脱硫废水零排放深度处理

合集下载

脱硫废水深度处理方法

脱硫废水深度处理方法

脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。

(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。

(1.1)反渗透(RO)技术。

在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。

(1.2)电渗析技术。

利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。

Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。

(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。

(2.1)多效蒸发(MED)技术。

将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。

加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。

(2.2)机械蒸汽再压缩(MVR)技术。

将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水系统,节约大量冷却水,从而达到节能和降低运行成本的目的。

(3)烟气浓缩技术。

利用燃煤电厂除尘器出口低温烟气的余热作为热源,在专门的蒸发器内与(循环)喷淋的废水进行传质传热,使部分纯水蒸发分离,实现末端废水的浓缩减量。

2.废水零排放处理技术目前,国内的脱硫废水零排放处理主要采用蒸发结晶和烟气蒸发两类技术路线。

(2.1)蒸发结晶技术蒸发结晶技术是废水零排放处理的常用技术之一。

探究脱硫废水常规处理及零排放分析

探究脱硫废水常规处理及零排放分析

探究脱硫废水常规处理及零排放分析作为社会力量发展的主力军,火力发电,在构建和谐社会和发展循环经济的背景下,如何减少火电技术对环境的污染,对不可再生能源的影响,在过剩电力容量的情况,只有火电技术可以不断改良和发展,以满足和谐社会的要求。

在发电过程中,水与我们身体的血液一样重要。

废水的产生是不可防止的。

为了实现来自火力发电的废水的零排放要求,以下是废水零排放的技术,并分析相应的优点和缺点。

1脱硫废水的来源及特点1.1脱硫废水的来源脱硫废水主要来源于湿法脱硫工艺。

湿法脱硫是锅炉排出的烟气脱硫的主要方法。

脱硫方法可以到达降低烟气中二氧化硫含量的目的,但需要认识到。

是的,为了保持脱硫装置中的物料平衡,系统中存在的废水必须适当排放,产生的废水称为脱硫废水。

脱硫废水中有许多有害物质。

其中,氯化物和痕量金属是重要的组成部分。

如果未经处理就排出,很容易影响环境。

因此,有必要注意这个问题。

脱硫废水处理方法的应用已成为必然。

1.2脱硫废水的特点脱硫废水的特点主要表达在以下方面:第一,脱硫废水中,含有重金属以及氯化物等元素,PH值集中在4-6.5之间。

第二,脱硫废水中,包括石膏6kg.h-1。

第三,脱硫废水中,含可溶性盐分的H20为45006kg.h-1o除此之外,脱硫废水还包括MgC03等物质。

2脱硫废水常规处理原理及工艺流程由于脱硫装置浆液中的水富含重金属元素,C1-和细颗粒在连续循环过程中,脱硫设备的腐蚀加速,影响脱硫效率,另一方面影响质量石膏因此,脱硫装置应将一定量的废水排入脱硫废水处理系统,经中和,沉淀,絮凝,沉淀,脱水处理后,到达标准后排入工业废水调节池。

原废水处理工艺系统由中和、沉降、絮凝、沉淀和脱水系统组成。

2.1中和反应首先,将来自脱硫系统的吸收塔的废浆收集在废水缓冲罐中并泵送到废水处理系统的反应罐和罐中。

在中和槽中参加定量的石灰乳,将废水的PH值提高到9~9.7,以降低废水的腐蚀性,同时减少大部分重金属的含量。

燃煤电厂脱硫废水的零排放处理技术

燃煤电厂脱硫废水的零排放处理技术

燃煤电厂脱硫废水的零排放处理技术燃煤电厂脱硫废水多采用物化法处理,处理后的废水虽能达标排放,但盐分及氯离子的含量仍很高,导致水体矿化及土壤碱化,也会造成资源浪费。

因此,研究脱硫废水零排放(Zero-Liquid Disge,ZLD)工艺,不向环境中排出任何废液,回用废水并回收废水中的有用资源,是火力发电厂实现可持续发展的必由之路,也是未来脱硫废水系统研究的重要方向。

为了符合相关法律法规和相关产业政策,燃煤电厂废水零排放势在必行。

然而,传统的脱硫废水处理技术不能满足电厂零排放要求,探索有效且经济的脱硫废水零排放技术迫在眉睫。

一、脱硫废水的预处理1.化学沉淀。

化学沉淀是通过投加化学药剂使水中的钙、镁离子形成沉淀而被去除,从而使废水得到软化。

该法可有效去除钙、镁和硫酸根等离子,技术成熟,但污泥量大。

根据采用的药剂不同,常用的方法有石灰-碳酸钠法、氢氧化钠-碳酸钠法。

两者均有较好的软化效果;后者相比于前者,投加量少,对Ca2+、Mg2+去除率更高,但SO42-去除率偏低。

2.混凝沉淀。

化学沉淀后的废水含有大量胶体和悬浮物,通过投加混凝剂,混凝沉淀使其形成絮凝体,经沉淀过程发生固液分离而从水中去除。

混凝沉淀尽管可有效去除水中大部分悬浮物,但出水仍含有部分细微悬浮物,且处理效果不稳定,易受水质波动的影响。

常用的混凝剂有聚合氯化铝和聚硅酸铁,后者在脱硫废水处理中的效果优于前者。

3.过滤。

为进一步降低废水的浊度,确保后续系统进水水质,混凝沉淀常常需与过滤单元联用。

常用的过滤技术有:多介质过滤、微滤、超滤、纳滤等。

其中,内压错流式管式微滤,膜管内料液流速高,前处理无需投加高分子絮凝剂,甚至无需沉淀池,自动化程度高,运行稳定,适用于高固体含量废水的处理,因而在脱硫废水预处理中具有一定的技术优势。

此外,纳滤可实现不同价盐的分离,实现脱硫废水的资源回收,如华能玉环电厂用纳滤纯化的NaCl溶液制备了NaClO等药剂。

由于脱硫废水水质复杂多变,实际工程需根据水质特性及后处理系统的要求来选择适宜的预处理方法。

脱硫废水零排放

脱硫废水零排放

脱硫废水零排放脱硫废水零排放(ZLD)系统脱硫废水零排放工艺是针对火电厂脱硫废水特点,通过软化、MVR蒸发、结晶等技术途径,实现高盐度脱硫废水的零排放要求,最终看形成纯净可回用的蒸馏水和结晶盐。

该工艺也可实现其他各种高盐度、高硬度、高COD工业废水零排放,具有高效、节能、运行稳定、低成本的特点。

脱硫废水零排放预处理工艺脱硫废水首先进入预澄清池,进行沉淀澄清,降低原水浊度。

沉淀物排放至沉淀浓缩池,上清液进入三联箱反应器。

三联箱中加入Ca(OH)2、Na2CO3和絮凝剂,反应沉淀废水中的Mg2+、Ca2+和重金属离子。

反应后的脱硫废水自流入澄清池,废水中的絮凝物沉淀到池底,并排放至沉淀浓缩池,上清液流入中间水池,后经多介质过滤后进入清水池,并加酸调节pH值。

经沉淀浓缩池进一步浓缩后的污泥浆液,进入污泥脱水机固液分离,脱水后的污泥转运到场外处理,污水经缓冲水池后循环回预澄清池。

脱硫废水零排放深度处理工艺MVR是“机械式蒸汽再压缩”的英文简称(Mechanical Vapor Recompression)。

其基本原理是:对蒸发过程中产生的二次蒸汽通过机械再压缩,二次蒸汽的温度、压力升高,热焓增加,然后进入换热器冷凝,二次蒸汽的潜热得到完全利用。

进液经预热、除气后,进入蒸发系统,由泵送至卧式降膜蒸发器顶部,经液体分布装置,均匀分配到各换热管外,在重力作用下,成均匀膜状自上而下沿管外壁环向流动。

流动过程中,被管程加热介质加热汽化,产生的二次蒸汽经离心蒸汽压缩机增压升温后进入降膜蒸发器管程与管外液体冷凝换热。

一定比例的蒸发浓缩液进入结晶系统。

结晶系统的料液由泵送至加热器,晶浆在加热器管程升温,但不蒸发。

热晶浆进入结晶器后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。

产生的二次蒸汽一部分被蒸汽热泵引射后进入加热器壳程,继续加热管内浓缩液,另一部分通过冷凝器冷凝。

作为产品的晶浆从结晶器底部排出,通过旋液分离器初步分离后,富集晶体的浓浆液进入离心机分离出晶体,浓浆液继续循环回结晶系统。

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术火电厂湿法脱硫废水零排放工艺技术是指通过一系列工艺处理,将火电厂湿法脱硫产生的废水中的污染物去除或转化为无害物质,实现废水的零排放。

这种技术在环保领域具有重要意义,既可以保护水资源,又可以减少排放对环境的影响。

火电厂湿法脱硫废水主要含有浓度较高的硫酸盐、氯离子、氟离子等物质,如果直接排放到江河湖海中,会对水体生态系统造成严重污染。

因此,通过零排放工艺技术处理火电厂湿法脱硫废水,才能实现环保要求。

火电厂湿法脱硫废水零排放工艺技术大致包括以下几个步骤:预处理、中水回用、深度脱水和污泥处理。

首先,预处理是指对废水进行初步处理,主要是去除废水中的悬浮物、颜色及重金属等杂质。

这一步骤通常采用物理化学方法,如沉淀、过滤、絮凝等过程。

然后,通过中水回用技术将预处理后的废水中的水分回收利用。

利用一系列处理工艺,如过滤、反渗透、蒸发浓缩等方式,将回收的水分重新用于火力发电过程中的冷却等环节。

这种方法能够减少水的消耗,降低用水成本。

接下来,深度脱水是指对回收利用后的水进行进一步处理,将其中的废物浓缩成为固体,以便后续处理。

通常采用的方法有压滤、离心等技术,将水分脱除,得到固体废物。

最后,对产生的固体废物进行处理。

焚烧、填埋、消纳等处理方法可以有效地处理固体废物,并确保固体废物不会对环境造成二次污染。

通过以上几个步骤的综合运用,火电厂湿法脱硫废水零排放工艺技术能够实现废水的零排放。

这一技术的应用不仅可以保护水环境,减少对生态系统的影响,同时也达到了节约水资源的效果,符合可持续发展的要求。

火电厂湿法脱硫废水零排放工艺技术是当前环保领域研究的热点之一,其重要性不言而喻。

随着环保意识的提高和环境监管的加强,火电厂湿法脱硫废水零排放工艺技术的研究和应用已成为国内外研究学者和环保专家关注的焦点,大量的研究和实践表明,火电厂湿法脱硫废水零排放工艺技术在减少污染物排放、提高资源利用率等方面具有巨大的潜力和优势。

工艺方法——脱硫废水零排放处理工艺

工艺方法——脱硫废水零排放处理工艺

工艺方法——脱硫废水零排放处理工艺工艺简介1、预处理+蒸发工艺预处理系统采用“两级反应+沉淀和澄清”处理,一级投加石灰,二级投加碳酸钠软化水质。

蒸发结晶处理采用多效蒸发结晶或MVR 蒸发工艺,结晶通过离心机和干燥床制得固体结晶盐。

脱硫废水经废水缓冲池调节水量,均衡水质,在一级反应器,投加石灰乳、絮凝剂和助凝剂,大部分重金属被生成沉淀,沉淀微粒物在絮凝剂和助凝剂的作用下凝聚成特大的颗粒物,最后流入一级澄清器,然后完成一系列的程序后实现固体和液体的分离。

上清液进入二级反应器,为了确保后期的深度处理的部分能够长期稳定,减少清洗次数,需要对容易结垢的物质进行直接处理。

在二级反应器中加入软化剂后,使水中钙离子生成沉淀,沉淀微粒物在絮凝剂和助凝剂的作用下凝聚成特大的颗粒物,最后流入二级澄清器,上清液经过滤器再次过滤,确保废水满足深度处理进水要求。

蒸发器一般分为2种,一种是多效蒸发装置,一种是MVR蒸发装置。

多效蒸发装置分为4个单元:热输入单元、热回收单元、结晶单元、附属系统单元。

热输入单元即从主厂区接入蒸汽,经过减温减压后成为低压蒸汽,再将蒸汽送至加热室对废水进行加热处理。

热交换后的冷凝液则进到冷凝水箱中。

预处理后的脱硫废水排水,经多级蒸发室的加热浓缩后送至盐浆箱,由盐浆泵输送至旋流器,将大颗粒的盐结晶进行旋流并进入离心机,分离出盐结晶体,然后再经螺旋输送机送往各类干燥床干燥塔进行干燥。

旋流器和离心机分离出的浆液返回至加热系统中再进行蒸发浓缩,最终干燥出的盐结晶包装运输出厂。

MVR蒸发装置原理是利用高能效蒸汽压缩机压缩蒸发产生的二次蒸汽,提高二次蒸汽的焓,被提高热能的二次蒸汽打入蒸发室进行加热,以达到循环利用二次蒸汽已有的热能,从而可以不需要外部鲜蒸汽,通过蒸发器自循环来实现蒸发浓缩的目的。

从理论上来看,使用MVR蒸发器比传统蒸发器节省80%以上的能源,节省90%以上的冷凝水,减少50%以上的占地面积。

预处理+蒸发工艺,投资成本较高,所有废水进入蒸发系统,运行费用高。

燃煤电厂脱硫废水零排放技术

燃煤电厂脱硫废水零排放技术

燃煤电厂脱硫废水零排放技术目前,国内外燃煤电厂脱硫废水主要采用混凝沉淀处理工艺,水质到达《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(D1/T997-20**)要求后直接排放或者送往灰场、渣场用作喷淋水。

电厂脱硫废水的排放关系到环境的可持续发展,废水零排放可以实现环境减排目标和污水回用,对治理水污染和缓解水资源短缺困境有重要意义。

本文从技术与管理双重角度对零排放处理开展了分析。

1、前言燃煤电厂脱硫废水零排放可以实现环境减排目标,保护生态环境,防止水体和地下水污染,对治理水污染有着重要的意义;也可以将工业废水再利用,减少工业用水总量;将污水大幅度回用,节约水资源,缓解目前水资源严重短缺的困境;也可以将含有难降解的物质固化,在解决工业污水处理难题的同时实现污染物回收利用。

如果能够实现全部工业废水的零排放,将会对水资源需求量大幅减少、环境负荷大量降低和生存环境大为改善,意义非同一般。

2废水来源和水质特点电厂石灰石-石膏湿法脱硫过程中会产生脱硫废水。

为T降低脱硫吸收塔石灰石循环浆液里的C1-和F-这些离子的浓度,控制浆液对脱硫设备造成的腐蚀,排出烟气里面经由洗涤出的飞灰,由系统里面排出一些废水。

排出的脱硫废水中,Ca2+、Mg2+、S042-等离子含量较高,其中Ca2+约1650〜550Omg/1、Mg2+约3150〜6200Ing/1、S042-约4500mg∕1,且CaS04到达过饱和状态,在加热浓缩后非常容易结垢。

此外脱硫废水中还含有Na+、Ca2+、Mg2+、K+、和F-、S042-、C1-、N03-等离子。

脱硫废水中的盐分非常高,尤其是C1-,且呈酸性,腐蚀性非常强,对设备及管道材质防腐要求很高。

随着燃煤产地的变化,脱硫废水中的成分也会出现非常大的变化。

3脱硫废水预处理工艺高浓度的脱硫废水喷入炉渣中,通过炉渣吸收其中的重金属和盐,到达降低溶液中重金属和氯盐的浓度的目的,实践结论告诉我们此方法确实有一定的成效,但是经处理的出水中的重金属、氯盐含量还是很高,再次回用此溶液时,常常引起喷淋装置的喷淋头堵塞(盐含量太高,蒸发结晶太快,引起堵塞)。

燃煤电厂脱硫废水的零排放处理工艺

燃煤电厂脱硫废水的零排放处理工艺

动力与电气工程在中国,燃煤电厂几乎占据了发电行业发展的大部分市场,同时也出现了诸多问题,燃煤发电所产生的大气污染对于人类环境产生了巨大的威胁。

正是因为如此,所以在中国一些燃煤电厂几乎都安装了烟气脱硫系统。

其中石灰石-石膏湿法脱硫工艺的使用最为普遍,这种脱硫工艺运行时,所排出的脱硫废水来源主要出自于脱硫后的石灰石以及烟气,里面包含许多被国家环保有关部门评定为一级污染物的杂质譬如硫酸盐,重金属以及悬浮物等等。

由于其污染性较强,所以一般对脱硫废水进行独自处理。

1 脱硫废水的特征1.1含盐量高在脱硫废水中含盐量极高,而且变化范围非常广,一般维持在20000~50000mg/L之间。

1.2硬度高脱硫废水中一些化学元素含量较高譬如钙离子,镁离子等含量过高,使他们状态处于一种饱和模式,在加热过程中很容易形成结垢。

1.3悬浮物高在当前我国燃煤电厂里边由于一般采用石灰石-石膏湿法脱硫工艺,所以产生的悬浮物维持在20000mg/L以,甚者由于燃煤变化的不确定性,更是达到60000mg/L。

1.4成分繁杂,水质变化极快脱硫废水中含有钠原子,钾原子,镁原子之类等原子,并随着燃煤电厂的变化,脱硫废水的组成部分变化也相当大[1]。

1.5腐蚀性高脱硫废水中的盐分含量很高,而且呈酸性,腐蚀性非常高,所以,对于管道的材质防腐性提出了很高的要求。

2 脱硫废水处理工艺的现状2.1去除重金属一些碱性试剂的使用不仅乐意提高废水的pH值,而且可以使一些像铁原子,银原子,铜原子之类的化学元素重金属生成氢氧化物沉淀。

一般情况下,当p H值达到8.0~9.0时,大部分的重金属离子都形成了很难溶氢氧化物,与此同时,废水中的氟原子与石灰乳液中的钙原子生成反应。

形成难溶的物质,所以加入有机化物,让它和一些其他化学原子反应沉积下来。

2.2废水中和脱硫废水进入混合池后,在混合池内加石灰或者其他碱性化学剂,在调整酸碱度的时候讲氟原子去除,为后备处理工艺创造时机[2]。

国电汉川电厂脱硫废水零排放技术改造简介

国电汉川电厂脱硫废水零排放技术改造简介

国电汉川电厂脱硫废水零排放改造技术简介国电汉川电厂三期扩建工程脱硫废水深度处理项目为国内首个百万机组脱硫废水零排放机组,国电集团废水零排放示范项目,工程由国电北京朗新明环保科技有限公司南京分公司EPC总包,于2016年12月通过整体验收投运.
整个脱硫废水技术路线采用:软化预处理(三联箱)+膜浓缩处理+蒸发结晶干燥技术,设计处理能力36吨/小时,工程投资8000万左右,运行成本100元/吨。

项目由国电北京朗新明环保科技有限公司南京分公司EPC总包,其中预处理采用传统的三联箱工艺,预处理的高盐水进入由杭州上拓开发的反渗透膜进行浓缩处理,产生的洁净水回循环水系统回用,约8吨左右的浓盐废水进入由合众高科环保技术股份有限公司开发的蒸发结晶系统,制成纯度为97。

5%的袋装氯化钠,作为工业盐销售。

项目采用DCS控制系统,设立独立的运行集控室对工艺运行状态进行在线实时监控。

脱硫废水零排放预处理技术

脱硫废水零排放预处理技术

脱硫废水零排放预处理技术随着国家、地方对水资源严格调控政策的密集出台,完全零排放已成为废水治理的必然发展方向,电厂节水、零排放工作已经开始全面启动。

为实现完全零排放,目前普遍接受的主体思路是采用预处理→浓缩减量→结晶→固体结晶物处理来达到这一目标。

具体采用的技术工艺如:传统的混凝沉淀、微滤;超滤、纳滤、反渗透、高压反渗透;自然蒸发结晶、蒸发塘、机械喷雾蒸发、烟道喷雾蒸发、旁路烟气蒸发等改良工艺或者其组合工艺。

这些技术都各具优势,但存在的问题是:不管是膜浓缩、热法浓缩或者末端结晶阶段,污垢、盐垢、腐蚀问题刻不容缓,设备维护成本高,因此如何做好废水的预处理,减少废水中污染因子,保证末端进水水质显得尤为重要。

本文针对脱硫废水的零排放,结合目前理论研究及电厂实际应用,探讨了一种应用于实践工程的脱硫废水预处理方法,以期为将来零排放技术的研究开发及工程应用提供参考。

1、脱硫废水预处理技术现状分析脱硫废水的水质受石灰石的品质、煤种的不同、吸收塔内浆液的浓缩倍率等影响很大,但普遍呈现出水质偏酸性、悬浮物含量高、微量重金属及氟化物、过饱和的亚硫酸盐和硫酸盐、含硅、硬度大、氯离子浓度高的特点。

目前应用广泛的预处理方法主要是化学加药混凝沉淀法、微滤、平板/卷式纳滤、电渗析、晶种软化法等,目的是在废水蒸馏前,先尽可能多的去除水中易结垢的Ca2+、Mg2+或SO42-,降低废水浓缩蒸发过程中的易结垢倾向,常规的处理工艺流程如图1所示。

电厂普遍采用的石灰澄清池/高密池单元即是传统的化学沉淀-混凝澄清工艺,它自身有着不可替代的优势。

在长期的应用过程中,我们对药剂的投加种类、投加方式、数量、比例、搅拌时间等参数把握的更加准确,随着工艺设备的不断改进以及运行经验的积累,该工艺可以去除大部分的悬浮物、重金属及有机物,出水水质较好。

其缺点:一是处理效果不稳定,容易受到来水水质水量波动、水温变化等因素的影响;二是加入的消石灰、絮凝剂、助凝剂等一系列药剂去除的是水中大部分的暂硬,对永硬成分并未去除,这部分溶解性固体仍会在后续处理过程中浓缩结晶出来引起设备严重结垢;三是出水水质中一些离子浓度不能满足膜浓缩减量系统进水要求。

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术火电厂是目前主要的电力生产方式之一,但由于其燃烧过程中释放的大量烟尘和气体污染物,对环境造成了严重的影响。

其中,二氧化硫(SO2)是主要的气态污染物之一,对人们的健康和大气环境造成了严重威胁。

为了减少火电厂尾气中的二氧化硫含量,湿法脱硫技术成为了一种常用的方式。

然而,湿法脱硫技术产生的脱硫废水问题却引起了人们的关注。

脱硫废水中含有大量的二氧化硫、氧化剂及其产物、颗粒物以及酸性废水等。

这些废水如果直接排放到环境中,会对水体造成严重的污染,对环境和生态系统造成长期的危害。

为了解决脱硫废水排放问题,研究人员提出了一种零排放的工艺技术。

该技术主要包括废水预处理、二氧化硫氧化脱硫、废水再生处理以及废水处理后的回用等步骤。

首先,废水预处理是将脱硫废水预处理并进行沉淀和澄清,去除其中的固体颗粒物和悬浮物。

然后,将预处理后的废水通过二氧化硫氧化脱硫系统进行脱硫处理。

该系统通过将二氧化硫氧化为硫酸,然后和废水中的钙、镁等金属离子反应生成二氧化硫固体颗粒物的形式,减少废水中的二氧化硫含量。

接下来,经过脱硫处理后的废水进入再生处理系统。

再生处理主要包括高效沉淀、过滤和脱钠等过程。

通过沉淀和过滤,将残留在废水中的沉淀物和悬浮物进一步去除,同时去除水中的钠离子。

最后,经过再生处理后的废水可以进行回用。

回用部分废水可以用于再生吸收剂液环路中,并循环使用。

这不仅可以减少废水的排放,降低对环境的影响,还可以减少燃煤量和化学品的消耗。

通过以上工艺技术的应用,火电厂湿法脱硫废水的排放可以实现零排放。

这在一定程度上减轻了对环境的污染,保护了水源和生态系统的安全。

同时,该工艺技术的应用也促进了资源的循环利用和能源的可持续发展,为火电厂的持续运营提供了技术保障。

火电厂湿法脱硫废水零排放工艺技术是一种全面解决脱硫废水问题的综合性方案。

下面我将详细介绍工艺的实施步骤和主要特点。

1. 废水预处理:废水预处理是整个工艺的第一步。

脱硫废水常规处理及零排放介绍

脱硫废水常规处理及零排放介绍

脱硫废水常规处理及零排放介绍脱硫废水是指在燃煤、炼油、冶金、化工等工业生产过程中产生的含有硫化物的废水。

这些废水中的硫化物对环境产生严重的污染,对人体健康也有一定的威胁。

因此,对脱硫废水进行常规处理或实现零排放是非常重要的。

本文将介绍脱硫废水的常规处理方法及实现零排放的技术。

物理处理主要是利用物理方法对废水进行沉淀、过滤、吸附等操作,以去除废水中的悬浮物、胶体物质和溶解物质。

常用的物理处理方法有沉淀、过滤和离心。

化学处理是利用化学方法对废水中的污染物进行化学反应,使其发生沉淀、析出或氧化还原等过程,从而去除废水中的污染物。

常用的化学处理方法有氧化、还原、中和和络合等。

生物处理是利用生物微生物对废水中的有机物进行降解或转化,使其转化为无害物质。

常用的生物处理方法有好氧生物处理和厌氧生物处理。

实现脱硫废水的零排放,首先需要对废水进行预处理,去除大部分的硫化物和悬浮物。

预处理可以采用物理和化学方法,如沉淀、过滤和氧化等。

然后,将预处理后的废水送入生物处理系统。

好氧生物处理是将废水中的有机物通过好氧微生物的作用,进行降解和转化,并最终产生二氧化碳和水。

好氧生物处理系统一般由接触氧化池、曝气池和沉淀池组成。

厌氧生物处理是将废水中的有机物通过厌氧微生物的作用,进行降解和转化,并最终产生沼气和沉淀物。

厌氧生物处理系统一般由厌氧池和沉淀池组成。

生物处理后,产生的沉淀物需要进一步处理。

一种常用的方法是利用沉淀物进行资源化利用,如利用硫化物制备硫肥,或者利用沉淀物进行能源回收。

此外,还可以采用膜分离技术对生物处理后的废水进行深度处理。

膜分离技术包括超滤、微滤和反渗透等,可以有效地去除废水中的溶解物质和微生物。

总之,脱硫废水的常规处理方法包括物理处理、化学处理和生物处理,通过预处理、生物处理和膜分离等技术,可以有效地去除废水中的硫化物和其他污染物,实现废水的零排放。

在处理过程中,还应注重资源化利用,以提高废水处理的经济效益和环境效益。

脱硫废水零排放新型处理工艺介绍

脱硫废水零排放新型处理工艺介绍

脱硫废水零排放新型处理工艺介绍摘要:目前国内大部分燃煤电厂处理脱硫废水的主要方法是药絮凝沉淀工艺,但是这个方法已经不能适用于燃煤电厂的实际需要。

本文介绍了脱硫废水的深度处理工艺和零排放处理工艺与含硫废水零排放新处理工艺应用要点。

关键词:脱硫废水:零排放:新型处理工艺:结晶工艺1脱硫废水深度处理工艺目前,煤炭加工行业广泛采用膜浓缩法、蒸发浓缩法和结晶法,用法很常见。

1 .1膜浓缩法膜浓缩方法包括多种工艺,例如反渗透、微滤和纳滤。

迄今为止,该技术在废水处理领域取得了优异的应用效果。

在处理过程中可以恢复燃煤电厂传统处理的脱硫废水的质量,使用的方法主要是渗透和反渗透。

一是反渗透工艺,在压力之下通过半透膜的作用阻隔水中的各种杂质而获得纯净水。

该工艺也可应用于聚合有机溶液的预浓缩,会得到很好的结果。

二是正渗透工艺。

该过程的原理类似于反渗透,同样,利用自然渗透压差,将浓盐水中的水分子挤出。

同时,保留废水中的其他杂质,并采用其他工艺分离杂质。

它进行分离,最终达到净化的目的。

此过程中的抽取液是可重现的利用,正渗透工艺不需要高压泵,系统能耗相对较低。

1.2蒸发浓缩该工艺在工业中得到广泛应用。

燃煤电厂脱硫废物浓缩处理中最广泛使用的工艺是多效蒸发、机械蒸汽再压缩和热蒸汽再压缩等,锅炉产生的蒸汽是传统多功能蒸发器的热量。

加热后蒸汽不进入冷凝器,而是作为第二效的传热介质,重复使用并重复此步骤后,形成多蒸发系统。

1.3结晶工艺最有效的结晶系统是强制循环结晶装置,它可以在处理过程中轻松缩放,适用于液体和高切液体。

处理流程如下:用泵抽盐水人进入结晶器,在泵的带动下与浓盐水混合后进入加热器。

循环盐水从切线进入结晶器,实现连续结晶目的。

一小部分盐水蒸发形成内部晶体,但大部分盐水蒸发,它进入加热器并泵送含有晶体的小股盐水用于随后的脱水和干燥,使用干燥装置。

2脱硫废水和零排放特征及难点2.1脱硫废水的特征脱硫吸收剂回收浓缩后,脱硫废水具有以下特点。

工艺方法——脱硫废水零排放工艺

工艺方法——脱硫废水零排放工艺

工艺方法——脱硫废水零排放工艺工艺简介与脱硫废水零排放工艺相关的技术较多,主要包括预处理(除重金属、硬度等)、膜浓缩减量以及蒸发结晶、烟道蒸发、低温闪蒸、浓液干燥等技术。

通常情况下,采用一种或几种技术组合使用。

1、预处理→膜浓缩→蒸发结晶工艺脱硫废水经过预处理除去重金属、钙镁等结垢离子,出水进入管式膜过滤系统或陶瓷超滤膜去除悬浮物,以满足后续膜法处理的进水要求,采用纳滤(NF)分盐,将纳滤浓水返回至预处理系统,纳滤产水采用DTRO碟管式反渗透系统或MBC正渗透系统进行膜浓缩,以减少后续蒸发结晶系统的进水量,进而减少整个零排放处理系统的投资。

蒸发结晶系统采用MVR或多效蒸发结晶器,以降低运行能耗。

结晶器中产出的盐主要为NaCl,其纯度可大于97.5%,达到工业盐干盐二级标准,结晶盐可以外售。

2、预处理→膜浓缩→烟道蒸发工艺脱硫废水经过预处理除去重金属、钙镁等结垢离子,经过膜法浓缩减量后进入烟道喷洒蒸发。

预处理和膜浓缩系统与上述第一种工艺相似,不同的是,根据浓缩液后处理选择的方式不同,系统不产生结晶盐,无需加纳滤进行分盐。

膜浓缩系统的产水直接回收利用,浓缩液进行烟道蒸发,利用高温烟气将雾化后的废水液滴蒸干,废水中的污染物形成细小固体结晶随烟气中的灰尘进入电除尘器被电极扑捉,进入除尘器灰斗外排,从而除去污染物,系统无结晶盐的产生,部分水分在脱硫塔中重新凝结被回收利用,最大程度节水节能,达到脱硫废水的零排放,目前烟道蒸发工艺主要分为主烟道蒸发和旁路烟道蒸发两种技术。

3、低温闪蒸→浓液干燥工艺脱硫废水不需预处理系统,直接利用低温烟气的热量对脱硫废水进行预热,而后经过多效闪蒸浓缩,浓缩物浓度可在线自动可调,浓缩后的浓液进入流化表面干燥机蒸发干燥,产生的粉尘及水蒸气随烟气引入电除尘前烟道,利用电除尘捕捉氯离子和其他固态颗粒及金属元素,蒸发的水蒸汽进入脱硫塔。

闪蒸浓缩过程中产生水蒸汽,经过凝结后可回收至脱硫工艺水或其它用途补水。

脱硫废水零排放处理技术

脱硫废水零排放处理技术

脱硫废水零排放处理技术一、概述脱硫是煤炭、石油、化工等行业中的一项常见的工艺,其目的是去除燃料中的二氧化硫,以减少环境污染。

在脱硫过程中,会产生大量的废水,如何对这些废水进行有效处理,是一个需要解决的难题。

传统的脱硫废水处理技术主要是采用化学沉淀法和生物处理法,这些方法虽然可以达到污染物排放标准,但其本身也存在一些缺点,如废水处理周期长、成本高等。

随着科技的不断进步,诸如膜技术、吸附技术等新型工艺的出现,使得脱硫废水零排放处理技术得到了进一步的发展与完善。

二、脱硫废水成分脱硫废水的主要成分是二氧化硫、二氧化碳、氮氧化物、氯化物、氟化物、杂质离子及有机物等。

这些成分的组成情况因产生废水的工业类型、脱硫方式、燃料性质等因素而有所不同。

三、脱硫废水处理技术1. 化学沉淀法化学沉淀法作为一种传统的脱硫废水处理方法,其基本原理是通过加入化学物质使废水中的固体或金属离子等沉淀,从而达到除污效果。

具体而言,化学沉淀法主要是通过加入化学药剂,引起污染物的沉淀或者结晶,其中因为氢氧化物比较常见,可以将之举例说明。

将pH值调整到9-10之间,加入适量氢氧化钠(NaOH),废水中的Cr3+、Cd2+、Cu 2+、Hg2+等金属离子会被氢氧化物络合为上述离子的羟化物沉淀。

2. 生物处理法生物处理法是废水处理技术中的一种比较成熟的方法,其主要依靠微生物对废水中的有机物进行分解和降解,同时生物处理法具有操作稳定、流程简单、处理效率高等优点。

但是对于脱硫废水而言,其主要成分并不是有机物而是无机物,因此生物处理法在处理脱硫废水过程中效率不高。

3. 膜技术膜技术是近年来快速发展的一种新型脱硫废水处理技术,其主要依靠特殊的膜材料对废水中的物质进行筛选和截留,从而使得废水达到零排放的目的。

常用的膜技术主要包括微滤、超滤、纳滤和反渗透技术等。

4. 吸附技术吸附技术是一种将脱硫废水中的污染物吸附到特定材料表面,同时产生化学吸附作用而达到废水处理目的的技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱硫废水零排放深度处理
目前,国内大多数火电厂的湿法脱硫废水处理系统采用传统的加药絮凝沉淀工艺,但整体投运率很低。

经传统处理系统处理后脱硫废水中SS和COD的浓度较高,且无法除去水中的Cl-。

因含有高浓度的Cl-,导致处理后的废水无法回收利用。

出于环保要求和经济效益的考虑,采用深度处理的技术实现废水零排放是废水处理的必然趋势。

1.传统工艺
石灰石-石膏烟气湿法脱硫过程产生的废水中含有大量杂质,主要成分为高浓度的悬浮物、高氯根、高含盐、高浓度的重金属废水,如果将这些物质直接排入自然水系,势必会对环境造成严重的污染。

目前,国内传统的处理方法是通过加碱中和脱硫废水,使废水中的大部分重金属形成沉淀物,再加入絮凝剂使其沉淀浓缩成为污泥,最终污泥被送至灰场堆放。

2.脱硫废水的深度处理技术新工艺
虽然脱硫废水经过上述传统物化处理能基本满足达标排放的要求,但其回用范围局限性很大。

随着国家对水资源的日益重视,零排放技术在全球范围内得到了广泛应用。

因此,要想回用燃煤电厂脱硫处理后的废水,实现真正的废水零排放,就要对废水进行深度处理。

目前,常用的脱硫废水深度处理方法包括膜浓缩法、蒸发浓缩法和结晶技术等。

3.膜浓缩法
采用DTRO膜法处理脱硫废水,可有效解决采用卷式膜易受污染的问题,产水水质好,可有效的去除水中的杂质、重金属等有害物质。

DTRO膜法处理脱硫废水工艺流程:
采用DTRO膜工艺处理电厂脱硫废水的优势:
(1)简单预处理,占地面积小,可移动性强
(2)DT组件采用开放式流道设计,料液有效流道宽,避免了物理堵塞。

(3)最低程度的结垢和污染现象
(4)膜使用寿命长
(5)组件易于维护
(6)回收率高,能耗低
(7)过滤膜片更换费用低
(8)浓缩倍数高
脱硫废水蒸发结晶系统为高含盐废水处理过程的主要耗能系统,为了降低投资成本和运行成本,在废水进入蒸发器浓缩前进入高压反渗透(DTRO)预浓缩系统,将脱硫废水TDS的质量浓度25~40g/L预浓缩到80~100g/L,降低进入蒸发器系统水量,提高运行效率。

4.蒸发浓缩技术
蒸发浓缩是工业中非常典型的水处理技术之一,其被广泛应用于化工、食品、制药、海水淡化和废水处理等工业生产中。

在脱硫废水的浓缩处理中应用较多的是多效蒸发(MED)、热力蒸汽再压缩(TVC-MED)和机械蒸汽再压缩(MVR)技术。

传统的多效蒸发装置(MED)主要以锅炉生成的蒸汽为热源,加热第一效产生的蒸汽不进入冷凝器,而是作为第二效的加热介质再次利用,重复此步骤将形成一个多效蒸发系统。

多效蒸发技术多次、重
复利用了热能,提高了加热蒸汽的利用率,大大降低了成本,提高了效率。

在TVC-MED蒸发装置中,从蒸发器喷出的二次蒸汽一部分在高压蒸汽的带动下进入喷射器,混合升温、升压后作为加热蒸汽加热料液;另一部分进入冷凝器,冷凝后排出。

加热蒸汽在加热室中凝结成水排出。

管内溶液在加热蒸汽的加热下蒸发浓缩,达到要求后排出。

热力蒸汽压缩技术回收了潜热,提高了热效率,一台热力蒸汽压缩器的效能相当于增加一效蒸发器,在MED海水淡化中常配备TVC,以提高造水比。

机械式蒸汽再压缩(MVR)是一种节能减排工艺。

在多效蒸发装置中,由新蒸汽加热第一效产生的蒸汽不进入冷凝器,而是经压缩机机械压缩,其压力和温度升高、热焓增加,并作为第二效的加热蒸汽再次利用,使被加工的料液维持沸腾状态,而加热蒸汽本身冷凝成水,使以往废弃的蒸汽得到了充分利用。

5.结晶技术
强制循环结晶器是效率最高的结晶系统,其工作原理如图1所示。

其适用于易结垢液体、高黏度液体,非常适合盐溶液的结晶。

主要工艺流程为:浓盐水被泵由底部打入结晶器,与正在循环中的浓盐水混合,在盐卤循环泵的推动下进入管壳式换热器(加热器);循环卤水沿切线方向进入结晶器,实现连续结晶;小部分卤水被蒸发,
卤水内产生晶体,大部分卤水被循环至加热器,小股水流被抽送至后续脱水干燥设备,实现晶体分离;蒸汽经过除雾器去除携带的杂质,经压缩机加压后在加热器的换热管外冷凝成蒸馏水,同时,释放潜热加热管内的卤水。

蒸馏水可作为高品质用水工艺的补给水,晶体产物可回收利用,比如制成食盐、硫酸氨等。

6.发展
脱硫废水经初步处理后,虽然能满足达标排放的要求,但仍处于高氯根、高含盐的状态,其回用局限性很大。

要想真正实现电厂脱硫废水零排放,就必须采取深度处理。

传统RO膜浓缩法并不适用于脱硫废水的特殊水质,更好的办法是采用DTRO+深度处理工艺,根据不同的废水水质情况选择最佳组合工艺。

相关文档
最新文档