《提公因式法》因式分解提高习题
因式分解提公因式法计算题40道
因式分解提公因式法计算题40道因式分解是代数学中的一个重要概念,它在解决多项式方程、简化分式等方面起着关键作用。
提公因式法是因式分解中常用的一种方法,它可以帮助我们将多项式分解成更简单的形式。
下面我将为你提供40个因式分解提公因式法的计算题,并尽可能从多个角度全面地回答。
1. 2x^2 + 5x.2. 3x^2 12。
3. 4x^2 25。
4. 6x^2 + 11x 35。
5. 2x^3 8x^2 + 6x.6. 3x^3 + 12x^2 27x.7. 4x^3 16x.8. 5x^3 125。
9. 6x^3 + 27x^2 63x.10. 2x^4 18x^2 + 40。
11. 3x^4 48x^2 + 192。
12. 4x^4 12x^2 + 9。
13. 5x^4 20x^2 + 15。
14. 6x^4 72x^2 + 216。
15. 2x^5 + 8x^4 10x^3。
16. 3x^5 12x^4 + 9x^3。
17. 4x^5 32x^3 + 64x.18. 5x^5 80x^3 + 400。
19. 6x^5 + 18x^4 108x^3。
20. 2x^6 18x^4 + 40x^2。
21. 3x^6 48x^4 + 192x^2。
22. 4x^6 12x^4 + 9x^2。
23. 5x^6 20x^4 + 15x^2。
24. 6x^6 72x^4 + 216x^2。
25. 2x^7 + 8x^6 10x^5。
26. 3x^7 12x^6 + 9x^5。
27. 4x^7 32x^5 + 64x^3。
28. 5x^7 80x^5 + 400x^3。
29. 6x^7 + 18x^6 108x^5。
30. 2x^8 18x^6 + 40x^4。
31. 3x^8 48x^6 + 192x^4。
32. 4x^8 12x^6 + 9x^4。
33. 5x^8 20x^6 + 15x^4。
34. 6x^8 72x^6 + 216x^4。
八年级因式分解常见方法和经典题型(适合基础和提高)
西安乐童教育中心八年级数学 因式分解常见方法讲解和经典题型常见方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
八上数学每日一练:提公因式法因式分解练习题及答案_2020年综合题版
2020年 八 上 数 学 : 数 与 式 _因 式 分 解 _提 公 因 式 法 因 式 分 解 练 习 题
1. (2018大石桥.八上期末) 分解因式:
(1) 10a-5a2-5; (2) (x2+3x)2-(x-1)2. 考点: 提公因式法: 数 与 式 _因 式 分 解 _提 公 因 式 法 因 式 分 解 练 习 题 答 案
1.答案:
答案解析
答案解析
答案解析 答案解析 答案解析
2.答案: 3.答案:
4.答案: 5.答案:
2. (2017临海.八上期末) 按要求解答:
(1)
计算:
;
(2)
因式分解:
;
(3)
先化简,再求值:
,其中
.
考点: 代数式求值;整式的混合运算;提公因式法因式分解;0指数幂的运算性质;负整数指数幂的运算性质;
3. (2017温岭.八上期末) 计算题:
(1)
(2)
因式分解:
(3)
解方程:
考点: 提公因式法因式分解;因式分解的应用;解分式方程;
4. (2017上杭.八上期末) 分解因式: (1) 3m(b﹣c)﹣2n(c﹣b) (2) (a﹣b)(a﹣4b)+ab. 考点: 提公因式法因式分解;
5. (2016柘城.八上期末) 分解因式: (1) 6x(a﹣b)+4y(b﹣a) (2) 9(a+b)2﹣25(a﹣b)2. 考点: 提公因式法因式分解;因式分解﹣运用公式法;
《第4章因式分解》期末复习能力提升训练(附答案)2020-2021学年八年级数学北师大版下册
2021年北师大版八年级数学下册《第4章因式分解》期末复习能力提升训练(附答案)一.因式分解的意义1.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣62.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣1 3.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.4.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.5.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).6.多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.7.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.8.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.9.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.二.公因式10.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.11.2x3y2与12x4y的公因式是.12.多项式m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣16中,它们的公因式是.三.提公因式法因式分解13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.15.分解因式:2m(m﹣n)2﹣8m2(n﹣m)四.运用公式法因式分解16.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个17.请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.18.已知,求下列各式的值:(1)x2+2xy+y2(2)x2﹣y2.五.提公因式法与公式法的综合运用19.因式分解:4a3﹣16a=.20.因式分解:(1)﹣3ma2+12ma﹣12m;(2)n2(m﹣2)+4(2﹣m).21.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.六.分组分解法因式分解22.分解因式:2x2+7xy﹣15y2﹣3x+11y﹣2=.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.因式分解:(1)6x2﹣13x+5(2)1﹣x2+2xy﹣y225.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.七.十字相乘法等因式分解26.你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.八.实数范围内分解因式27.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1九.因式分解的应用28.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.202229.已知x2﹣3x+1=0,则=.30.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.参考答案一.因式分解的意义1.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.2.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.3.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.4.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.5.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.6.解:x2+mx+6因式分解得(x﹣2)(x+n),得x2+mx+6=(x﹣2)(x+n),(x﹣2)(x+n)=x2+(n﹣2)x﹣2n,x2+mx+6=x2+(n﹣2)x﹣2n,﹣2n=6,m=n﹣2.解得n=﹣3,m=﹣5,故答案为:﹣5.7.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)8.解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.9.解:设另一个因式为2x2+mx﹣,∴(x﹣3)(2x2+mx﹣)=2x3﹣5x2﹣6x+k,2x3+mx2﹣x﹣6x2﹣3mx+k=2x3﹣5x2﹣6x+k,2x3+(m﹣6)x2﹣(+3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴另一个因式为:2x2+x﹣3.二.公因式10.解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.11.解:∵2x3y2=2x3y•y,12x4y=2x3y•6x,∴2x3y2与12x4y的公因式是2x3y,故答案为:2x3y.12.解:m(m﹣3)+2(3﹣m)=m(m﹣3)﹣2(m﹣3)=(m﹣3)(m﹣2);m2﹣4m+4=(m﹣2)2;m4﹣16=m4﹣24=(m2+4)(m2﹣4)=(m2+4)(m+2)(m﹣2).各项都含有m﹣2,因此它们的公因式是m﹣2.三.提公因式法因式分解13.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.14.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.15.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).四.运用公式法因式分解16.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.17.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.18.解:x+y=2,xy=()2﹣()2=4,x﹣y=2(1)x2+2xy+y2=(x+y)2=(2)2=24;(2)x2﹣y2=(x+y)(x﹣y)=2×2=8.五.提公因式法与公式法的综合运用19.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)20.解:(1)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2;(2)原式=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).21.解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).六.分组分解法因式分解22.解:∵2x2+7xy﹣15y2=(x+5y)(2x﹣3y),∴可设2x2+7xy﹣15y2﹣3x+11y﹣2=(x+5y+a)(2x﹣3y+b),a、b为待定系数,∴2a+b=﹣3,5b﹣3a=11,ab=﹣2,解得a=﹣2,b=1,∴原式=(x+5y﹣2)(2x﹣3y+1).故答案为:(x+5y﹣2)(2x﹣3y+1).23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.解:(1)原式=(2x﹣1)(3x﹣5);(2)原式=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y);25.解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=15.七.十字相乘法因式分解26.解:(1)设x2+x=y,则原式=(y﹣4)(y+3)+10=y2﹣y﹣2=(y﹣2)(y+1)=(x2+x﹣2)(x2+x+1)=(x+2)(x﹣1)(x2+x+1);(2)设x2+6=m,原式=(x2+6+7x)(x2+6+5x)+x2=(m+7x)(m+5x)+x2=m2+12xm+35x2+x2=m2+12xm+36x2=(m+6x)2=(x2+6x+6)2;(3)设x+y=m,xy=n(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(m﹣2n)(m﹣2)+(n﹣1)2=m2﹣2m﹣2mn+4n+n2﹣2n+1=m2﹣2m﹣2mn+n2+2n+1=m2﹣2m(1+n)+(n+1)2=(m﹣n﹣1)2=(x+y﹣xy﹣1)2=(y﹣1)2(1﹣x)2八.实数范围内分解因式27.解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.九.因式分解的应用28.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.29.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.30.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.。
人教版八年级上册《因式分解》提升练习(提公因式法)
专题提升练习(提公因式法)易错点警示:提公因式法:(1)当多项式首项系数是负数时,一般应先提取出“-”.(2)当公因式与多项式中某一项相同时,提取公因式后该项剩余的项为“1”,一定不要漏掉.靶向专题练习一.选择题。
1. 在下列各式由左边到右边的变形中,是因式分解的是( )A.x2-xy2=x(x-y)2B.-x2-2x-1=-(x+1)2C.(x+2)2=x2+4x+4D.4x2+2xy+y2=(2x+y)22. 把多项式3(x-y)-2(x-y)2分解因式结果正确的是( )A.(x-y)(3-2x-2y)B.(x-y)(3-2x+2y)C.(x-y)(3+2x-2y)D.(y-x)(3+2x-2y)3把-6x3y2-3x2y2+8x2y3因式分解时,应提取的公因式是( )A.-3x2y2B.-2x2y2C.6x2y2D.-x2y24.下列多项式中,能用提公因式法因式分解的是 ( )A.x2-yB.x2-2xC.x2+y2D.x2-xy+y25. 把多项式(m+1)(m-1)+(m-1)分解因式,一个因式是(m-1),则另一个因式是( )A.m+1B.2mC.2D.m+26.已知xy=-3,x+y=2,则代数式x2y+xy2的值是 ( )A.-6B.6C.-5D.-17. 把下列各多项式分解因式时,应提取公因式2x2y2的是( )A.2x2y2-4x3yB.4x2y2-6x3y3+3x4y4C.6x3y2+4x2y3-2x3y3D.x2y4-x4y2+x3y38.已知不论x为何值,都有x2-kx-15=(x+5)(x-3),则k值为 ( )A.2B.-2C.5D.-3二.填空题。
1. 分解因式:ab+2b= .2.分解因式:x2-5x= .3.因式分解:x(x-3)-x+3= .4.如图,长,宽分别为a,b的长方形的周长为16,面积为15,则a3b+ab3的值为.5.计算:2n+4-2×2n2×2=.6.已知(2x-21)(3x-7)-(3x-7)(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b= .7.在括号内填入适当的多项式,使等式成立.(1)-4ab-4b=-4b( ) .(2)8x2y-12xy3=4xy( ).三.解答题。
初二数学因式分解提高版(附答案)
初二数学因式分解提高版(附答案)1、22424y x y xy x ++--有一个因式是y x 2-,另一个因式是( )A .12++y xB .12-+y xC .12+-y xD .12--y x2、把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b )4D 、(a +b)2(a -b)23、若a 2—3ab-4b 2=0,则ba 的值为( ) A 、1 B 、—1 C 、4或-1 D 、- 4或14、已知a 为任意整数,且()2213a a +-的值总可以被(1)n n n ≠为自然数,且整除,则n 的值为( )A .13B .26C .13或26D .13的倍数 5、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -6、把x 2-y 2-2y -1分解因式结果正确的是( )。
A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)7、分解因式:222x xy y x y -++-的结果是( )A.()()1x y x y --+B.()()1x y x y --- C.()()1x y x y +-+ D.()()1x y x y +--8、因式分解:9x 2-y 2-4y -4=__________.9、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________.10、已知,01200520042=+++++x x x x 则.________2006=x11、若6,422=+=+y x y x 则=xy ___。
鲁教版数学八年级上册 1.2《因式分解提公因式法》同步测试(含答案)
因式分解-提公因式法一、选择题(本大题共10小题,共30.0分)a2b−ab2提公因式后,另一个因式是()1.将−12A. a+2bB. −a+2bC. −a−bD. a−2b2.计算a2(2a)3−a(3a+8a4)的结果是()A. 3a2B. −3aC. −3a2D. 16a53.当a,b互为相反数时,代数式a2+ab−2的值为()A. 2B. 0C. −2D. −14.用提取公因式法将多项式4a2b3−8a4b2+10a3b分解因式,得公因式是()A. 2a2bB. 2a2b2C. 4a2bD. 4ab25.(−2)2014+3×(−2)2013的值为()A. −22013B. 22013C. 22014D. 220146.若代数式x2+ax可以分解因式,则常数a不可以取()A. −1B. 0C. 1D. 27.分解因式x3+4x的结果是()A. x(x2+4)B. x(x+2)(x−2)C. x(x+2)2D. x(x−2)28.若a+b=6,ab=3,则3a2b+3ab2的值是()A. 9B. 27C. 19D. 549.下列因式分解错误的是()A. 2a−2b=2(a−b)B. x2−9=(x+3)(x−3)C. a2+4a−4=(a+2)2D. −x2−x+2=−(x−1)(x+2)10.多项式b2n−b n提公因式b n后,另一个因式是()A. b n−1B. b2n−1−1C. b2n−1D. b n二、填空题(本大题共10小题,共30.0分)11.已知x+y=10,xy=16,则x2y+xy2的值为______ .12.因式分解:x2−2x+(x−2)=______.13.分解因式:m2+2m=______.14.因式分解a(x−3)2+b(3−x)2=______ .15.因式分解:3ab2+a2b=______.16.若m−n=3,mn=−2,则2m2n−2mn2+1的值为______ .17.把多项式−16x3+40x2y提出一个公因式−8x2后,另一个因式是______ .18.若x+y=1,xy=−7,则x2y+xy2=______.19.如图,边长为m,n的长方形,它的周长为10,面积为6,则m2n+mn2的值为______.20.分解因式:x3+2x2−3x=______.三、计算题(本大题共4小题,共24.0分)21.已知2x−y=1,xy=3,求2x4y3−x3y4的值.3第 1 页22.化简求值:当a=2005时,求−3a2(a2−2a−3)+3a(a3−2a2−3a)+2005的值.23.(6分)分解因式:6xy 2−9x 2y−y 324.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.四、解答题(本大题共2小题,共16.0分)25.已知(19x−31)(13x−17)−(17−13x)(11x−23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.26.简便计算:①1.992+1.99×0.01②20132+2013−20142.答案1. A2. C3. C4. A5. A6. B7. A8. D9. C10. A11. 16012. (x+1)(x−2)13. m(m+2)14. (x−3)2(a+b)15. ab(3b+a)16. −1117. 2x−5y18. −719. 3020. x(x+3)(x−1)21. 解:∵2x−y=1,xy=3,3=9.∴原式=(xy)3(2x−y)=27×1322. 解:−3a2(a2−2a−3)+3a(a3−2a2−3a)+2005=−3a2(a2−2a−3)+3a2(a2−2a−3)+2005=2005.23. 解:6xy 2−9x 2y−y 3=−y(y 2−6xy+9x 2)=−y(3x−y) 224. 解:x2+2xy+x2=2x2+2xy=2x(x+y).25. 解:(19x−31)(13x−17)−(17−13x)(11x−23)=(19x−31)(13x−17)+(13x−17)(11x−23)=(13x−17)(30x−54)∴a=13,b=−17,c=−54,∴a+b+c=−58.26. 解:①1.992+1.99×0.01=1.99×(1.99+0.01)=3.98;②20132+2013−20142=2013[(2013+1)]−20142=2013×2014−20142=2014×(2013−2014)=−2014.第 1 页。
提取公因式法因式分解练习题
提取公因式法因式分解练习题题组训练一:确定下列各多项式的公因式。
1.ay+ax^2,公因式为a。
2.3mx-6my^3,公因式为3m。
3.4a^2+10ab^4,公因式为2a。
4.15a^2+5a^5,公因式为5a^2.5.x^2y-xy2/6,公因式为xy。
6.-9x^2y^2,公因式为3xy。
7.m(x-y)+n(x-y),公因式为(x-y)。
8.x(m+n)+y(m+n),公因式为(m+n)。
9.abc(m-n)^3-ab(m-n),公因式为ab(m-n)。
10.12x(a-b)^2-9m(b-a)^3,公因式为3(a-b)^2.题组训练二:利用乘法分配律的逆运算填空。
1.2πR+2πr=2π(R+r)。
2.2πR+2πr=2π(R+r)/2.3.gt^1/2+gt^2/2=(gt^1/2+gt^2/2)^2.4.15a^2+25ab^2=5a(3a+5b^2)。
题组训练三:在下列各式左边的括号前填上“+”或“-”,使等式成立。
1.x+y=(x+y)。
2.b-a=-(a-b)。
3.-z+y=-(y-z)。
4.(y-x)=-(x-y)。
5.(y-x)^3=-(x-y)^3.6.-(x-y)^4=(y-x)^4.7.(a-b)^(2n)=(-1)^(2n)(b-a)^(2n)。
8.(a-b)^(2n+1)=(-1)^(2n+1)(b-a)^(2n+1)。
9.(1-x)(2-y)=-(1-x)(y-2)。
10.(1-x)(2-y)=(x-1)(y-2)。
11.(a-b)^2(b-a)=-(a-b)^3.题组训练四:把下列各式分解因式。
1.n(x-y)。
2.a(a+b)^2.3.2x(2x-3)。
4.2mn(4m+n)。
5.5x^2y^2(5y-3)。
6.3xy(4z-3x)。
7.3y(a-1)^2-3(a-1)y。
8.(a-b)(a-3b)。
9.-(x-3)(x+3)。
10.-4y(3x+2y)。
因式分解提公因式法练习卷
提公因式法练习卷一、选择题1.多项式a n-a3n+a n+2分解因式的结果是()A.a n(1-a3+a2)B.a n(-a2n+a2)C.a n(1-a2n+a2)D.a n(-a3+a n)2.将m2(a-2)+m(a-2)分解因式的结果是()A.(a-2)(m2-m)B.m(a-2)(m-1)C.m(a-2)(m+1)D.m(2-a)(m-1)3.计算(-2)2015+22014等于()A.22015B.-22015C.-22014D.22014 4.把多项式3m(x-y)-2(y-x)2分解因式的结果是()A.(x-y)(3m-2x-2y)B.(x-y)(3m-2x+2y)C.(x-y)(3m+2x-2y)D.(y-x)(3m+2x-2y)5.多项式mx+n可分解为m(x-y),则n表示的整式为()A.m B.my C.-y D.-my6.下列因式分解中,是利用提公因式法分解的是()A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.ab+ac=a(b+c)D.a2+2ab+b2=(a+b)27.分解因式a2-9a的结果是()A.a(a-9)B.(a-3)(a+3)C.(a-3a)(a+3a)D.(a-3)28.把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-49.把多项式x2-x分解因式,得到的因式是()A.只有x B.x2和x C.x2和-x D.x和x-1 10.计算a2(2a)3-a(3a+8a4)的结果是()A.3a2B.-3a C.-3a2D.16a511.若ab=3,a-4b=5,则a2b-4ab2的值是.12.已知a+b=4,ab=2,则a2b+ab2的值为.13.分解因式:3a3-12a2b+12ab2= .14.因式分解:2x2-4xy= .15.因式分解:-3x3+9x= .16.分解因式:a4b-6a3b+9a2b= .三、解答题.17.因式分解:(1)x(x-y)-y(y-x);(2)a2x2y-axy2.18.将x(x+y)(x-y)-x(x+y)2进行因式分解,并求当x+y=1,xy=12时此式的值.19.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)3,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是.1. 将3a(x-y)-b(x-y)用提公因式法分解因式,提出的公因式是()A.3a-b B.3(x-y)C.x-y D.3a+b2. 多项式(x+2)(2x-1)-(x+2)可以因式分解成(x+m)(2x+n),则m-n的值是()A.2 B.-2 C.4 D.-43. 若ab=-3,a-2b=5,则a2b-2ab2的值是()A.-15 B.15 C.2 D.-84.下列运算中,因式分解正确的是()A.-m2+mn-m=-m(m+n-1)B.9abc-6a2b2=3bc(3-2ab)C.3a2x-6bx+3x=3x(a2-2b)D.12ab2+12a2b=12ab(a+b)5.(-8)2014+(-8)2013能被下列数整除的是()A.3 B.5 C.7 D.96.(-2)2013+(-2)2014的值为()A.2 B.-2 C.-22013D.220137. 设P=a2(-a+b-c),Q=-a(a2-ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数8.把a2-2a分解因式,正确的是()A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)二、填空题9. 若a=49,b=109,则ab-9a的值为.10. 分解因式:x2-xy= .11. 已知a-b=2,a=3,则a2-ab= .12. 把多项式-16x3+40x2y提出一个公因式-8x2后,另一个因式是.13.分解因式:m(x-y)+n(y-x)= .14.多项式4x2-12x2y+12x3y2分解因式时,应提取的公因式是.三、解答题15.化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值.16. 若a+b=-3,ab=1.求12a3b+a2b2+12ab3的值.17.先将代数式因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-2.18. 已知(19x-31)(13x-17)-(17-13x)(11x-23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.。
因式分解(一)提公因式法(含习题及答案)
因式分解(一)——提公因式法教学目标:因式分解的概念,和整式乘法的关系,公因式的相关概念,用提公因式法分解因式,学会逆向思维,渗透化归的思想方法.教学重点和难点:1. 因式分解;2. 公因式;3. 提公因式法分解因式.教学过程:一、提出问题,感知新知1.问题:把下列多项式写成整式的乘积的形式(1)x2+x =_________ (2)x2−1 =_________ (3)am+bm+cm =_ _学生思考,得出结果.2.分析特点:根据整式乘法和逆向思维原理(1)x2+x = x(x+1);(2)x2−1 = (x+1)(x−1);(3)am+bm+cm = m(a+b+c)分析特点:等号的左边:都是多项式等号的右边:几个整式的乘积形式.3.得到新知总结概念:像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.与整式乘法的关系:是整式乘法的相反方向的变形.注意:因式分解不是运算,只是恒等变形.形式:多项式 = 整式1×整式2×…×整式n4.分析例题:(1)x2+x =_________ (2)am+bm+cm =_ _(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m.因此,我们把每一项都含有的因式叫做公因式.5.认识公因式例:多项式 14m3n2+7m2n−28m3n3的公因式是?7m2n教师分析,学生解答二、学生动手,总结方法1.我们已经学习了公因式,下面请大家根据自己的理解完成下列的因式分解.把8a3b2−12ab3c分解因式.2.学生动手.3.分析过程:①先确定公因式:4ab2;②然后用每一项去除以公因式;③结果:4ab2(2a2b−3bc).4.总结方法:以上①②③的分解过程的方法叫做提公因式法.5.加强练习例:因式分解:① 2a(b+c)−3(b+c) ②3x3−6xy+x ③−4a3+16a2−18a ④6(x−2)+x(2−x)解:① 2a(b+c)−3(b+c) = (b+c)(2a−3)②3x3−6xy+x = x(3x2−6y+1)③−4a3+ 16a2−18a = −2a(2a2−8a+9)④6(x−2)+x(2−x) = (x−2)(6−x)三、小结:1.因式分解的概念;2.公因式;3.提公因式法.因式分解(二)——公式法教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x2−25和9x2−y2它们有什么共同特征?学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2−b2 = (a+b)(a−b)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2 = ( )2②b2 = ( )2③ 0.16a4 =( )2④1.21a2b2 = ( )2⑤2x4 = ( )2⑥5x4y2 = ( )2解答:① 4a2 = ( 2a)2;②b2 = (b)2;③ 0.16a4 = ( 0.4a2)2;④ 1.21a2b2 = (1.1ab)2;⑤2x4 = (x2)2;⑥5x4y2 = (x2y)2.例2:下列多项式能否用平方差公式进行因式分解①−1.21a2+0.01b2②4a2+625b2③16x5−49y4④−4x2−36y2解答:①−1.21a2+0.01b2能用②4a2+625b2不能用③16x5−49y4不能用④−4x2−36y2不能用问题:根据学习用平方差公式分解因式的经验和方法,分析和推测运用完全平方公式分解因式吗?能够用完全平方公式分解因式的多项式具有什么特点?分析:整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.即:a2±2ab+b2 = (a±b)2公式特点:多项式是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数.例:分解因式:①16x2+24x+9 ②−x2+4xy−4y2解答:①16x2+24x+9 = (4x)2+2•3•(4x)+32 = (4x+3)2②−x2+4xy−4y2 = −[x2−2•x•2y+(2y)2] = −(x−2y)2随堂练习:三、小结:1.平方差公式;2.完全平方公式.典型例题1.如果a(a−b)2−(b−a) = (a−b)·M,那么M等于( )A.a(a−b) B.−a(a−b) C.a2−ab−1 D.a2−ab+1答案:D说明:因为a(a−b)2−(b−a) = a(a−b)2+(a−b) = (a−b)[a(a−b)+1] = (a−b)(a2−ab+1),所以M = a2−ab+1,答案为D.2.下列各项的两个多项式中没有公因式的一组是( )A.6xy+8yx2与−4x−3 B.(a+b)2与−a−bC.a−b与−a2+ab D.ax+y与x+y答案:D说明:选项A,6xy+8yx2= 2xy(3+4x),与−4x−3有公因式4x+3;选项B,(a+b)2与−a−b 有公因式a+b;选项C,−a2+ab = −a(a−b),与a−b有公因式a−b;选项D,ax+y与x+y没有公因式,所以答案为D.3.下列式子中,不能用平方差公式分解因式的是( )A.−m4−n2 B.−16x2+y 2 C.−x4 D.(p+q)2−9答案:A说明:选项A不能用平方差公式分解因式;选项B,−16x2+y2= (y+4x)(y−4x),可以用平方差公式分解因式;选项C,−x4 = (+x2)(−x2),可以用平方差公式分解因式;选项D,(p+q)2−9 = [(p+q)+3][(p+q)−3],也可以用平方差公式分解因式;所以正确答案为A.4.下列多项式中,能用公式法进行因式分解的是( )A.x2−xy+y2 B.x2+2xy−y2 C.x2+xy+y2 D.−x2+2xy−y2答案:D说明:观察四个选项中多项式的形式,不难得出A、B、C三个选项中的多项式不能用公式法进行因式分解,选项D,−x2+2xy−y2 = −(x2−2xy+y2) = −(x−y)2,可以用完全平方公式进行因式分解,所以答案为D.习题精选选择题:1.若多项式3x2+mx−4分解因式为(3x+4)(x−1),则m的值为( )A.7 B.1 C.−2D.3答案:B说明:因为因式分解并不改变多项式的值,所以(3x+4)(x−1) = 3x2+mx−4,而(3x+4)(x−1) = 3x2+4x−3x−4 = 3x2+x−4,因此,m = 1,答案为B.2.下列各式的分解因式中,正确的是( )A.3a2x−6bx+3x = 3x(a2−2b) B.xy2+x2y =xy(y+x) C.−a2+ab−ac = −a(a+b−c) D.9xyz−6x2y2= 3xyz(3−2xy)答案:B说明:选项A,3a2x−6bx+3x = 3x(a2−2b+1)≠3x(a2−2b),A错;选项B正确;选项C,−a2+ab−ac = −a(a−b+c)≠−a(a+b−c),C错;选项D,9xyz−6x2y2 = 3xy(3z−2xy)≠3xyz(3−2xy),D错;答案为B.3.若9x2−kxy+4y2是一个完全平方式,则k的值为( )A.6 B.±6 C.12 D.±12答案:D说明:由已知可设9x2−kxy+4y2 = (mx+ny)2 = m2x2+2mnxy+n2y2,所以m2 = 9,n2 = 4,2mn = k,由m2 = 9,n2 = 4可得m2n2 = 36,即(mn)2 = 36,则有mn =±6,所以k = 2mn =±12,答案为D.4.分解因式的结果为(x−2)(x+3)的多项式是( )A.x2+5x−6 B.x2−5x−6 C.x2+x−6D.x2−x−6答案:C说明:因为(x−2)(x+3) = x2−2x+3x−6 = x2+x−6,所以分解因式的结果为(x−2)(x+3)应该是x2+x−6,答案为C.5.下列从左边到右边的变形,是因式分解的是( )A.(x+1)(x−1) = x2−1 B.x2−1+x = (x+1)(x−1)+xC.x2−1 = (x+1)(x−1) D.2x·3x = 6x2答案:C说明:因式分解是把一个多项式化成几个整式的积的形式,则因式分解的结果首先应该是积的形式,因此,A、B都不正确;而选项D左边是两个单项式的乘积,它的变形过程只是简单的单项式乘以单项式的过程,不是因式分解,正确的答案应该是C.6.多项式5a3b3+ 15a2b−20a3b3的公因式是( )A.5a3b B.5a2b2 C.5a2b D.5a3b2答案:C说明:这个多项式中有三项,这三项的系数分别是5,15,−20,系数所含的公因式为5;第一项有因式a3,第二项中含因式a2,第三项中含因式a3,公因式则是a2,同样道理这三项还有公因式b,即这个多项式的公因式应该是5a2b,答案为C.7.下列分解变形中正确的是( )A.2(a+b)2−(2a+b) = 2(a+b)(a+b−1) B.xy(x−y)−x(y−x) =x(x−y)(y+1)C.5(y−x)2+3(x−y) = (y−x)(5x−5y+3) D.2a(a−b)2−(a−b) =(a−b)(a−b−1)答案:B说明:选项A,2a+b中没有a+b这个因式,因此,A中的变形是错误的;选项B,xy(x−y)−x(y−x) = (x−y)(xy+x) = x(x−y)(y+1),B正确;选项C,5(y−x)2+3(x−y) =(y−x)[5(y−x)+3] = (y−x)(5y−5x+3),C错误;选项D,2a(a−b)2−(a−b) = (a−b)[2a(a−b)−1] = (a−b)(2a2−2ab−1),D错误;答案为B.8.下列式子中,能用平方差公式分解因式的是( )A.a2+4 B.−x2−y2 C.a3−1 D.−4+m2答案:D说明:根据平方差公式的形式,不难得到能用平方差公式分解因式的应该是−4+m2 = (m+2)(m−2),答案为D.9.下列各题中,因式分解正确的是( )①(x−3)2−y2 = x2−6x+9−y2;②a2−9b2 = (a+9b)(a−9b);③4x6−1 = (2x3+1)(2x3−1);④(3x+2y)2−4y2 = 3x(3x+4y)A.①②③ B.②③④ C.③④ D.②③答案:C说明:①中的变形不是因式分解;②a2−9b2 = (a+3b)(a−3b)≠(a+9b)(a−9b),②中因式分解错误;③4x6−1 = (2x3+1)(2x3−1),③中因式分解正确;④(3x+2y)2−4y2 =(3x+2y+2y)(3x+2y−2y) = 3x(3x+4y),④中因式分解正确,所以答案为C.解答题:1.把下列各式分解因式:①9(x+y)2−4(x−y)2;②−8a4b3+2a2b;③4(a+b)−(a+b)2−4;④(a−2)(a−3)+ 5a−42.答案:①(5x+y)(x+5y);②2a2b(1+2ab)(1−2ab);③−(a+b−2)2;④(a+6)(a−6)说明:①9(x+y)2−4(x−y)2 = [3(x+y)+2(x−y)][3(x+y)−2(x−y)] =(3x+3y+2x−2y)(3x+3y−2x+2y) = (5x+y)(x+5y)②−8a4b3+2a2b = 2a2b(−4a2b2+1) = 2a2b(1+2ab)(1−2ab)③4(a+b)−(a+b)2−4 = −[(a+b)2−4(a+b)+4] = −[(a+b)−2]2 = −(a+b−2)2④(a−2)(a−3)+5a−42 = a2−3a−2a+6+5a−42 = a2−36 = (a+6)(a−6)2.已知a、b、c为三角形的三条边,且满足:a2+b2+c2−ab−bc−ac = 0,试判断△ABC 的形状,并说明理由.答案:a = b = c,等边三角形说明:因为2(a2+b2+c2−ab−bc−ac) = 2a2+2b2+2c2−2ab−2bc−2ac= (a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2) = (a−b)2+(a−c)2+(b−c)2再由已知a2+b2+c2−ab−bc−ac = 0,知2(a2+b2+c2−ab−bc−ac) = (a−b)2+(a−c)2+(b−c)2 = 0因为(a−b)2≥0,(a−c)2≥0 ,(b−c)2≥0,所以(a−b)2 = 0,(a−c)2 = 0,(b−c)2 = 0即a = b = c,所以该三角形为等边三角形.3.已知矩形面积是(x+2)(x+3)+x2−4(x>0),其中一边长是2x+1,求矩形的另一边长.答案:x+2说明:因为(x+2)(x+3)+x2−4 = (x+2)(x+3)+(x+2)(x−2) = (x+2)(x+3+x−2) =(x+2)(2x+1),即该矩形的面积是(x+2)(2x+1),而它的一边长为2x+1,所以它的另一边长为x+2.4.已知x3+x2+x+1 = 0,求1+x+x2+x3+…+x2003的值.答案:0说明:1+x+x2+x3+…+x2003 = (1+x+x2+x3)+(x4+x5+x6+x7)+…+(x4n+x4n+1+x4n+2+x4n+3)+…+(x2000+x2001+x2002+x2003) = (1+x+x2+x3)+x4(1+x+x2+x3)+...+x4n(1+x+x2+x3)+...+x2000(1+x+x2+x3) = (1+x+x2+x3)(1+x4+...+x4n+ (x2000)∵1+x+x2+x3 = 0,∴1+x+x2+x3+…+x2003 = (1+x+x2+x3)(1+x4+…+x4n+…+x2000) = 0。
因式分解提公因式法(含答案解析)
因式分解-提公因式法【知能点分类训练】知能点1 因式分解的意义1.下列从左到右的变形,属于因式分解的是().A.(x+3)(x-3)=x2-9 B.x2-9+x=(x+3)(x-3)-x C.xy2-x2y=xy(y-x)D.x2+5x+4=x(x+5+)2.下列变形不属于分解因式的是().A.x2-1=(x+1)(x-1)B.x2+x+14=(x+12)2C.2a5-6a2=2a2(a3-3)D.3x2-6x+4=3x(x-2)+4【3.下列各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些两者都不是(1)ad+bd+cd+n=d(a+b+c)+n (2)ay2-2ay+a=a(y-1)2(3)(x-4)(x+4)=x2-16 (4)x2-y2+1=(x+y)(x-y)+1知能点2 提公因式法分解因式4.多项式-7ab+14abx-49aby的公因式是________.5.3x2y3,2x2y,-5x3y2z的公因式是________.6.下列各式用提公因式法分解因式,其中正确的是().A.5a3+4a2-a=a(5a2+4a)(B.p(a-b)2+pq(b-a)2=p(a-b)2(1+q)C.-6x2(y-z)3+x(z-y)3=-3x(z-y)2(2x-z+y)D.-x n-x n+1-x n+2=-x n(1-x+x2)7.把多项式a2(x-2)+a(2-x)分解因式等于().A.(x-2)(a2+a)B.(x-2)(a2-a)C.a(x-2)(a-1)D.a(x-2)(a+1)8.下列变形错误的是().A.(y-x)2=(x-y)2B.-a-b=-(a+b)C.(a-b)3=-(b-a)3D.-m+n=-(m+n)9.分解下列因式::(1)6abc-3ac2(2)-a3c+a4b+a3(3)-4a3+16a2-26a (4)x(m-x)(m-y)-m(x-m)(y-m)知能点3 利用因式分解解决问题10.9992+999=__________=_________.11.计算(-2)2007+(-2)2008的结果是().A.2 B.-2 C.2007 D.-1}12.计算下列各题:(1)-×; (2)×+×-×13.先分解因式,再求值:xyz2+xy2z+x2yz,其中x=25,y=720,z=14.~【综合应用提高】14.如果3x2-mxy2=3x(x-4y2),那么m的值为________.15.写出下列各项的公因式:(1)6x2+18x+6; (2)-35a(a+b)与42(a+b).16.已知n为正整数,试判断n2+n是奇数还是偶数,说明理由.@17.试说明817-279-913能被45整除.`因式分解-公式法【知能点分类训练】知能点1 用平方差公式分解因式1.-b2+a2=___________________;9x2-16y2=________________________.2.下列多项式(1)x2+y2;(2)-2a2-4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;(5)(3a)2-4(2b)2中,能用平方差公式分解的有()A.1个B.2个C.3个D.4个、3.一个多项式,分解因式后结果是(x3+2)(2-x3),那么这个多项式是().A.x6-4 B.4-x6C.x9-4 D.4-x94.下列因式分解中错误的是()A.a2-1=(a+1)(a-1)B.1-4x2=(1+2x)(1-2x)C.81x2-64y2=(9x+8y)(9x-8y)D.(-2y)2-x2=(-2y+x)(2y+x)5.分解因式:(1)a2-(2)25(m+n)2-16(m-n)2#(3)49x4-64x2(4)(x+y)2-9y2知能点2 用完全平方公式分解因式6.4a2+______+81=(2a-9)2.7.多项式a2-4b2与a2+4ab+4b2的公因式是().¥A.a2-4b2B.a+2b C.a-2b D.没有公因式8.下列因式分解中正确的是().A.x4-8x2+16=(x-4)2B.-x2+x-14=-14(2x-1)2C.x(m-n)-y(n-m)=(m-n)(x-y); D.a4-b4=(a2+b2)(a2-b2)9.下列各式:①-x2-xy-y2;②12a2+ab+12b2;③-4ab-a2+4b2;④4x2+9y2-12xy;⑤3x2-6xy+3y2.•其中能用完全平方公式分解因式的有().10.分解下列因式:(1)-x2+12xy-36y2(2)25x2-10x+1}(3)-2x7+36x5-162x3(4)(a2+6a)2+18(a2+6a)+81知能点3 利用因式分解解决问题11.计算:2 0072-72=_____________;992+198+1=___________.12.如果ab=2,a+b=3,那么a2+b2=________.13.若a2+2(m-3)a+16是完全平方式,则m的值为().A.-5 B.-1 C.7 D.7或-1—14.已知a=2275,b=2544,求(a+b)2-(a-b)2的值.15.利用因式分解计算:(1)9×-4×; (2)80×+160××+80×(3)2222 18161 301181--<【综合应用提高】16.分解下列因式:(1)9x2(a-b)+y2(b-a)(2)4a2b2-(a2+b2)2(3)x4-81 (4)1-x2+6xy-9y2 17.已知x-y=-2,求(x2+y2)2-4xy(x2+y2)+4x2y2的值.·【开放探索创新】18.已知a,b,c是△ABC的三条边.(1)判断(a-c)2-b2的值的正负;(2)若a,b,c满足a2+c2+2b(b-a-c)=0,判断△ABC的形状.*【中考真题实战】19.(沈阳)分解因式:2x2-4x+2=________.20.(成都)把a3+ab2-2a2b分解因式的结果是________.21.(衡阳)分解因式x3-x,结果为().A.x(x2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)22.(北京)分解因式a2-4a+4-b2.因式分解阶段性复习@一、阶段性内容回顾1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的_________进行因式分解的方法叫做公式法.5.a2-b2=_______,•即两个数的平方差等于这两个数的________•乘以这两个数的_______.6.a2±2ab+b2=________,即两个数的平方和加上(或减去)这两个数的积的2•倍等于这两个数的________.7.分解因式的一般步骤:如果多项式各项有_______,则先把_______提出来,•然后再考虑用________,最后_________.二、阶段性巩固训练1.(福州)分解因式:x3-4x=_____________.)2.(贵阳)分解因式:2x2-20x+50=____________.3.下列变形属于因式分解的是().A .(x+1)(x -1)=x 2-1B .a 2-22112()a a b b b=-+ C .x 2+x+14=(x+12)2 D .3x 2-6x+4=3x 2(x -2x )+4 4.下列多项式加上4x 2后,可以成为完全平方式的是( ).A .a 2+2axB .-a 2+2axC .-2x+1D .x 4+45.①4xy ;②12xy 2;③-2y 2;④4y .其中可以作为多项式-28x 2y+12xy 2-24y 3的因式的是( ).A .④B .②④C .①③D .③④6.用因式分解的方法计算+×+的值为( ).A .5 730B .2 500C .250 000D .100 0007.分解下列多项式:(1)5ax 2-10axy+5ay 2 (2)4x 2-3y (4x -3y )(3)(x 2-1)2+6(1-x 2)+9 (4)1-x 2+6xy -9y 2(5)(a 2-12a )2+(a 2-a )+116—8.如果x 2+mxy+9y 2是完全平方式,求代数式m 2+4m+4的值.9.计算(1-22221111)(1)(1)(1)23410---. ,10.如果m,n满足│m+2│+(n-4)2=0,那么你能将代数式(x2+y2)-(mxy+n)•分解因式吗`11.已知a2+b2+c2=20,ab+bc+ac=10,试求出(a+b+c)2的值.12.已知a,b,c为△ABC的三边,且满足条件a2-c2+ab-bc=0,试说明△ABC•为等腰三角形.'13.观察下列各式:32-12=4×2,42-22=4×3,52-32=4×4,…(1)猜想(n+2)2-n2的结果.(2)请验证你的猜想.>14.已知a+b=23,ab=12,求a3b+2a2b2+ab3的值.15.(1)如果x2+2x+2y+y2+2=0,求x2007+y2008的值.(2)已知m+n=34,m-n=14,求m2-2mn+3m+3n+n2的值.|。
提公因式法练习题
提公因式法练习题提公因式法是一种常用的数学方法,用于将多项式进行因式分解。
在学习代数时,我们经常会遇到需要使用提公因式法来简化表达式的情况。
本文将通过一些练习题来帮助读者加深对提公因式法的理解。
练习题一:将表达式 $3x^2 - 6x$ 进行因式分解。
解答:首先,我们可以将表达式中的公因数提取出来。
这里,公因数为 $3x$,所以我们可以将表达式改写为 $3x(x - 2)$。
这样,我们就成功地将表达式进行了因式分解。
练习题二:将表达式 $4x^3 - 8x^2 + 4x$ 进行因式分解。
解答:同样地,我们首先找到表达式中的公因数。
这里,公因数为 $4x$,所以我们可以将表达式改写为 $4x(x^2 - 2x + 1)$。
然而,我们还可以进一步分解$x^2 - 2x + 1$。
这个表达式可以写成 $(x - 1)^2$。
因此,整个表达式的因式分解形式为 $4x(x - 1)^2$。
练习题三:将表达式 $9x^2 - 16$ 进行因式分解。
解答:这个表达式看起来不像前两个练习题那么容易分解。
但是,我们可以使用一个特殊的公式来进行因式分解,即差平方公式。
差平方公式可以写成 $a^2 - b^2 = (a + b)(a - b)$。
我们可以将表达式 $9x^2 - 16$ 看作 $3^2x^2 - 4^2$。
根据差平方公式,我们可以将其分解为 $(3x + 4)(3x - 4)$。
因此,表达式$9x^2 - 16$ 的因式分解形式为 $(3x + 4)(3x - 4)$。
通过以上的练习题,我们可以看到提公因式法在因式分解中的重要性。
它帮助我们找到多项式中的公因数,并将其提取出来,从而简化表达式。
这种方法在解决代数问题时非常有用,尤其是在求解方程、简化分式等情况下。
除了上述的练习题外,我们还可以通过更复杂的例子来练习提公因式法。
例如,将表达式 $6x^3 + 9x^2 - 12x$ 进行因式分解。
这个表达式看起来比前面的例子更复杂,但是我们可以先找到公因数 $3x$,然后将其提取出来,得到$3x(2x^2 + 3x - 4)$。
因式分解 提公因式法精选
因式分解-提公因式法精选题43道一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+12.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.33.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.405.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣18.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣29.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.212.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y213.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣514.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.215.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.25019.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2二.填空题(共17小题)20.因式分解:2x2﹣8=.21.因式分解:x(x﹣3)﹣x+3=.22.分解因式:x2+xy=.23.因式分解:x(x﹣2)﹣x+2=.24.因式分解:x2﹣3x=.25.因式分解:2x2﹣4x=.26.分解因式:a2﹣ab=.27.因式分解:a2﹣2a=.28.分解因式:2a2﹣ab=.29.因式分解3xy﹣6y=.30.因式分解:x2﹣x=.31.因式分解2x2y﹣8y=.32.因式分解:﹣3am2+12an2=.33.因式分解:x2﹣2x=.34.分解因式:m2﹣3m=.35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为.36.因式分解:5x2﹣2x=.三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.因式分解-提公因式法精选题43道参考答案与试题解析一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.2.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.3【解答】解:∵m﹣n=﹣2,mn=1,∴(m﹣n)2=4,∴m2+n2﹣2mn=4,则m2+n2=6,∴m3n+mn3=mn(m2+n2)=1×6=6.故选:A.3.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b【解答】解:﹣a2b﹣ab2=﹣ab(a+2b),﹣a2b﹣ab2提公因式﹣ab后,另一个因式是a+2b,故选:A.4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.5.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)【解答】解:原式=2xy(4x﹣1).故选:D.6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣1【解答】解:因为ab=﹣2,a+b=3,所以a2b+ab2=ab(a+b)=﹣2×3=﹣6,故选:B.8.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣2【解答】解:(﹣2)2020+(﹣2)2021=(﹣2)2020×(1﹣2)=﹣22020.故选:A.9.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)【解答】解:a2﹣9a=a(a﹣9).故选:A.10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数【解答】解:P=﹣a2(a﹣b+c),Q=﹣a(a2﹣ab+ac)=﹣a2(a﹣b+c),P=Q,故选:A.11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.2【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B.12.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y2【解答】解:A、不符合要求,没有公因式可提,故本选项错误;B、x2+2x可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误;故选:B.13.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣5【解答】解:原式=5(a﹣b)﹣m(a﹣b)=(a﹣b)(5﹣m),另一个因式是(5﹣m),故选:A.14.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.2【解答】解:把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则:n≥5,故选:A.15.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)【解答】解:3a2﹣9ab=3a(a﹣3b).故选:B.16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)【解答】解:2x2﹣4x=2x(x﹣2).故选:C.17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)【解答】解:A、原式不能分解,不符合题意;B、原式为多项式乘法,不符合题意;C、原式不能分解,不符合题意;D、原式=﹣2x(x+y),符合题意.故选:D.18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.250【解答】解:∵矩形的周长为16,面积为15,∴a+b=8,ab=15.∴a2b+ab2=ab(a+b)=15×8=120.故选:A.19.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2【解答】解:(m+1)(m﹣1)+(m﹣1)=(m﹣1)(m+1+1)=(m﹣1)(m+2),所以,把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为(m+2),故选:D.二.填空题(共17小题)20.因式分解:2x2﹣8=2(x+2)(x﹣2).【解答】解:2x2﹣8=2(x+2)(x﹣2).21.因式分解:x(x﹣3)﹣x+3=(x﹣1)(x﹣3).【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)22.分解因式:x2+xy=x(x+y).【解答】解:x2+xy=x(x+y).23.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).24.因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)25.因式分解:2x2﹣4x=2x(x﹣2).【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).26.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).27.因式分解:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).28.分解因式:2a2﹣ab=a(2a﹣b).【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).29.因式分解3xy﹣6y=3y(x﹣2).【解答】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).30.因式分解:x2﹣x=x(x﹣1).【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).31.因式分解2x2y﹣8y=2y(x+2)(x﹣2).【解答】解:2x2y﹣8y=2y(x2﹣4)=2y(x+2)(x﹣2)故答案为:2y(x+2)(x﹣2).32.因式分解:﹣3am2+12an2=﹣3a(m+2n)(m﹣2n).【解答】解:原式=﹣3a(m2﹣4n2)=﹣3a(m+2n)(m﹣2n).故答案为:﹣3a(m+2n)(m﹣2n).33.因式分解:x2﹣2x=x(x﹣2).【解答】解:原式=x(x﹣2),故答案为:x(x﹣2).34.分解因式:m2﹣3m=m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为﹣31.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.36.因式分解:5x2﹣2x=x(5x﹣2).【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy【解答】解:(1)2a2b﹣8b=2b(a2﹣4)=2b(a﹣2)(a+2);(2)xy3﹣10xy2+25xy=xy(y2﹣10y+25)=xy(y﹣5)2.38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.【解答】解:(1)mn(m﹣n)﹣m(n﹣m)2=mn(m﹣n)﹣m(m﹣n)2=m(m﹣n)[n﹣(m﹣n)]=m(m﹣n)(2n﹣m);(2)(x+1)(x+2)+=x2+3x+2+=(x+)2.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.【解答】解:(1)mx+my=m(x+y);(2)2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.【解答】解:(1)8m2n+2mn=2mn(4m+1);(2)2a2x2+4a2xy+2a2y2=2a2(x2+2xy+y2)=2a2(x+y)2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2)(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.【解答】解:(1)根据题意得:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2);故答案为:n(n+1)(n+2);(2)原式=(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9+9×10+……+29×30)﹣(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9)=×29×30×31﹣×8×9×10=8990﹣240=8750.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:7×6﹣62=6;(2)写出你猜想的第n个等式:(n+1)×n=n2(用含n的等式表示),并证明.【解答】解:(1)第6个等式是7×6﹣62=6,故答案为:7×6﹣62=6;(2)猜想:第n个等式是(n+1)×n﹣n2=n,故答案为:(n+1)×n﹣n2=n,证明:∵左边=(n+1)×n﹣n2=n2+n﹣n2=n∵右边=n∴左边=右边,∴等式成立.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.【解答】解:(1)原式=2a(y﹣z)+3b(y﹣z)=(y﹣z)(2a+3b);(2)去分母得:4x﹣1﹣3x≥3,解得:x≥4,如图所示:.。
初二提公因式法的练习题
初二提公因式法的练习题在初中数学学习中,提公因式法是一个重要的知识点之一。
它可以帮助我们将多项式进行因式分解,简化运算,解决实际问题。
下面将给大家提供一些初二提公因式法的练习题,希望能够帮助大家巩固和提高这一知识点的掌握。
1. 将多项式a^2 + 3ab + 2b^2进行因式分解。
2. 将多项式4x^2 - 12xy + 9y^2进行因式分解。
3. 将多项式9x^2 - 16进行因式分解。
4. 将多项式x^3 - 8进行因式分解。
5. 将多项式8a^3 - 27b^3进行因式分解。
6. 将多项式4x^4 - 16进行因式分解。
7. 将多项式9a^2 - 25b^2进行因式分解。
8. 将多项式x^2 - 4y^2进行因式分解。
这些练习题涵盖了提公因式法的基础知识点,可以通过观察多项式的特征,找出其公因式,进而进行因式分解。
在做题时,可以使用提公因式法的步骤,将多项式分解成一个或多个因式的乘积。
下面以第一题为例进行解答:1. 将多项式a^2 + 3ab + 2b^2进行因式分解。
首先观察多项式中各项的系数和指数,发现其中的项都没有公因式,于是我们需要找出一个适当的因式来进行分解。
通过观察发现,a^2的系数为1,3ab的系数为3,2b^2的系数为2,它们的最大公因数为1。
因此,我们可以尝试使用1来对多项式进行因式分解。
将多项式进行分解:a^2 + 3ab + 2b^2 = (a+b)(a+2b)。
通过提公因式法,我们成功将多项式进行了因式分解。
同样的方法可以应用于其他的练习题中。
只要观察多项式的特征,找出其中的公因式,再进行因式分解就可以了。
通过这些练习题的训练,我们不仅可以巩固提公因式法的掌握程度,还可以提高我们的观察能力和解题能力。
希望大家多多练习,不断提高自己的数学水平。
文章到此结束,希望以上练习题能够对大家的学习有所帮助。
祝大家在数学学习中取得好成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《提公因式法》因式分解提高习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。
(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是()A .x m y n B .x m y n-1 C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-abc+ab 2-a 2bc 的一个因式是-ab,那么另一个因式是( )515151A .c-b+5ac B .c+b-5ac C .c-b+ac D .c+b-ac 51514.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B.3ma-6ma2C.4a2+10ab D.a2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n ,∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-abc+ab 2-a 2bc=-ab (c-b+5ac ),故选A.515151【分析】运用提取公因式法把多项式-abc+ab 2-a 2bc 因式分解即可知道答案.51514. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确;D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma的公因式为:a,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;解析:【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C.【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x2 -y2和x2 +y2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q (m+n).解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。