高一必修一基本初等函数知识点汇总归纳
高中数学必修一基本初等函数知识点与典型例题总结
( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间
高中数学必修一知识点归纳
高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
必修1基本初等函数(Ⅰ)知识要点
必修1基本初等函数(Ⅰ)知识要点〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.xxxxx x(q)0x xf xfxfxxx。
高一数学《基本初等函数》知识点总结
高一数学《基本初等函数》知识点总结一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.u负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,u0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式.两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.u指数式与对数式的互化幂值真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:1·+;2-;3.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.2对数函数对底数的限制:,且.2、对数函数的性质:a>1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga的图象只能是2.计算:①;②=;=;③=3.函数y=log的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使的的取值范围。
必修一_基本初等函数_知识点讲解
基本初等函数第一讲 幂函数1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.注意:y x α=中,前面的系数为1,且没有常数项2、幂函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =3、幂函数的性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.分数指数幂概念 有理指数幂运算性质(0,,)r s r s a a a a r s Q +=>∈;()(0,,)r s rs a a a r s Q =>∈(0,,*,1)a m n N n >∈>且 ()(0,0,)r r r ab a b a b r Q =>>∈第二讲 指数函数1、指数(1)n 次方根的定义若x n =a ,则称x 为a 的n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.(2)方根的性质①当n 为奇数时,n n a =a . ②当n 为偶数时,n n a =|a |=⎩⎨⎧<-≥).0(),0(a aa a(3)分数指数幂的意义①a nm =n m a (a >0,m 、n 都是正整数,n >1). ②an m -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).2、指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .n mnm a a=nmn m nm aa a1==-000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量, 5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等, 不符合(01)x y a a a =>≠且的形式,所以不是指数函数.3、 指数函数的图像及其性质(1)底数互为倒数的两个指数函数的图象关于y 轴对称.(2)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (3)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R;(4)对于指数函数()xf x a =(a >0且a ≠1),总有(1);f a =(5)当a >1时,若1x <2x ,则1()f x <2()f x ;第三讲 对数函数1、 对数(1)对数的概念一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =a 叫做对数的底数,N 叫做真数.如:24416,2log 16==则,读作2是以4为底,16的对数. 1242=,则41log 22=,读作12是以4为底2的对数. (2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0). (4)两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.2、对数函数的概念一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 3、对数函数的图象及其性质a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.。
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
数学必修一基本初等函数知识点
数学必修一基本初等函数知识点
1. 线性函数:y = kx + b(k和b为常数),其中k称为斜率,b称为截距。
2. 幂函数:y = x^n(n为常数),其中n可以是正整数、零、负整数。
3. 指数函数:y = a^x(a为正实数且a≠1)。
4. 对数函数:y = loga(x)(a为正实数且a≠1),其中x为正实数。
5. 三角函数(正弦函数、余弦函数、正切函数、余切函数等):y = sinx,y = cosx,y = tanx,y = cotx等。
6. 反三角函数(反正弦函数、反余弦函数、反正切函数、反余切函数等):y = arcsinx,y = arccosx,y = arctanx,y = arccotx等。
7. 绝对值函数:y = |x|。
8. 双曲函数(双曲正弦函数、双曲余弦函数、双曲正切函数等):y = sinh(x),y = cosh(x),y = tanh(x)等。
9. 分段函数:根据不同条件定义函数的不同表达式,例如:y = f(x) =
{ x+1, (x≤0)
{ x^2, (0<x≤1)
{ 2x-1, (x>1)
10. 复合函数:将一个函数的输出作为另一个函数的输入进行运算,例如:f(g(x))。
以上是数学必修一中较为基本的初等函数知识点,只覆盖了一部分内容。
学习初等函数的重点是掌握其基本性质、图像和应用。
高一数学必修一第二章基本初等函数知识点总结
〖2.1〗指数函数根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数〖2.2〗对数函数负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.几个重要的对数恒等式: log 10a =,log 1aa =,logb a a b =.常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()na a n M Mn R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈⑥换底公式:log log (0,1)log b a b NN b b a=>≠且换底公式的推论: (5)对数函数〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且(1,1). 图象都通过点0α>,③单调性:如果则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x=下方.。
数学必修一第四章知识点总结
数学必修一第四章知识点总结数学必修一第四章知识点总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,为此我们要做好回顾,写好总结。
总结一般是怎么写的呢?下面是本店铺为大家整理的数学必修一第四章知识点总结,欢迎大家分享。
数学必修一第四章知识点总结1基本初等函数有哪些基本初等函数包括以下几种:(1)常数函数y = c( c为常数)(2)幂函数y = x^a( a为常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)基本初等函数性质是什么幂函数形如y=x^a的函数,式中a为实常数。
指数函数形如y=a^x的函数,式中a为不等于1的正常数。
对数函数指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。
指数函数与对数函数之间成立关系式,loga ax=x。
三角函数即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。
反三角函数三角函数的反函数——反正弦函数y = arc sinx,反余弦函数y=arc cosx (-1≤x≤1,初等函数0≤y≤π),反正切函数y=arc tanx,反余切函数y = arc cotx(-∞学习数学小窍门建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
限时训练。
可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。
这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。
基本初等函数知识点大一
基本初等函数知识点大一初等函数是数学中最基础的一类函数,也是我们在大一学习数学中首要接触的内容。
初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学、物理、工程等众多领域都有广泛的应用。
本文将以大一课程中的基本初等函数知识点为重点,进行全面的介绍和细致的解析。
一、常数函数常数函数是最简单的初等函数形式,其表达式为f(x) = c,其中c为常数。
常数函数的图像始终平行于x轴,例如当函数为f(x) = 3时,其图像为一条平行于x轴且与x轴距离为3的直线。
常数函数的特点是在定义域上的每一个点的函数值都相等。
二、幂函数幂函数是形如f(x) = x^n的函数,其中n为常数。
幂函数的图像形状与n的正负、奇偶有关。
当n为正数时,随着x的增大,函数值也随之增大,图像呈现出右上方向延伸的趋势;当n为负数时,随着x的增大,函数值变小,图像呈现出右下方向延伸的趋势;当n为偶数时,图像关于y轴对称;当n为奇数时,图像则不对称。
三、指数函数指数函数是形如f(x) = a^x的函数,其中a为底数,且a不等于0且不等于1。
指数函数的图像与底数a的大小有关。
当0<a<1时,函数值随着x的增大而迅速减小,图像接近于x轴;当a>1时,函数值随着x的增大而迅速增大,图像上升较快。
指数函数的特点是它们增长或减小的速度非常快,因此在许多领域中有广泛的应用。
四、对数函数对数函数是指满足f(x) = logₐ(x)的函数,其中a为底数。
对数函数是指数函数的反函数,它们具有互为反函数的关系。
对数函数的图像与底数a的大小和函数定义域相关。
当0<a<1时,函数图像下降;当a>1时,函数图像上升。
对数函数的特点是其定义域为正实数集合,值域为实数集合。
五、三角函数三角函数包括正弦函数、余弦函数和正切函数。
这些函数是以弧度为单位的角度度量的三角函数。
它们在数学、物理、工程等领域中有广泛的应用。
高考基本初等函数知识点总结
基本初等函数综合复习一、知识点总结 1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 . 2. 对数函数y =log a x (a >0,且a ≠1)的图象与性质定义 y =log a x (a >0,且a ≠1)底数a >10<a <1图象定义域 值域 R单调性 在(0,+∞)上是增函数在(0,+∞)上是减函数共点性 图象过定点 ,即x =1时,y =0函数值特点x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ 对称性函数y =log a x 与y =1log ax 的图象关于 对称【易错题1】 如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在 函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________。
【题模1】 函数图象(1)底数与图像位置关系:1、指数函数图象恒过(0,1)在第一象限是“底大图高”,2、对数函数图象恒过(1,0):在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”.3、幂函数图象恒过(1,1),在(1,1)右侧:是“指大图高”.2)函数图象变换①y =f (x )―――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――→关于y 轴对称y =f (-x ). ③y =f (x )―――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )――――――――――――――――――――→a >1,横坐标缩短为原来的倍,纵坐标不变0<a <1,横坐标伸长为原来的倍,纵坐标不变 y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去 y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象 y =f (|x |). 【讲透例题】1.设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)2、不论a 为何值时,函数图象恒过一定点,这个定点坐标是 .3. 函数()2e e x xf x x--=的图像大致为 ( ) A . B . C . D .5、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |)6.(多选)若函数y =a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则下列选项中正确的有( )A .a >1B .0<a <1C .b >0D .b <07、已知指数函数()x f x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .32B .23C .33D .3【相似题练习】1. 已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥ 2.函数f (x )=ln(x 2+1)的图象大致是( )3、 已知()g x 图像与x y e =关于y 轴对称,将函数()g x 的图像向左平移1个单位长度,得到()f x ,则()f x =( )A. 1x e +B.1x e -C.1x e -+D. 1x e -- 4、(多选题)为了得到函数ln()y ex =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 5、函数y =a x -a (a >0,且a ≠1)的图象恒过定点( , ) 6、函数(其中且的图象一定不经过第 象限。
(完整)高一必修一基本初等函数知识点总结归纳,推荐文档
高一必修一函数知识点(12.1 )〖1.1〗指数函数(1)根式的概念① :a 叫做根式,这里n 叫做根指数,a 叫做被开方数. ② 当n 为奇数时,a 为任意实数;当n 为偶数时,a 0. ③根式的性质:牯(2)分数指数幂的概念m①正数的正分数指数幂的意义是:a nn/(a0,m, n N ,且n1).0的正分数指数幂等于0.②正数的负分数指数幂的意义是:am. m1 - n (—)nn(1)m (a 0,m, n N ,且n1). 0的负分数指数幂没有意a ■ a义. 注意口诀:底数取倒数, 指数取相反数.(3)分数指数幂的运算性质① a ra sa r s(a 0,r, s R) ②(a r )sa rs (a 0, r,s R)③(ab)rr r za b (a 0,b 0,r R)(4)指数函数例:比较〖1.2〗对数函数(1)对数的定义①若a xN(a 0,且a 1),则x 叫做以a 为底N 的对数,记作x log a N ,其中a 叫做底数,N 叫做真数.②对数式与指数式的互化:x log a N a x N (a 0, a 1,N 0).(2)常用对数与自然对数:常用对数:lg N ,即log 10 N ;自然对数:In N ,即log e N (其中e 2.71828…).(3) 几个重要的对数恒等式: log a 1 0,log a a 1,log a a b b .(4) 对数的运算性质如果a 0,a 1,M 0, N 0 ,那么(5①加法:log a M log a N log a (MN)②减法:log a M log a Nlog a③数乘:nlog a M log a M n (n R)④alog a N⑤ log b M n n log a M(b 0,n R) a b⑥换底公式:log a Ng N log b a (b 0,且 b 1)①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f 1(y);1 1③将x f (y)改写成y f (x),并注明反函数的定义域.(7)反函数的性质①原函数y f (x)与反函数y f 1(x)的图象关于直线y x对称.即,若P(a,b)在原函数y f (x)的图象上,贝u P(b,a)在反函数y f (x)的图象上.②函数y f (x)的定义域、值域分别是其反函数y f 1(x)的值域、定义域.函数基本性质一一奇偶性知识点及经典例题、函数奇偶性的概念:①设函数y f x的定义域为D,如果对D内的任意一个x,都有x D,且f x f x,则这个函数叫奇函数。
高一数学必修1第二章基本初等函数知识点整理
必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式: log 10a =,log 1aa =,logb a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.xxxxx x(q)0x xfxfx xx。
高一必修一基本初等函数知识点总结归纳
高一必修一函数知识点()〖〗指数函数(1)根式的概念n叫做根指数,a叫做被开方数.②当n为奇数时,a为任意实数;当n为偶数时,0a≥.③根式的性质:n a=;当n为奇数时,a=;当n为偶数时,(0)||(0)a aaa a≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N+=>∈且1)n>.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m mn na a m n Na-+==>∈且1)n>.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r sa a a a r s R+⋅=>∈②()(0,,)r s rsa a a r s R=>∈③()(0,0,)r r rab a b a b r R=>>∈(4)指数函数例:比较〖〗对数函数(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-=③数乘:log log ()na a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6) 反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; ③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(7)反函数的性质①原函数()y f x =与反函数1()y f x -=即,若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.函数基本性质——奇偶性知识点及经典例题一、函数奇偶性的概念:①设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈, 且()()f x f x -=-,则这个函数叫奇函数。
人教版高中数学必修一 第二章 基本初等函数知识点总结
人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。
注意:(1)na =(2)当 n a = ,当 n ,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r rra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 20<a<1a>1定义域R , 值域(0,+∞)注意: 指数增长模型:y=N(1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
(4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。
(5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式)说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式.2、两个重要对数:(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =⇔=对数式 指数式对数底数← a → 幂底数对数← x → 指数真数← N → 幂 结论:(1)负数和零没有对数(2)log a a=1, log a 1=0 特别地, lg10=1, lg1=0 , lne=1, ln1=0(3) 对数恒等式:log Na a N =(二)对数的运算性质如果 a > 0,a ≠ 1,M > 0, N > 0 有:1、 log M N log log a a a M N ∙=+() 两个正数的积的对数等于这两个正数的对数和 2 、N M NMa a alog log log -= 两个正数的商的对数等于这两个正数的对数差3 、log log n na a M n M =∈(R ) 一个正数的n 次方的对数等于这个正数的对数n 倍说明:1) 简易语言表达:”积的对数=对数的和”……2) 有时可逆向运用公式3) 真数的取值必须是(0,+∞)4) 特别注意:N M MN a a a log log log ⋅≠ ()N M N M a a a log log log ±≠±注意:换底公式()log lg log 0,1,0,1,0log lg c a c b bb a ac c b a a==>≠>≠>利用换底公式推导下面的结论 ①a b b a log 1log =②log log log log a b c a b c d d ∙∙=③log log m n a a nb b m=(二)对数函数1、对数函数的概念:函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:(1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
基本初等函数考点归纳(强烈推荐)
知识归纳:1、 指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a 互为反函数,它们的图象关于直线x y =对称,其图象性质见下表:(1)定义:)1,,,0(1,>∈>==*-n N n m a aaa anm nm n m nm(2)运算性质:),,0,0()(,)(,Q t s b a b a ab a a a a a s s s st t s t s ts∈>>===⋅+3、对数定义及运算性质(1)定义:若)1,0(≠>=a a N a b,则数b 叫做以a 为底N 的对数,记作b N a =log(2)常用对数、自然对数对数)1,0(log ≠>a a N a 当底数10=a 时,叫常用对数,记作N lg ;当底数e a =时,叫自然对数,记作N ln(3)对数恒等式:)0,1,0(log >≠>=N a a N aNa (4)换底公式:)0,1,,0,(log log log >≠>=N b a b a aNN b b a (5)对数运算法则N M MN a a a log log )(log += )1,0,0,0(≠>>>a a N MN M NM b a a log log log -= )1,0,0,0(≠>>>a a N MN n N a n a log log = )1,0,0(≠>>a a NN n N a n a log 1log = )1,0,0(≠>>a a Nb n mb a m a n log log = )1,0,0,0(≠>>≠a a b nab b a log 1log = )1,0,1,0(≠>≠>a a b b考点1指数函数与对数函数的定义域、值域 例1.设2()lg 2x f x x +=-,则2()()2x f f x+的定义域为 A .(4,0)(0,4)- B .(4,1)(1,4)-- C .(2,1)(1,2)-- D .(4,2)(2,4)--考点2指数函数与对数函数的图像 例2.函数xe y -=的图象( ) A .与x e y =的图象关于y 轴对称 B .与xe y =的图象关于坐标原点对称C .与x ey -=的图象关于y 轴对称D .与xey -=的图象关于坐标原点对称例3.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( ) A .向左平移3个单位长度 B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度考点3由指数函数与对数函数的图像确定参数的值或范围例4.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( ) A .a =2,b=2 B .a = 2 ,b=2 C .a =2,b=1 D .a = 2 ,b= 2例5.若直线y=2a 与函数y=|a x-1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是考点4指数函数与对数函数的互为反函数关系例6.记函数y=1+3-x的反函数为()y g x =,则g(10)=( )A . 2B . 2-C . 3D . 1-考点5指数方程与对数方程 例7.解方程 11214=-+xx .例8.(2006年上海文科卷第8题) 方程x x 323log 1)10(log +=-的解是 .考点6指数函数与对数函数的单调性例9.设()2log log ,2log ,3log 3232===R Q P ,则( )A.P Q R <<B.Q R P <<C.P R Q <<D.Q P R <<例10.求函数()()24log 23f x x x =+-的单调区间考点7求参数的取值范围例11、若()log 3a y ax =-在[]0,1上是x 的减函数,则a 的取值范围是( ) A 、()0,1 B 、()1,3 C 、()0,3 D 、[)3,+∞点评:由常规的具体函数判断单调性或求已知函数的单调区间,变换为由函数的单调性反过来确定函数中的底数a 的范围,同时要求对对数函数的概念和性质有深刻的理解。
高一数学必修1知识点总结:第二章基本初等函数
精品文档高中数学必修1知识点总结第二章基本初等函数〖2.1〗指数函数N ,那么x 叫做a 的n 次方根•当n 是奇数时,a 的n 次方根用符号 V aa 叫做被开方数•当n 为奇数时,a 为任意实数;当n 为偶数时,③根式的性质: (n,a)na ;当n 为奇数时,a ;当n 为偶数时, n? |a|(2)分数指数幂的概念①正数的正分数指数幂的意义是:ma n (a 0, m, nN ,且n 1). 0的正分数指数幂等于0.②正数的负分数m指数幂的意义是:a71 m(2)nJ(1)m (a 0,m, n N ,且n 1). 0的负分数指数幂没有意义 .注意口诀:底a '■ a数取倒数,指数取相反数.(3)分数指数幂的运算性质rsr s① a a a (a0, r, s R)②(a r )s a rs (a0, r,s R)③(ab)r a r b r (a0,b 0,r R)2.1.2指数函数及其性质(4)指数函数2.1.1指数与指数幕的运算(1)根式的概念表示;当n 是偶数时,正数 a 的正的n 次方根用符号7a 表示,负的n 次方根用符号 na 表示;o 的n 次方根是o ;负数a 没有n 次方根.①如果 x n a, a R, x R, n 1,且 n②式子n a 叫做根式,这里n 叫做根指数,a (a 0)a (a 0)12.2〗对数函数【221】对数与对数运算(1) 对数的定义①若a x N(a 0,且a 1),则x 叫做以a 为底N 的对数,记作x log a N ,其中a 叫做底数,N 叫做真数.【222】对数函数及其性质(5② 负数和零没有对数.③对数式与指数式的互化:x log a Na xN (a 0, a 1,N 0).(2) 几个重要的对数恒等式loga 1 0,lOg a a 1,lOgb aa(3) 常用对数与自然对数:常用对数:lg N ,即 loge 自然对数:In N ,lOg e N(其中 e 2.71828 …).(4) 对数的运算性质如果a 0, a1,M0, N那么①加法:lOg a M lOg a N log a (MN)②减法:lOg a MlOg a N③数乘:nlog a M log a M n(n R)④alOga N⑤loga bM n n log a M(b 0,n R) a b⑥换底公式:lOg aNlog b N(b 0,且 b 1) log b a设函数y f (x)的定义域为A,值域为C,从式子y f (x)中解出x,得式子x (y).如果对于y在C中的任何一个值,通过式子x (y) , x在A中都有唯一确定的值和它对应,那么式子x (y)表示x是y的函数,函数x ( y)叫做函数y f(x)的反函数,记作x f 1(y),习惯上改写成y f 1(x).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f 1(y);1 1③将x f (y)改写成y f (x),并注明反函数的定义域.(8)反函数的性质①原函数y f(x)与反函数y f (x)的图象关于直线y x对称.②函数y f (x)的定义域、值域分别是其反函数y f 1(x)的值域、定义域.③若P(a,b)在原函数y f (x)的图象上,贝U p'(b,a)在反函数y f 1(x)的图象上.④一般地,函数y f (x)要有反函数则它必须为单调函数.(1)幂函数的定义(2)幂函数的图象(3)幂函数的性质① 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象•幂函数是偶函数时,图象分布在第一、二象限 (图象关于y 轴对称);是奇函数时,图象分布在第一、三象限 (图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 • ② 过定点:所有的幂函数在 (0,)都有定义,并且图象都通过点 (1,1) •③ 单调性:如果0,则幂函数的图象过原点,并且在 [0, )上为增函数•如果0,则幂函数的图象在(0, )上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当 为奇数时,幂函数为奇函数,当 为偶数时,幂函数为偶函数.当 —(其中p,q 互质,p 和q Z ), P,q q若p 为奇数q 为奇数时,则yx p 是奇函数,若 p 为奇数q 为偶数时,则y x p 是偶函数,若p 为偶数q 为奇数时, q则y x p 是非奇非偶函数.⑤图象特征:幂函数 y x,x(0,),当 1时,若0 x 1,其图象在直线 y x 下方,若x 1,其图象12.3〗幕函数一般地,函数yx 叫做幂函数,其中x 为自变量,是常数.在直线y x上方,当1时,若0 x 1,其图象在直线y x上方,若x 1,其图象在直线y x下方.(1)二次函数解析式的三种形式①一般式:f (x ) ax 2 bx c(a 0)②顶点式:f(x) a(x h)2 k(a 0) ③两根式:f (x) a(x xj(x x 2)(a 0) (2) 求二次函数解析式的方法 ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③ 若已知抛物线与 x 轴有两个交点,且横线坐标已知时,选用两根式求 f(x)更方便.(3) 二次函数图象的性质① 二次函数f(x) ax 2 bx c(a 0)的图象是一条抛物线,对称轴方程为x —,顶点坐标是( ——, ---------------- )2a 2a 4a② 当a 0时,抛物线开口向上,函数在 (,-—]上递减,在[ ——,)上递增,当x时,2a 2a 2af min (x) 4" —;当a 0时,抛物线开口向下,函数在 (, —]上递增,在[卫,)上递减,当4a 2a 2a x P 时,f max (X ) 2a4a2 2③二次函数f (x) ax bx c(a 0)当 — 4ac 0时,图象与x 轴有两个交点M 1(xi>0),M2(x2>0)>M 1M 21 |xi(4)一元二次方程ax 2 bx c 0( a 0)根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整, 且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系 统地来分析一元二次方程实根的分布.2 2 设一元二次方程ax bx c 0(a 0)的两实根为x i ,X 2,且x 1 x 2 •令f(x) ax bx c ,从以下四个方K面来分析此类问题:①开口方向:a ②对称轴位置:x —— ③判别式: ④端点函数值符号.① k < x i < X 21补充知识〗二次函数|a|2a精品文档②x i< X2 < k④k i< x i< X2< k2⑤有且仅有一个根X i (或X2)满足k i<X i (或X2) < k2f( k i)f( k2) 0,并同时考虑f( k i)=O 或f( k2)=0 这两种情况是否也符合精品文档⑥k i<X i v k2< p i< x>< p2 此结论可直接由⑤推出.(5)二次函数f(x)ax2bx c(a 0)在闭区间[p, q]上的最值设f(x)在区间[p, q]上的最大值为M ,最小值为m,令X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修一基本初等函数知识点汇总归纳————————————————————————————————作者:————————————————————————————————日期:高一必修一函数知识点(12.1)〖1.1〗指数函数(1)根式的概念 ①na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:()n na a =;当n 为奇数时,n n a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m naa a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数函数名称 指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域 (0,+∞)过定点 图象过定点(0,1),即当x=0时,y=1.奇偶性 非奇非偶单调性 在R 上是增函数在R 上是减函数函数值的 变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象的影 响 在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.例:比较xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖1.2〗对数函数(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②对数式与指数式的互化:log (0,1,0)x a xN a N a a N =⇔=>≠>.(2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =.(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数xyO(1,0)1x =log a y x=xyO(1,0)1x =log a y x=函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴(6) 反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(7)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.即,若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.函数基本性质——奇偶性知识点及经典例题一、函数奇偶性的概念:①设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈, 且()()f x f x -=-,则这个函数叫奇函数。
(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出()00f =)②设函数()y g x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈, 若()()g x g x -=,则这个函数叫偶函数。
从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。
也就是说当x 在其定义域内时,x -也应在其定义域内有意义。
③图像特征如果一个函数是奇函数⇔这个函数的图象关于坐标原点对称。
如果一个函数是偶函数⇔这个函数的图象关于y 轴对称。
④复合函数的奇偶性:同偶异奇。
⑤对概念的理解:(1)必要条件:定义域关于原点成中心对称。
(2))(x f 与)(x f -的关系:当)()(x f x f =-或0)()(=--x f x f 或1)()(=-x f x f 时为偶函数;当)()(x f x f -=-或0)()(=+-x f x f 或1)()(-=-x f x f 时为奇函数。
例题:1.函数f (x )=x(-1﹤x ≦1)的奇偶性是( )A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)⋃(2,+∞) D. (-2,2) 答案:ADA二、函数的奇偶性与图象间的关系:①偶函数的图象关于y 轴成轴对称,反之也成立;②奇函数的图象关于原点成中心对称,反之也成立。
三、关于函数奇偶性的几个结论:①若)(x f 是奇函数且在0=x 处有意义,则(0)0f =②偶函数± 偶函数=偶函数;奇函数±奇函数=奇函数; 偶函数⨯偶函数=偶函数;奇函数⨯奇函数=偶函数; 偶函数⨯奇函数=奇函数③奇函数在对称的单调区间内有相同的单调性, 偶函数在对称的单调区间内具有相反的单调性.第二章 基本初等函数一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 下列计算中正确的是 A .633x x x =+ B .942329)3(b a b a = C . lg(a+b)=lga·lgb D .lne=12. 已知71=+aa ,则=+-2121a aA. 3B. 9C. –3D. 3±3.下列函数中,在其定义域内既是奇函数又是减函数的是A. 3x y -=B. x y 21log = C. x y = D. x y )21(=5. 把函数y=a x (0<a<1)的反函数的图象向右平移一个单位得到的函数图象大致是(A ) (B ) (C ) (D )A .B .C .D .6. 若a 、b 是任意实数,且b a >,则 A .22b a > B .02<-ba C .0)lg(>-b a D .ba ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛21217.(山东)设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α值为 A .1,3 B .1-,1 C .1-,3 D .1-,1,38.(全国Ⅰ) 设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =A .2B .2C .22D .49. 已知f(x)=|lgx |,则f(41)、f(31)、f(2) 大小关系为 A. f(2)> f(31)>f(41) B. f(41)>f(31)>f(2)C. f(2)> f(41)>f(31)D. f(31)>f(41)>f(2)10.(湖南) 函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是A .4B .3C .2D .1二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.(上海) 函数3)4lg(--=x x y 的定义域是 .12. 当x ∈[-1, 1]时,函数f(x)=3x -2的值域为 .13. (全国Ⅰ)函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x = .14.(湖南) 若0a >,2349a =,则23log a = . 15. (四川) 若函数2()()x f x e μ--=(e 是自然对数的底数)的最大值是m ,且()f x 是偶函数,则m μ+=________. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)(1)指数函数y=f(x)的图象过点(2,4),求f(4)的值; (2)已知log a 2=m ,log a 3=n ,求a 2m+n .17. (本小题满分12分) 求下列各式的值(1) ()()[]75.052531161287064.0⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛----(2) 5lg 8lg 3432lg 21+-18. (本小题满分12分) 牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是一种指数型函数.....,若牛奶放在0ºC 的冰箱中,保鲜时间是200h,而在1ºC 的温度下则是160h. (1) 写出保鲜时间y 关于储藏温度x 的函数解析式; (2) 利用(1)的结论,指出温度在2ºC 和3ºC 的保鲜时间.19. (本小题满分12分) 某种放射性物质不断变化为其它物质,每经过一年,剩留的该物质是原来的54,若该放射性物质原有的质量为a 克,经过x 年后剩留的该物质的质量为y 克. (1) 写出y 随x 变化的函数关系式;(2) 经过多少年后,该物质剩留的质量是原来的12564?20. (本小题满分13分) 已知f(x)=122a 2a x x +-+⋅ (x ∈R) ,若对R x ∈,都有f (-x)=-f(x)成立(1) 求实数a 的值,并求)1(f 的值;(2)判断函数的单调性,并证明你的结论; (3) 解不等式 31)12(<-x f .第二章 基本初等函数参考答案一、选择题D A A A D A D B B 二、填空题 11.{}34≠<x x x 且 12. [-35,1] 13. ()f x =3()x x ∈R14 . 3 15. 1m μ+=. 三、解答题 16. 解:(1)f(4)=16 …………6分 (2)a 2m+n =12 …………12分17. 解:(用计算器计算没有过程,只记2分)(1) 原式=14.0--1()22--++32-=815. …………6分 (2) 原式21)5lg 2(lg 215lg 212lg 23342lg 521=+=+⨯-⨯=.…………12分18. (1)保鲜时间y 关于储藏温度x 的函数解析式xy )54(200= ………6分(2)温度在2ºC 和3ºC 的保鲜时间分别为128和102.4小时. ………11分 答 略 ………………12分19. 解:(1)*)(54N x ay x∈⋅⎪⎭⎫⎝⎛= …………6分(2)依题意得 a a x1256454=⎪⎭⎫⎝⎛,解x=3. …………11分答略. ………………12分 20. 解:(1) 由对R x ∈,都有f (-x)=-f(x)成立 得, a=1,31)1(=f .……4分 (2) f(x)在定义域R 上为增函数. ………………6分证明如下:由得)(1212)(R x x f xx ∈+-= 任取+∞<<<∞-21x x ,∵ 12121212)()(221121+--+-=-x x x x x f x f ()()1212)22(22121++-=x x x x ………………8分 ∵ +∞<<<∞-21x x ,∴ 2122xx < ∴ 0)()(21<-x f x f ,即)()(21x f x f <∴ f(x)在定义域R 上为增函数.(未用定义证明适当扣分) ………………10分 (3) 由(1),(2)可知,不等式可化为)1()12(f x f <-112<-⇔x得原不等式的解为 1<x (其它解法也可) ………………13分。