乙车到达A地时间为200
60
=
10
3
小时,
故乙车到A地比甲车到B地早5-10
3
=
5
3
小时,D正确;
故选:ABD.
【点睛】
本题考查了行程问题的数量关系速度=路程÷时间的运用,速度和的运用,解答时正确理解函数图象的数据的意义是关键.
20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案
【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运
【解析】
【分析】
先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.
【详解】
=
=(a b ab
+, ∵3a b +=,2ab =,
∴原式=3=22
;
故答案为:
2
. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.
三、解答题
21.证明见解析
【解析】
【分析】
根据平行四边形性质得出AD//BC,AD=BC ,求出AF=EC,AF//EC,得出四边形DEBF 是平行四边形,根据平行四边形的性质推出即可
【详解】
证明:∵四边形ABCD 是平行四边形,
∴AD BC ∥且AD BC =,
又∵DF BE =,
∴AF CE =,
AF EC ∥,
∴四边形AECF 是平行四边形.
【点睛】
此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理22.(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
【分析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a=672849210
10
+⨯+⨯+⨯+
=8(环),
c=
1
10
×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b=87
2
+
=7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.【点睛】
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
23.(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.8.
【解析】
【分析】
(1)由中位数的定义求解可得;
(2)根据加权平均数的定义计算可得.【详解】
(1)甲的中位数=9093
=91.5
2
+
,乙的中位数=
9294
=93
2
+
;
(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,
乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.
【点睛】
此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.
24.(1)见解析;(2)见解析
【解析】
试题分析:画图即可.
试题解析:
如图:
25.(1)
20(018)
4432(1830)
x x
y
x x
<
≤≤
⎧
=⎨
-+≤
⎩
;(2)试销售期间,日销售最大利润是1080
元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.
【解析】
【分析】
(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;
(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;
(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.
【详解】
(1)
20(018),
4432(1830).
x x
y
x x
≤≤
⎧
=⎨
-+≤
⎩<
(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;
当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),
∴日销售利润不低于960元的天数共有13天.
由20x=-4x+432解得,x=18,
当x=18时,y=20x=360,∴点D的坐标为(18,360),
∴日最大销售量为360件,
360×(9-6)=1080(元),
∴试销售期间,日销售最大利润是1080元.
(3)设第x天和第(x+1)天的销售利润之和为1980元.
∵1980÷(9﹣6)=660<340×2,
∴x<17,或x+1>23,
当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,
当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,
∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.
【点睛】
本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.。