小波变换与多分辨率分析报告

合集下载

小波变换分析降水时间序列的多分辨率特性研究

小波变换分析降水时间序列的多分辨率特性研究

d e c o mp o s e d u s i n g t h e a t r o u s w a v e l e t t r a n s f o m .T r h e n ,Mu lt i — S c a l e E n t r o p y( MS E )a n a l y s i s t h a t h e l p s t o e l u c i d a t e s o m e
h t t p : / / w w w . j o c a . e n
小 波变 换 分 析 降水 时 间序 列 的 多分 辨率 特 性 研 究
何锡 玉 , 蔡 夕方 , 景嘉洲
( 海军海洋水文气象中心 , 北京 1 0 0 1 6 1 )
( } 通信作者电子邮箱 h e x y n e w @1 6 3 . c o n r )
J o u r n a l o f C o mp u t e r Ap p l i c a t i o n s
I S S N 1 0 o 1 . 9 O 8 1 C 0DE N J YI I DU
2O1 3. O6 . 3O
计算机应 用, 2 0 1 3 , 3 3 ( S 1 ) : 3 3 1 —3 3 4 文章编号 : 1 0 0 1 —9 0 8 1 ( 2 0 1 3 ) S 1 — 0 3 3 1 —0 4
t h a t t h e Ma nn . Ke n d a l l( MK1 r nk a c o r r e l a t i o n t e s t o f MS E C U l - V e s o f r e s i d u ls a a t v a i r o u s r e s o l u t i o n l e v e l s c o ld u d e t e r mi n e t h e

DIP08小波变换和多分辨率处理

DIP08小波变换和多分辨率处理


学 信 息 与
H0 zG0z H1 zG1z 0 H0zG0z H1zG1z 2
消除混叠 消除幅度失真
通 信
矩阵表达

程 学 院 多 媒
G0 z
G1
z
H0 H1
z z
H0 H1
z z
2
0

H 0 z
H1
z
H0 H1
z z
H
m
z

通 信
g0n 1n h1n
&
g0 n 1 n2 h1n
大 学
常采用较高的分辨率观察
信 息
物体尺寸很大或者对比度很强,只需要较低
与 的分辨率

信 工 程
物体尺寸大小不易,强弱对比度同时存在, 则适合用不同的分辨率对其进行研究

院 多
多分辨率处理
媒 体
图象金字塔
通 信
子带编码
中 心
哈尔变换



Digital Image Processing 第八章 小波变换,Men Aidong, Multimedia Telecommunication Centre, BUPT
学 院
具有双正交性

表 完美重建滤波器族









Digital Image Processing 第八章 小波变换,Men Aidong, Multimedia Telecommunication Centre, BUPT
17

子带编码

邮 电
一维滤波器用于二维可分离滤波器

小波分析课件第四章多分辨分析和正交小波变换

小波分析课件第四章多分辨分析和正交小波变换

其他领域
正交小波变换还广泛应用于金 融、医学、地球物理等领域的 数据分析和处理。
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都是小波分析中的重要概念,共同构成了小波 分析的基础。
多分辨分析为正交小波变换提供了理论框架,正交 小波变换是多分辨分析的具体实现。
正交小波变换可以看作是多分辨分析的一种特例, 其中尺度函数和小波函数都是正交的。
正交小波变换的应用场景
ቤተ መጻሕፍቲ ባይዱ01
02
03
04
信号处理
正交小波变换在信号处理中主 要用于信号去噪、压缩和特征 提取等。
图像处理
正交小波变换在图像处理中主 要用于图像压缩、去噪、增强 和特征提取等。
数据压缩
正交小波变换可用于数据压缩 领域,特别是对于非平稳信号 和图像数据的压缩,具有较好 的压缩效果和重建精度。
多分辨分析与正交小波变换的区别
02
01
03
多分辨分析主要关注的是函数在不同尺度上的表示, 而正交小波变换更注重在不同尺度上的细节信息。
正交小波变换具有更好的灵活性和适应性,可以针对 特定问题设计特定的小波函数和尺度函数。
正交小波变换在信号处理、图像处理等领域的应用更 为广泛,而多分辨分析更多用于理论分析。
正交小波变换的算法与实现
算法
正交小波变换的算法主要包括一维离散正交小波变换和二维离散正交小波变换。一维离散正交小波变换的算法包 括Mallat算法和CWT算法等,而二维离散正交小波变换的算法主要基于图像分块处理。
实现
正交小波变换的实现通常需要使用数字信号处理库或图像处理库,如Python的PyWavelets库或OpenCV库等。

小波分析课件第四章多分辨分析和正交小波变换

小波分析课件第四章多分辨分析和正交小波变换
小波分析课件第四章 多 分辨分析和正交小波变换
• 多分辨分析概述 • 正交小波变换原理 • 多分辨分析与正交小波变换的关系 • 正交小波变换的实现方法 • 正交小波变换的实例分析
01
多分辨分析概述
定义与特点
定义
多分辨分析是从小尺度到大尺度逼近 研究对象的一种分析方法,它能够同 时揭示研究对象在不同尺度上的特征 。
多分辨分析在信号处理中能够提 供更加准确和全面的信息,有助 于更好地理解和分析信号。
多分辨分析的历史与发展
1 2 3
历史回顾
多分辨分析的思想起源于20世纪80年代,随着 小波理论的不断发展,多分辨分析逐渐成为研究 热点。
当前研究
目前,多分辨分析在理论和应用方面都取得了重 要进展,广泛应用于图像处理、信号处理、数值 计算等领域。
模式识别
正交小波变换可以用于特征提取和 模式分类等任务。
03
02
图像处理
正交小波变换可以用于图像的压缩、 去噪、增强等处理。
数值分析
正交小波变换可以用于求解偏微分 方程、积分方程等数学问题。
04
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都基于多尺度分析思想
多分辨分析和小波变换都是从不同尺度上分析信号,能够捕捉到 信号在不同尺度上的特征。
优点
连续小波变换能够更好地适应信号的突变和非线性特性, 能够更准确地描述信号的局部特征。
缺点
连续小波变换的计算复杂度较高,需要更多的计算资源和 时间,同时对于非连续信号的处理也存在一定的困难。
基于滤波器的小波变换
01 02
定义
基于滤波器的小波变换是一种通过设计特定的滤波器来实现小波变换的 方法,通过滤波器对信号进行卷积操作,可以得到不同尺度上的小波系 数。

小波与多分辨率分析(冈萨雷斯)

小波与多分辨率分析(冈萨雷斯)

江西财经大学
N*N哈尔变换矩阵的第i行包含了元素
,其中
江西财经大学
令N=4,k、p和q的值为
则4*4变换矩阵H4为:
江西财经大学
傅里叶变换的缺点
傅里叶分析理论对于有限平稳的周期信号比较有 效,而对于非平稳信号的分析效果不够好。主要原因 有:
1、三角基函数在时域上不能局部化,无法实现时 域上的局部分析。由于信号的傅里叶变换代表的是该 信号在某个频率w的谐波分量的振幅,它是由整个信号 的形态所决定的,因此无法从傅里叶变换值确定该信 号在任一时间上的相关信息。
江西财经大学
在小波分析中,近似值是大的缩放因子计算的系数,
表示信号的低频分量,而细节值是小的缩放因子计算的系
数,表示信号的高频分量。实际应用中,信号的低频分量 往往是最重要的,而高频分量只起一个修饰的作用。如同 一个人的声音一样, 把高频分量去掉后,听起来声音会发 生改变,但还能听出说的是什么内容,但如果把低频分量 删除后,就会什么内容也听不出来了。
江西财经大学
3、傅里叶变换不能同时进行时域和频 域的分析。这是因为信号经过傅里叶变 换后,它的时间特性消失,只能进行频 域信息分析。
江西财经大学
什么是小波变换
像傅立叶分析一样,小波分析就是把一个信号分解为将 母小波经过缩放和平移之后的一系列小波,因此小波是小
波变换的基函数。小波变换可以理解为用经过缩放和平移
江西财经大学
江西财经大学
3.惟一包含在所有 中的函数是f(x)=0 如果考虑最粗糙的展开函数(即 ),惟一可表达的函数 是没有信息的函数,即
4.任何函数都可以以任意精度表示 所有可度量的、平方可积函数都可以用极限
表示
江西财经大学

小波变换与多分辨率分析课件

小波变换与多分辨率分析课件

有效地去除信号中的噪声。
02
小波变换在信号压缩中的应用
小波变换可以将信号分解为近似分量和细节分量,通过去除细节分量,
可以实现信号的压缩。
03
小波变换在信号恢复中的应用
小波变换可以捕捉到信号中的突变部分,通过逆变换,可以恢复出原始
信号。
多分辨率分析在图像处理中的实验演示
多分辨率分析在图像去噪中的应用
领域也有广泛的应用。
算法复杂度
小波变换的算法复杂度相对 较低,容易实现,而多分辨 率分析的算法复杂度较高, 实现相对困难。
小波变换与多分辨率分析的未来展望
01
应用领域拓展
02
算法优化
ቤተ መጻሕፍቲ ባይዱ
03
结合其他技术
小波变换和多分辨率分析在信号处理、 图像处理、数据压缩等领域已经得到 广泛应用,未来随着技术的不断发展, 它们的应用领域将会更加广泛。
小波变换的应用
小波变换在图像处理中有着广泛的应用,例如图像压缩、去噪、
01
重建等。
02
小波变换在音频处理中也得到了广泛应用,例如音频压缩、去
噪、特征提取等。
小波变换还被广泛应用于信号处理、数字水印、雷达信号处理
03
等领域。
02
多分辨率分析基
多分辨率分析的定 义
定义概述
多分辨率分析是信号处理中的一种重要技术,它通过在不同尺度上分析信号,能够同时获得信号的时间和频率信息。
定义背景
随着信号处理技术的发展,人们逐渐认识到仅通过傅里叶分析无法完全揭示信号的时频特性,因此需要一种更全面的 分析方法。
定义目的 多分辨率分析旨在提供一种框架,将信号分解成不同尺度的成分,以便更精细地描述信号的时频特性。

02-多分辨率信号分解理论:小波变换

02-多分辨率信号分解理论:小波变换

一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。

显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。

小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。

这一分解定义了一个正交多尺度表示叫做小波表示。

它由金字塔算法来计算,其基于正交镜像滤波器的卷积。

对于图像,小波表示区分了几种空间定位。

我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。

关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。

的确,这一数值依赖于照明条件。

更为重要的是图像强度的局部变化。

邻居的大小即对比计算处必须被采用于我们要分析的物体大小。

这一尺寸为测量图像局部变化定义了参考分辨率。

总的来说,我们想要识别的结构具有差异很大的尺寸。

因此,定义分析图像的优先或最优分辨率是不可能的。

一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。

为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。

给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。

多分辨率分解使得我们可以获得图像的尺度不变性演绎。

图像尺度随着场景与相机光学中心间的距离而变化。

当图像尺寸修改时,我们对于图像的演绎不应该变化。

多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。

我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。

如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。

即每一物体以α倍大的分辨率度量。

因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。

007-小波分析(第二讲)-多分辨率分析与正交小波变换

007-小波分析(第二讲)-多分辨率分析与正交小波变换

ψ m,n构成 一个框架
ψ m,n构成 一个正交基
non-orthogonal orthogonal DWT DWT 冗余 无冗余
北京科技大学 机械工程学院
18/ 73
Haar小波
1, 0 t 1/2 (t) - 1, 1/2 t 1 0 , others
小波进行重构的基本条件
北京科技大学 机械工程学院
6/ 73
信号的重构---如何进行离散小波逆变换?

连续小波变换的逆变换
x(t ) 1 C


0
da 1 t WT (a, ) ( )d a 2 R a a

( w)
w
2
R
dw
只要满足“可容许条件”,即可进行逆变换

dense
j
V

j
{0}
f Vn f V0
f (2 n t ) V0
f (t n) V0 , 对所有n Z
正交基存在性 ψV0 使得{ψ(tn):nZ}是V0的 正交基。
可放宽为Reisz基,因为由Reisz 基可构造出一组正交基来
北京科技大学 机械工程学院 27/ 73

1986年秋,Mallat和Meyer提出了MRA框架

统一了在此之前的小波构造 提供了构造新的小波基方便的工具
北京科技大学 机械工程学院
22/ 73
小结

连续小波离散小波的关键问题:


离散的方式 尺度因子、平移因子 离散后构成框架、Reisz基或正交基 信号的重构 母小波的构造
14/ 71
小波分析中的框架

小波框架 小波母函数,经过平移和伸缩后构成一系列小波函 数,实际中都要将平移和伸缩因子离散化。

小波变换和多分辨率处理方法

小波变换和多分辨率处理方法
息损失的抽样 原始图象的重建可以通过内插、滤波、和叠加单
Mallat
Daubecies
小波理论与工程应用
Inrid Daubechies于1988年最先揭示了小波变换和滤波器 组(filter banks)之间的内在关系,使离散小波分析变成为 现实。
Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献。
1.背景
从数学观点看,图像是一个亮度的二维矩阵,边界和强烈变 化的区域局部直方图统计特性不同。
无法对整个图象定义一个简单的统计模型。
一幅自然图像 及其直方图的 局部变化
(1) 图像金字塔
以多分辨率来解释图像的一种简单有效的结构。一幅图像 的金字塔是一系列以金字塔形状排列的分辨率逐步降低的 图像集合。
➢ J-1级近似输出用来建立近似值金字塔;作为金字塔基级的原 始图像和它的P级减少的分辨率近似都能直接获取并调整;
➢ J级的预测残差输出用于建立预测残差金字塔;近似值和预测 残差金字塔都通过迭代计算获得。
金字塔方框图
(1) 图像金字塔迭代算法
1. 初始化,原始图象大小2J×2J,j=J 2. j-1级,以2为步长进行子抽样,计算输入图像减
金字塔的底部是带处理图像的高分辨率表示,而顶部是低 分辨率的近似。当向金字塔的上层移动时,尺寸和分辨率 就降低。
基础级J的大小为N×N (J=log2N) 顶点级0的大小为1×1 第j级的大小为2j×2j (0j J) 共有J+1级,但是通常我们截 短到P+1级,其中1 PJ
(1) 图像金字塔
小波变换是基于具有变化的频率和有限持续时间的 小型波进行的。它是多分辨率理论的分析基础。

小波变换的多分辨率分析原理与应用

小波变换的多分辨率分析原理与应用

小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。

它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。

本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。

一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。

小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。

小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。

通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。

与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。

二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。

通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。

由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。

因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。

2. 图像处理小波变换在图像处理中也有重要的应用。

通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。

由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。

因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。

3. 数据压缩小波变换在数据压缩中有着重要的应用。

通过对信号或图像进行小波变换,可以将其表示为一组小波系数。

由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。

因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。

结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。

第7章_小波变换和多分辨率处理资料

第7章_小波变换和多分辨率处理资料
该子空间定义为:
Vj0Skp a{ nj0,k(x)} (7.2.11)
即Vj0是j0,k(x)在k上的一个跨度。
如f果 (x)Vj0,则 f(x) k j0,k(x) (7.2.12) k 更一般的情况下,定义下式代表对任何j,k上 的跨度子空间: Vj Skpa{ nj,k(x)}(7.2.1330 )
它也称为mallat人字形算7417425574快速小波变换7435674快速小波变换第7章小波变换和多分辨率处理74774874974快速小波变换图717一个fwt分析滤波器族注意图717中的滤波器族可以迭代产生多阶结构用于计算两个以上连续尺度的dwt系5874快速小波变换图718a一个两阶或两尺度fwt分析滤波器族b它的频率分离特性例如图718a显示了一个用于计算变换的两个最高尺度系数的二阶滤波器族
22
7.1.3 哈尔变换
例7.3 离散小波变换的哈尔函数
(a)用H2哈尔基函数的离散பைடு நூலகம்波变换 (b)~(d)由(a)得到的几种不同 的近似(64*64,128*128,256*256)
23
7.2 多分辨率展开
在多分辨率分析( MRA )中,尺度函数 被用于建立某一函数或图像的一系列 近似值,相邻两近似值之间的近似度 相差2倍。被称为小波的附加函数用于 对相邻近似值之间的差异进行编码。
傅里叶展开函数是频率变化及持续时间无限的正 弦波;小波变换的展开函数是持续时间有限及频 率变化的小波。
3
主要内容
背景 多分辨率展开 一维小波变换 快速小波变换 二维小波变换 小波包
4
7.1背景
Background
从数学的观点看,图像是一个亮度值的二维矩阵,像边界 和对比强烈区域那样的突变特性的不同组合会产生统计值 的局部变化。如图7.1所示。

小波与多分辨分析

小波与多分辨分析

小波与多分辨分析在物理科学和工程 领域具有广阔的应用前景。例如,在 流体动力学、电磁场等领域中,可以 利用小波与多分辨分析进行高精度数 值模拟和数据分析。未来研究将进一 步拓展其在这些领域的应用,并探索 与其他工程学科的交叉融合。
THANKS FOR WATCHING
感谢您的观看
多分辨分析是构造小波的重要工具,小波变换实质上就是对信号进行多分辨分析。
多分辨分析的构造方法
迭代法
通过迭代的方式对尺度函数进行构造, 进而得到多分辨分析。
矩阵法
利用矩阵的方法对尺度函数进行构造, 进而得到多分辨分析。
多分辨分析的性质
唯一性
对于给定的尺度函数,其对应的多分辨分析是唯一的。
平移不变性
小波变换能够检测到信号的突变和 奇异点,用于故障诊断、语音识别 等领域。
图像处理
01
02
03
图像压缩
利用小波变换对图像进行 多尺度分解,实现图像的 压缩编码,降低存储和传 输成本。
图像增强
通过调整小波系数,突出 图像的细节和特征,改善 图像的视觉效果。
图像去噪
利用小波变换去除图像中 的噪声,提高图像质量。
提升算法效率
随着小波变换应用的广泛,对算法效率的要求也越来越高。未来研究将
致力于优化算法,提高计算速度,以满足实时处理和大规模数据的需求。
02 03
扩展应用领域
小波变换在不同领域具有广泛的应用前景,如信号处理、图像处理、数 据压缩等。未来研究将进一步探索小波变换在不同领域的应用,发掘其 更多潜力。
提升小波性能
多分辨分析在信号处理、图像处理等领域取得了显著成果,未来研究将进一步探索其在其 他领域的应用,如物理、化学、生物等。

小波变换与多分辨分析资料

小波变换与多分辨分析资料
3


(a)
(b)
正弦波和小波 (a) 正弦波曲线; (b) 小波曲线
4
5
与傅里叶变换相比,小波变换的优点:
1.小波变换同时提供了信号的时间-频率信息, 而DFT只是提供了频率信息。
2.小波分析是利用多种 “小波基函数” 对 “ 原始信号” 进行分解,而傅里叶变换的基函 数为三角函数。
3. 小波变换为原始信号提供了多分辨表达能力 ,在某一个分辨度检测不到的现象,在另一个 分辨度却很容易观察处理。
• 哈尔基函数是最古老也是最简单的正交小波。 • 哈尔变换本身是可分离的,也是对称的,可以用
下述矩阵形式表达:
T=HFHT
其中,F是一个N×N图像矩阵,H是N×N变换矩阵,T
是N×N变换的结果
13
4x4 Haar变换矩阵
1 1 1 1
H4
1
1
4
2
1 2
1 0
1
0
0 0 2 2
14
j,k (x) 2 j /2(2 j x k)
j z, k z
则集合{ j,k ( x)}是 ( x)的展开函数集。从上式可以看出,
k决定了 j,k ( x)在x轴的位置,j决定了 j,k (x)的宽度,即
沿x轴的宽或窄的程度,而2 j / 2 控制其高度或幅度。由于
j,k (x)的形状随j发生变化, (x)被称为尺度函数。
尺度及小波函数空间的关系
22
第一讲核心知识点
[1]小波变换与DFT变换相比优点是什么?为什么引 入图象变换?
[2]金字塔分解与子带编码的关系如何? [3]多分辨展开为什么引入尺度函数,尺度函数存在
什么特点?小波函数与尺度函数的关系是什么?

第十章 离散小波变换的多分辨率分析

第十章 离散小波变换的多分辨率分析

282第10章 离散小波变换的多分辨率分析在上一章,我们给出了连续小波变换的定义与性质,给出了在),(b a 平面上离散栅格上小波变换的定义及与其有关的标架问题。

在这两种情况下,时间t 仍是连续的。

在实际应用中,特别是在计算机上实现小波变换时,信号总要取成离散的,因此,研究b a ,及t 都是离散值情况下的小波变换,进一步发展一套快速小波变换算法将更有意义。

由Mallat 和Meyer 自80年代末期所创立的“多分辨率分析”技术[87,88,8]在这方面起到了关键的作用。

该算法和多抽样率信号处理中的滤波器组及图像处理中的金字塔编码等算法[34,33]结合起来,构成了小波分析的重要工具。

本章将详细讨论多分辨率分析的定义、算法及应用。

10.1多分辨率分析的引入10.1.1信号的分解近似现以信号的分解近似为例来说明多分辨率分析的基本概念。

给定一个连续信号)(t x ,我们可用不同的基函数并在不同的分辨率水平上对它作近似。

如图10.1.1(a)所示,令⎩⎨⎧=01)(t φ其它10<≤t (10.1.1)显然,)(t φ的整数位移相互之间是正交的,即)()(),(k k k t k t '-=〉'--〈δφφ Z k k ∈', (10.1.2) 这样,由)(t φ的整数位移)(k t -φ就构成了一组正交基。

设空间0V 由这一组正交基所构成,这样,)(t x 在空间0V 中的投影(记作)(0t x P )可表为: )()()()()(,t k a k t k at x P k 0k0k0φφ∑∑=-=(10.1.3)式中)()(,0k t t k -=φφ,)(k a 0是基)(,0t k φ的权函数。

)(0t x P 如图10.1.1(b)所示,它可以看作283是)(t x 在0V 中的近似。

)(k a 0是离散序列,如图10.1.1(c)所示。

令)()(/,k t 22t j 2j k j -=--φφ (10.1.4)是由)(t φ作二进制伸缩及整数位移所产生的函数系列,显然,对图10.1.1(a)的)(t φ,)(,t k j φ和)(,t k j 'φ是正交的。

数字图像处理A第章小波和多分辨率处理

数字图像处理A第章小波和多分辨率处理

河南省企业集体合同范本甲方(用人单位)名称:_______________________法定代表人:_____________ 职务:_____________地址:_____________________________________联系电话:_____________________________乙方(职工方)代表:_______________________职务:_____________________________________地址:_____________________________________联系电话:_____________________________根据《中华人民共和国劳动法》、《中华人民共和国劳动合同法》及相关法律法规的规定,甲乙双方本着平等自愿、协商一致的原则,经充分协商,就建立劳动关系,明确双方权利义务,达成如下合同条款:第一条合同期限本合同为固定期限劳动合同,自____年____月____日起至____年____月____日止。

第二条工作内容与岗位乙方同意根据甲方工作需要,从事__________________工作,具体岗位为__________。

第三条工作时间与休息休假1. 乙方的工作时间为标准工时制,即每日工作____小时,每周工作____小时。

2. 甲方应保证乙方依法享有法定节假日、年休假等休息休假权利。

第四条劳动报酬1. 乙方的月工资为人民币__________元,甲方应于每月____日前支付乙方工资。

2. 甲方应根据乙方的工作表现和甲方的经济效益,适时调整乙方的工资。

第五条社会保险与福利甲方应依法为乙方缴纳社会保险费,并按照国家规定提供相应的福利待遇。

第六条劳动保护与劳动条件甲方应为乙方提供符合国家规定的劳动安全卫生条件和必要的劳动保护用品,保证乙方的人身安全和健康。

第七条劳动纪律与规章制度乙方应遵守甲方依法制定的劳动纪律和规章制度,认真履行工作职责。

第四章 多分辨率分析与正交小波变换1

第四章 多分辨率分析与正交小波变换1

第四章 多分辨率分析与正交小波变换据第三章,构造正交基的一般方法为,在离散框架的基础上,取1,20=∆=τa 则()n t t m mn m -=--22)(2,ψψ; Z n m ∈, (4.1)问题:(1) 按上式离散得到的系列n m ,ψ能否构成一个正交基? (2) 如何构造这样的母函数)(t ψ? 解决方法:多分辨率分析4.1 几种正交小波基(1)Haar 小波数学家A.Haar 于1910年提出的Haar 系()),(22)(2,Z n m n t h t h m m n m ∈-=--是由母函数生成的。

⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=其它12112/101)(x x t h (4.2)特点:同一尺度m 上,函数集合Z n n m t h ∈)}({,中任意两个函数的支集不相交;同一尺度上的基函数相互正交;不同尺度间的基函数正交;n m h ,构成了)(2R L 空间上的完备标准正交基; Haar 系的函数时域不连续,光滑性差; 频域随ω的衰减速度仅为ω1,频域局部性差。

实际应用受限制,但结构简单,常用于理论研究。

(2)Littlewood-Paley 小波)sin 2(sin 1)(t t tt πππψ-= (4.3)其傅里叶变换为⎩⎨⎧≤≤=ψ,其他02,1)(πωπω (4.4)将式(4.3)的)(t ψ按照式(4.1)进行平移和伸缩得到的Z n n m t ∈)}({,ψ是)(2R L 空间上的完备正交基,称之为Littlewood-Paley 正交小波基。

特点:时域衰减速度仅为t1,局部性差; 频域局部性好;实际应用也受到限制。

(3)Meyer 小波Meyer 小波的小波函数ψ和尺度函数φ都是在频域中进行定义的,是具有紧支撑的正交小波。

⎪⎪⎪⎩⎪⎪⎪⎨⎧∉≤≤-≤≤-=ψ--]3π8,3π2[,03π83π4)),1π23(2πcos(e π)2(3π43π2)),1π23(2πsin(e π)2()(2/2/12/2/1ωωωνωωνωωωj j (4.5)其中,)(x v (Meyer 小波的辅助函数)为一任意连续可导函数,且满足⎩⎨⎧≤≥=0011)(x x x v ,, 1)1()(=-+x v x v (4.6) 若取)(x v 一阶连续可导:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<≤=11102sin 00)(2x x xx x v π (4.7)则)(x v 与)(ωψ的波形如图4.3所示。

小波分析提高地震勘探资料分辨率的研究

小波分析提高地震勘探资料分辨率的研究

小波分析提高地震勘探资料分辨率的研究小波变换在信号分析中具有良好的局部化特性。

在小波变换域中,有效信号的相关性和随机噪声的随机性仍然保留,因此可以在小波变换域内对地震资料进行去噪处理;小波变换作为频率和时间的二元函数,使之可以很方便地在频率和时间域中同时进行地震波能量的吸收衰减补偿。

试验证明,利用小波变换去噪和提高分辨率,不仅方便有效,而且有很好的保真度。

标签地震勘探应用;小波变换;分辨率1 我国的发展前景随着地震勘探工作的发展和深入,油田勘探逐渐从浅部转至深部、从平地转到山区、沙漠地区。

由于采集条件越来越恶劣,地震勘探时所采集到的地震资料中包含的噪声将增多,这些噪声与有关地下构造和岩性的信息之间互相交织着。

因此,不宜直接利用野外地震资料作地质解释,需要对其进行数字处理,从中提取有用信息,从而为地震勘探的地质解释提供可靠的资料。

其中,信号降噪便是数字处理中尤为重要的一步,它被用于从地震资料中提取有用信息,提高地震资料的信噪比。

着重研究地震勘探信号的降噪技术,研究中结合了小波变换和K-L变换技术。

地震勘探的原理、生产工作、术语解释及信号噪声;接着研究小波阈值去噪法和K-L变换去噪法,针对它们各自的优缺点,对各个算法进行改进,提出平移不变量小波阈值去噪法和基于K-L变换的时空加倾角调整处理算法。

实验结果表明,运用这两种改进的算法对地震数据进行处理,剖面噪声得到了很好地去除。

另外,由于信号和噪声在二进小波变换各个尺度上具有不同的传播特性,而且从信号的模极大值使用共轭梯度法可以较好的重构信号,论文又采用二进小波变换模极大值去噪法对模型数据和地震数据信号进行处理。

2 我国地震勘探2.1 地质勘探引入监理机制的意义国土资源部副部长、中国地质调查局局长汪民指出:“开展地质勘探项目监理工作不仅是保证地勘项目质量和提高国家投资效益的需要,也是探索建立地质勘查运行新机制的需要;它对加强我国地勘单位队伍建设、提高勘查质量和效益,都将具有明显推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换和多分辨率处理
北京化工大学
小波变换使得图像压缩、传输和分析变得更快捷! W.X.J
傅里叶变换与小波变换
傅里叶变换的基础函数是正弦函数。 小波变换基于一些小型波,称为小波,具有变化的频率和 有限的持续时间。
傅里叶变换与小波变换
频域分析具有很好的局部性,但空间域上没有局部化功能。 傅里叶变换反映的是图像的整体特征。
尺度伸缩和整数平移函数定义为:
j,k (x) 2 j/2(2 j x k)
j z,k z
则集合{ j,k (x)}是(x)的展开函数集。从上式可以看出,
k决定了 j,k (x)在x轴的位置,j决定了 j,k (x)的宽度,即
沿x轴的宽或窄的程度,而2 j /2 控制其高度或幅度。由于
5.2 多分辨率展开
可展开的函数组成了一个函数空间,被称为展开 集合的闭合跨度,表示为:
V Spank x
k
f (x)V表示f (x)属于k x的闭合跨度
f (x) akk (x)
k
5.2 多分辨率展开
尺度函数
设(x)是平方可积函数,即(x) L2 (R),实数二值
5.1.2 子带编码
子带图像编码的二维4频段滤波器组
5.1.2 子带编码
5.1.2 子带编码
5.1.3 哈尔变换
哈尔变换 哈尔基函数是最古老也是最简单的正交小波。哈 尔变换本身是可分离的,也是对称的,可以用下 述矩阵形式表达: T=HFH
其中,F是一个N×N图像矩阵,H是N×N变换矩阵,T 是N×N变换的结果
2.渐进完全性: Vj {0}; Vj L2 (R)
jZ
jZ
3.伸缩规则性:f (x) Vj f (2x) Vj1, j Z
1 , z 0,1
N
hk (z) hpq (z)
1
22p
2 p
2
N
0
(q 1) / 2 p z (q 0.5) / 2 p (q 0.5) / 2 p z q / 2 p 其它
5.1.3 哈尔变换
N=4时
kpq 000 101 211 312
5.1.3 哈尔变换
变换矩阵H包含基函数 hk (z) ,它定义在连续闭区
间 z 0,1, k 0,1,2,..., N 1 N 2n
0 p n 1, p 0时,q 0或1 k 2p q 1
p 0时,1 q 2 p
h0 z h00(z)
1 1 1 1
H4
1

1
4 2
1 2
1 0
1

0

0
0
2

2

5.1.3 哈尔变换
N=2时
H2
1 1 2 1
1对图像的多分辨率分解
1、其局部统计数据相对稳定; 2、大多数值为零,便于压缩; 3、原始图像的粗和细分辨率近 似可以从中提取。
一个乐谱,不光阐明了要演奏的音符(或频率),而且阐 明了何时要演奏。而傅里叶变换,只提供了音符或频率信 息,局部信息在变换过程中丢失了。
与Fourier变换相比,小波变换是空间(时间)和频率的局部 变换,它通过伸缩平移运算对信号逐步进行多尺度细化, 最终达到高频处时间细分,低频处频率细分,能自动适应 时频信号分析的要求,从而可聚焦到信号的任意细节。
5.1.1 图像金字塔
512
高斯和拉普拉斯金字塔
5.1.2 子带编码
在子带编码中,一 幅图像被分解成一 系列限带分量的集 合,称为子带,它 们可以重组在一起 无失真地重建原始 图像。
子带通过对输入进 行带通滤波而得到。
双通道子带编码和重建
5.1.2 子带编码
•完美重建滤波器族
•QMF 正交镜像滤波器 •CQF 共轭正交滤波器
一个金字塔图像结构
5.1.1 图像金字塔
高斯和拉普拉斯金字塔编码
首先对图像用5*5的高斯模板作低通滤波,滤 波后的结果从原图像中减去,图像中的高频细 节则保留在差值图像里;然后,对低通滤波后 的图像进行间隔采样,细节并不会因此而丢失
5.1.1 图像金字塔
高斯和拉普拉斯金字塔编码
拉普拉斯金字塔编码策略
5.2 多分辨率展开
序列展开
信号或函数常常可以被很好地分解为一系列展开 函数的线性组合。
f (x) akk (x)
k
其中,k是有限或无限和的整数下标,ak 是具有实数值
的展开系数,k (x) 是具有实数值的展开函数 如果展开是唯一的,f(x)只有一个ak系数与之对应,则 k (x) 称为基函数。
5.1 背景
为什么需要多分辨率分析? 如果物体的尺寸很小或对比度不高 高分辨率 如果物体尺寸很大获对比度很强 低分辨率 通常物体尺寸有大有小,或对比有强有弱同时存在
5.1.1 图像金字塔
一幅图像的金字塔是一系列以金字塔形状 排列的分辨率逐步降低的图像集合
金字塔的底部是待处理图像 的高分辨率表示,而顶部是 低分辨率近似。当向金字塔 的上层移动时,尺寸和分辨 率就降低。
包含在子空间中。
哈尔尺度函数
考虑单位高度、单位宽度的 尺度函数:

x

1 0
0 x 1 其它
V0展开函数都属于V1, V0是V1的一个子空间。
5.2 多分辨率展开
多分辨率分析是指满足下列性质的一系列子空间{Vj}, j Z
1.一致单调性: V0 V1 V2
5.2 多分辨率展开
函数的伸缩和平移
给定一个基本函数 (x) ,则 (x) 的伸缩和平移公式 可记为:
a,b (x) (ax b)
5.2 多分辨率展开
函数的伸缩和平移
例:给定函数
(
x)

sin(

0
x)
0 ≤ x 2
其它
则2, (x)的波形如下图所示
函数的伸缩和平移
j,k (x)的形状随j发生变化,(x)被称为尺度函数。
5.2 多分辨率展开
尺度函数
任何j,k上的跨度子空间: Vj Span j,k x k
j增大时,用于表示子空间函数的 j,k x 范围变窄,x有较小
变化即可分开。
随j增加 V j 增大,允许有变化较小的变量或较细的细节函数
相关文档
最新文档