2020高中数学回归课本校本教材4-5-立体几何
2024年高考数学立体几何知识点总结(2篇)
![2024年高考数学立体几何知识点总结(2篇)](https://img.taocdn.com/s3/m/60e5f415842458fb770bf78a6529647d272834dd.png)
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
高中立体几何基础知识点全集(图文并茂).
![高中立体几何基础知识点全集(图文并茂).](https://img.taocdn.com/s3/m/98b61610cdbff121dd36a32d7375a417866fc114.png)
高中立体几何基础知识点全集(图文并茂).第一篇:高中立体几何基础知识点全集(图文并茂).立体几何知识点整理姓名:一.直线和平面的三种位置关系: 1.线面平行 l 符号表示: 2.线面相交符号表示:3.线在面内符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。
m l m l l // // ⇒⎪⎪⎪⎪⎪ = ⋂⊂βαβα方法二:用面面平行实现。
m l m l // // ⇒⎪⎪⎪⎪⎪ = ⋂ = ⋂βγα γ β α方法三:用线面垂直实现。
若α α⊥ ⊥m l , ,则 m l //。
方法四:用向量方法: 若向量和向量共线且 l、l //。
2.线面平行: 方法一:用线线平行实现。
α α α// //不重合, 则 m ml l m m l ⇒⎪⎪⎪⎪⎪⊄⊂方法二:用面面平行实现。
α β β α //// l l ⇒⎪⎪⎪⊂方法三:用平面法向量实现。
若 n 为平面α的一个法向量, l n ⊥且α⊄ l , 则α // l。
3.面面平行: 方法一:用线线平行实现。
βαα β // ' , ' , ' // ' // ⇒⎪⎪⎪⎪⎪⎪⎪⊂⊂且相交且相交 m lm l m m l l 方法二:用线面平行实现。
βαβ α α // , // // ⇒⎪⎪⎪⎪⎪⊂且相交m l m l 三.垂直关系: 1.线面垂直: 方法一:用线线垂直实现。
αα ⊥⇒⎪⎪⎪⎪⎪⎪⎪⊂ = ⋂⊥ ⊥ l AB AC A AB AC AB l AC l , m l方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎪⎪⊂⊥=⋂⊥l l m l m , 2.面面垂直: 方法一:用线面垂直实现。
βαβα⊥⇒⎭⎪⎪⊂⊥l l 方法二:计算所成二面角为直角。
3.线线垂直: 方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎪⎪⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎪⎪⊥⇒⊥⎪⎪⊂⎭方法三:用向量方法: 若向量和向量的数量积为 0,则m l ⊥。
高中立体几何(全一册)
![高中立体几何(全一册)](https://img.taocdn.com/s3/m/24824ef09a89680203d8ce2f0066f5335a816763.png)
高中立体几何 (全一册)第一章直线和平面第三单元空间直线和平面一、教法建议【抛砖引玉】本单元主要研究空间直线与平面的位置关系,是立体几何基础中的支柱.通过研究空间直线与平面位置关系的判定和性质,用以解决立体几何中的计算和证明问题.空间直线和平面的位置关系共分为两类:一是直线在平面内,如果一条直线上有不同的两点落在同一个平面内,那么整条直线就落这个平面内.此时直线这个点集是平面点集的真子集;二是直线在平面外,直线在平面外又分为两种情况:直线与平面平行,这里有平行的定义、平行的判定和平行的性质;还有直线与平面相交,当直线与平面有且仅有一个交点时,直线就与平面相交,相交时又有两种不同的位置关系,第一是直线与平面垂直,垂直的定义、垂直的判定和垂直的性质,同时提出了立体几何中最重要的定理──三垂线定理及其逆定理,为后续知识的学习奠定坚实的基础;第二是直线与平面斜交,有直线在平面内的射影和直线与平面所成角的概念.本单元的重点之一是研究直线与平面的平行.平行的定义是直线与平面没有公共点;如何判定直线与平面的平行呢?如果平面外的一条直线和这个平面内的某一条直线平行,那么这条直线就平行于这个平面.这就是判定定理,简称为“线线平行,线面平行”.直线和平面平行以后又有些什么性质呢?当直线a平行于平面α以后是否有平面内任何一条直线都平行于直线a呢?结论是否定的,我们有如下的性质定理:如果一条直线和一个平面平行,经过这条直线的一个平面与已知平面相交,那么这条直线就和交线平行.这是直线与平面平行的性质定理,简称为“线面平行,线线平行.”这两种简称都要在理解原定理的意思中说出各个线和面的意义.本单元重点之二是研究直线与平面的垂直.垂直的定义要求很高,一条直线如果垂直于一个平面内的任何一条直线,那么称这条直线垂直于这个平面.有了这个要求很高的定义以后,判定就变行相对宽松一些,如果一条直线垂直于平面内的两条相交直线,那么称这条直线垂直于已知平面.注意它的证明纯粹应用平面几何中等腰三角形的性质和判定.此外,还有两条平行直线与平面垂直的判定和性质的两个定理.平面的斜线与平面所成的角是指斜线和它在平面上的射影所成的锐角,特别地当直线垂直于平面时,直线与平面成直角;当直线平行于平面时,直线与平面成零角.因此,设Q是直线l与平面α所成的角时,角θ的取值范围是θ∈[0,2 ].本单元的重点之三是三垂线定理及其逆定理,它们都是研究直线与直线关系的.在研究空间图形时,常常利用它们把某些空间图形的计算问题转化为平面图形的计算问题,证明问题也的这样,所以三垂线定理及其逆定理是立体几何的重要支柱.这两个定理的证明仅仅用到直线与平面垂直的判定和定义,是不难掌握的,同学们在学习过程中应特别注意的是搞清三垂线定理及其逆定理的区别,应用定理时,说清究竟是用三垂线定理,还是三垂线定理的逆定理.【指点迷津】本单元的知识,既重要,又难学.教师对学生的指导必须在给学生认真讲清概念关键的同时,用模型给学生摆清各种直线和平面的位置关系,解决好使学生建立空间概念的问题.在教学过程中使学生的空间想象能力逐步得到培养;同时还要学会把空间想象出来的线面关系在二维平面上表示出来.在纸面上画出来.也就是要做到:第一,直线与平面的位置要想得出,能理解,会比划;第二是把想象出的位置关系画到平面上.这是有一定难度的.因为平面几何研究的是二维的平面图形的性质,学生从初中升入高一,本来就对想象三维空间的线面关系感到困难,又要把想象出来的三维线面关系重新表示到二维纸面上来,画好图,画得直观、生动,关键是符合科学性,而且看到图又要能想象出位置关系,而这个过程是必须要过的,而且一定要过好,这就叫做空间想象能力的培养.二、学海导航【思维基础】学习本单元的知识,主要抓住空间直线与平面的平行、斜交和垂直三种主要位置关系.每一种位置关系都要搞清一系列问题.例如,怎样定义直线与平面平行?如何判定直线与平面平行,有几种方法?直线与平面平行以后,有些什么性质?又例如,怎样定义直线与平面的垂直?如何判定直线与平面垂直,有几种方法?直线与平面垂直以后,又有些什么性质?都必须通过整理,弄懂弄通,运用自如,才真掌握了这些知识;还比如,平面的斜线中有一个斜线长和射影长的定理,这是必须注意定理的条件、前提,必须是以平面外一点出发的诸多斜线和一条垂线,如果遗忘这个条件,结论虽然是不对的.所以要求同学们认真地阅读理解定理中的原文原句,正确地掌握其内在含意.试完成以下各题:1.直线和平面平行的充要条件是这条直线和平面内的()(A)一条直线不相交(B)两条直线不相交(C)任意一条直线都不相交(D)无数条直线不相交2.设a、b是两条异面直线,下列命题中,正确的是()(A)有且仅有一条直线与a、b都垂直(B)有一个平面与a、b都垂直(C)过直线a有且仅有一个平面与b平行(D)过空间任何一点必可作一条直线与a、b都相交3.正方体AB CD—A1B1C1D1中,E、F分别是AA1和AB的中点,则EF与对角面AA1C1C 所成的角是()(A)300 (B)450(C)600(D)15004.设P是△AB C所在平面外一点,则点P在此三角形所在平面内的射影是△AB C的垂心的主要条件是()(A)P A=P B=PC (B)P A⊥B C且P B⊥A C(C)点P到△AB C三边的距离相等(D)P A、P B、PC与△AB C所在平面所成的角相等5.已知△AB C 在平面α的同侧,顶点A 、B 、C 到平面α的距离分别是11、7、3,G 是△AB C 的重心,则G 到平面α的距离等于 .6.已知长方体AB CD —A ′B ′C ′D ′中,AA ′=5,AB =12,那么直线B ′C ′′与平面A ′B CD ′的距离等于 .7.在长方体AB CD —A 1B 1C 1D 1中,AB =6,A D=8,AA 1=3.6,A E 与低面对角线B 1D 1垂直于点E .(1)求证 A 1E B 1D 1;(2)求 A E 的长.【学法指要】例1.四棱锥的四个侧面中,直角三角形的个数最多的是 ( )(A )1个(B )2个 (C)3个 (D)4个 解:如图,当四棱锥P —AB CD 的侧棱P A 垂直于底面AB CD 时,P A ⊥AB ,P A ⊥A D ,△P AB 和△P A D 都是直角三角形;当底面AB CD 是矩形时,∵B C ⊥AB ,由三垂线定理知B C ⊥P B ,∴△P B C 也是直角三角形,同理△PCD 也是直角三角形,因此侧面中直角三角形的个数最多是4个,选(D ).例如2.等腰直角三角形△AB C 中,AB =A C=1,P A ⊥平面AB C ,且P B =2.求P A 与平面P B C 所成角的正弦值. ( )解:如图,在AB C 中作A C ⊥B C 于D ,则D 是B C 中点,且A D=22,又因为P A =2,PD=412322+=, ∵A D ⊥B C ,由三垂线定理知PD ⊥B C ,∴B C ⊥平面P A D ,平面P A D ⊥平面P B C , 过A 作A O ⊥PD 于O ,则A O ⊥平面P B C .∠A PO=θ就是P A 与平面P B C 所成的角,在Rt △P A D 中,A O=PA AD PD ⋅=23, ∴sin θ=AO PA =13.即P A 与平面P B C 所成角的正弦值等于13. 例3.异面直线a 、b 分别与平面α平行,且a 、b 到平面α的距离相等,A 是直线a 上任意一点,B 是直线b 一的任意一点,求证线段AB 被平面α平分.证明:设CD 是异面直线a 、b 的公垂线段,CD 交平面α于点O ,则CO=DO ,如图,过D 作直线a ′∥a ,则相交直线a ′与b 确定的平面与平面α平行.过点A 作A ′A ⊥直线a ′,交直线a ′于点A ′,则AA ′⊥面α,设AA ′交平面α于点M ,则由于异面直线a 、b 到平面α的距离相等,所以A M=M A ′,即M 是AA ′的中点,又设AB 交平面α于点P ,连MP 、A ′B . 由于相交直线a ′与b 所确定的平面与平面α平行,这两个平行平面被平面AA ′B 所截,截得的交线MP 与A ′B 平行,由M 是AA ′的中点,知PM 是△AA ′B 的中位线,故P 是AB 的中点,即线段AB 被平面α平分.例4.在正方形SG 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 及EF 把正方形折成一个四面体,使G 1、G 2、G 3三点重合,重合后记为G ,那么在四面体S-EFG 中必有 ( )(A )SG ⊥△EFG 所在平面(B )SD ⊥△EFG 所在平面(C )GF ⊥△SEF 所在平面(D )GD ⊥△SEF 所在平面解:由于在平面图形SG 1G 2G 3中,SG 1⊥G 1G 2,SG 3⊥G 2G 3,所以折成四面休SGEF 中,∠SGE=∠SGF=Rt ∠,GE 、GF 、相交于点G ,因此SG ⊥△EFG 所在平面.故应选(A )例5.已知∠BA C 在平面α内,P A 是平面α的斜线,若∠P AB =∠P A C=∠BA C=600,P A =a .求点P 到坪面α的距离.解:过点P 作PO 平面α,∵∠P A C=∠P AB ,∴A O 平分∠BA C ,在平面α内,作OC ⊥A C于点C ,连PC ,由三垂线定理知PC ⊥A C .又∵∠P A C=600,P A =a ,∴A C=a 2∴A O=AC a cos30330= 在Rt △P A O 中,PO=PA AO a a a 22221363-=-= 故点P 到平面α的距离为63a . 例6.如图,AB CD 是边长为2a 的正方形,M 、N 分别是AB 、A D 的中点,PC ⊥平面AB CD ,PC=a .(1)求证:B D ∥平面PMN ;(2)求点B 到平面PMN 的距离.解:(1)∵M 、N 分别是正方形AB CD 的边AB 、A D 的中点,∴MN ∥B D ,MN ∈平面PMN ,∴B D ∥平面PMN .(2)∵AB CD 是正方形,∴B D ⊥A C ,MN ∥B D∴MN ⊥A C又∵PC ⊥平面AB CD ,MN ⊂平面AB CD ,∴MN ⊥PC .又PC ∩A C=点C .∴MN ⊥平面EPC .在平面EPC 内,作O H ⊥PE 于点H ,则MN ⊥O H ,∴O H ⊥平面PMN ,由于B D ∥平面PMN ,所以O H 的长就是点B 到平面PMN 的距离.在Rt △PCE 中,PC= a ,EC=()∴PE=222a ,又EO=22a ∵△E H O ∽△ECP ,∴O H :PC=EO :PE , ∴O H =PC EO PE a ⋅=1111. 故点B 到平面PMN 的距离为1111a . 例7.如图,A D 是△AB C 中B C 边上的高,在A D 上取一点E ,使A E=12ED ,过E作直线MN 平行于B C ,交AB 于M ,交A C 于N ,现将△A MN 沿MN 折过去,此时点A 到了A ′的位置,如果∠A ′ED=600,求证:E A ′⊥平面A ′B C .证明:连结A ′B 、A ′C 、A ′D ,∵A E=12ED ,A ′E=A E , ∴A ′E=12ED ,∠A ′ED=600, 在A ′ED 中,由余弦定理求得A ′D =32ED . ∴E A ′D=900,即E ′A ⊥A ′D .又A D ⊥B C ,MN ∥B C ,∴MN ⊥A D .即MN ⊥A ′E ,MN ⊥ED .因此MN ⊥平面E A ′D ,即B C ⊥平面E A ′D .E A ′⊂平面E A ′D∴E A ′⊥B C ,E A ′⊥A ′D ,A ′D ∩B C=点C∴E A ′⊥平面A ′B C评注:通常是知道位置关系,如平行,垂直等来进行计算,这里的关键在于利用A E=12ED 和∠A ED=600这两个数量关系来推断E A ′⊥A ′D ,这个位置关系,同学们应该学会.例8.已知平面α、β相交于直线PQ ,线段O A 、O B 分别垂直于平面α、β,其中A 、B 为垂足.求证:(1)PQ ⊥平面A O B(2)PQ ⊥AB .证明:(1)∵O A ⊥平面α⇒ O A ⊥PQPQ ⊥平面αO B ⊥平面β ⇒ PQ ⊥平面A O B⇒ O B PQPQ ⊂平面βO A ∩O B =点O(2)∵PQ ⊥平面A O BPQ ⊥ABAB ⊂平面A O B评注:同学们在推理论证的学习达到一定的熟练程度的时候,可以学习运用推出符号“⇒”来进行论证,这样的证明因果关系清晰,简洁明了.但是应注意两点,第一是条件必须具备齐全,然后直接运用定理便可推出;第二是必须按序一步一步地推得,不能把条件全部罗列,一个推出符号“⇒”就得到最后结论,这是不对的,请同学们学习时注意.例9.如图,地平面上有一竖直的旗杆OP ,为了测得它的高度h ,在地面上选一条基线AB ,AB =20米,在A 点处测得点P 的仰角为∠O A P=300,在B 点处测得点P 的仰角为∠O B P=450,又测得∠A O B =600.求旗杆的高(结果可以保留根号).解:设旗杆的高OP =h ,在Rt △P A O 中,∴∠P A O=300,∴A O=3h ,在Rt △P B O 中,∵∠P B O=450,∴B O=h ,在△A O B 中,∠A O B =600,由余弦定理知AB 2=A O 2+B O 2-2A O ·B O cos600,∴400=3h 2+h 2-23·h 212 ∴(4-3)h 2=400.H =2043-(米).答:旗杆的高度为h =2043-米.例10.在四面体AB CD 中,已知棱AB ⊥CD ,棱A C ⊥B D .求证棱A D ⊥B C .证明:设顶点A 在平面B CD 内的射影为O ,即 A O ⊥平面B CD 于点O ,则因为AB ⊥CD ,由三垂线逆定理知B O ⊥CD ,同理CO ⊥B D . 因此O 时△B CD 的垂心,连DO ,则DO ⊥B C ,由三垂线定理知A D ⊥B C .评注:应用三垂线定理时,正定理和逆定理不能搞错.已知平面内的直线与斜线在这个平面内的射影垂直,得到平面内的直线与斜线垂直是三垂线定理.反之,已知平面内的直线与平面的斜线垂直,推得这条直线和斜线在已知平面内的射影也垂直,是三垂线定理的逆定理.例11.已知Rt △AB C 的斜边AB 在平面α内,两直角边A C 、B C 与平面α分别成θ1和θ2角,若平面AB C 与平面α成二面角为.求证:sin 2θ1+sin 2θ2=sin 2φ证明:设直角顶点C 在平面α内的射影为O ,连结A O 、B O ,则∠C A O=θ1,∠C B O=θ2.设CO=h ,则sin θ1=h AC, sin θ2=h BC在平面AB C 中,作CD ⊥AB 于D ,连结OD ,由三垂线逆定理知OD ⊥AB 且∠CDO=φ就是平面AB C 与平面α所成二面角的平面角,而且sin φ=h CD∵sin 2θ1+sin 2θ2 =h AC h BC h AC BC AC BC 22222222+=⋅+⋅ =h AB AC BC 2222⋅⋅ 在Rt △AB C 中,∵CD ·AB =A C ·B C ,∴⋅⋅AB AC BC =1CD. ∴sin 2θ1+sin 2θ2=h AB AC BC 2222⋅⋅=h CD22=sin 2φ. 故有结论成立.例12.平面M 的一条斜线与平面M 所成的角为α,该平面内过斜足的一条直线与斜线在平面内的射影所成的角为β,与斜线所成的角为γ.求证:cos γ=cos α·cos β.证明:如图,PO 是平面M 的垂线,P A 是平面M 的斜线,O A 就是斜线P A 在平面M 内的射影,∠P A O=α就是斜线P A 与平面M 所成的角.AB 是平面M 内过斜足A 的直线,它与射影O A 所成的角为,即∠O AB=β,AB 与斜线P A 所成的角为γ,所以∠P AB =γ.在平面M 内,作O B ⊥AB 于点B .连结P B ,则由三垂线定理知P B ⊥AB ,因此,在Rt△P A O ,Rt △A O B 和Rt △P B O 中,有cos α=OA PA ,cos β=AB OA ,cos γ=AB PA因此有 cos γ=cos α·cos β.例13.已知三棱锥P —AB C 的三条侧棱P A 、P B 、PC 两两互相垂直.(1)求证点P 在平面AB C 内的射影G 是△AB C 的垂心;(2)求证△A P B 、△B PC 、△CP A 的面积平方和等于△AB C 面积的平方;(3)设二面角P —AB —C 、P —B C —A 、P —C A —B分别为α、β、γ,求证cos α·cos β·cos γ≤39 证明:(1)P A ⊥P BP A ⊥PC ⇒P A ⊥平面PB C⇒ P A ⊥B C ⇒A G ⊥B CP B ∩P B =点P PC ⊂平面P B C A G 是P A 的射影同理 B G ⊥A C ,CG ⊥AB 所以G 是△AB C 的垂心.(2)延长A G 交B C 于H ,连结P H ,∵P A ⊥平面P B C ,P H ∈平面P B C ,∴P A ⊥P H 即∠A P H =900.在Rt △P AH 中,P H 2=AH ·G H .∴(S △B PC )2=14B C 2·P H 2=14B C 2·AH ·G H =(12B C ·AH )(12B C ·G H )=S △AB C ·S △G B C . 同理(S △A P B )2=S △AB C ·S △GBC ,(S △CP A )2=S △AB C ·S △GC A ,将三式相加,便得(S △B PC )2+(S △CP A )2+(S △A P B )2=(S △AB C )2(3)∵cos=S S GAB PAB ∆∆,cos=S S GBC PBC ∆∆,cos=S S GCA PCA∆∆, ∴cos 2+cos 2+cos 2=1 ∵cos cos cos (cos cos cos )22232221313αβγαβγ⋅⋅≤++= ∴cos cos cos 222127αβγ⋅⋅≤ ∵α、β、γ为锐角.∴cos cos cos αβγ⋅⋅≤39【思维扩散】空间的直线与平面是立体几何第一章的重点.每种位置关系展开都有一系列判定定理和性质定理,学习过程中对定理的条件,定理应用的适用范围必须作周密的考虑和判定,不能一概而论,肓目应用.看下面的两个命题:命题1.已知平面α∩平面β=直线l ,直线b ∥平面α,直线b ∥平面β,则直线∥b .命题2.已知P A 是平面α的斜线,PO 是平面α的垂线,如果直线l 垂直于斜线P A ,那么直线l 一定垂直于其射影PO .命题1中的结论显然是正确的,可以这样来证明:过直线b 作平面γ,设γ∩β=直线a ,则因为直线b ∥平面β,所以直线b ∥直线a ,又因为直线b ∥平面α,直线a 在平面α外,所以,直线a ∥平面α,平面β是经过a 且与平面α相交于直线l 的平面,所以直线a ∥直线l ,由三线平行公理知直线b ∥直线l .命题2中的结论显然是错误的.平面α的垂线,斜线摆好以后,三垂线定理说的是“平面α内”的直线l ,这个条件省略以后,命题就可能是不正确的.因为垂直于斜线P A 的直线许多种不同的位置,只要在垂直于P A 的 平面内的直线都垂直于P A ,但显然不能都与射影O A 垂直.思想问题首先应该严格按照命题的条件,题目的已知,其次是在允许范围内多方位、多角度地思考问题,可以为我们创造性思维的培养奠定坚实的基础.三、智能显示【心中有数】本单元直线与平面的位置关系是立体几何第一章线面关系的重点,主要是空间直线与平面平行、空间直线与平面垂直及空间直线与平面斜交三种位置关系,每种位置关系都有定义、判定、性质等一整套理论,必须熟练地掌握,正确地使用.【动脑动手】解答下列一组题目,以检查学习效果:1.已知直线a 、b 和平面α,以下四个命题中,①a ∥b②a ⊥α ⇒b ⊥α⇒ a ∥b a ⊥αb ⊥α ③a ⊥α④a ∥α ⇒ b ∥α⇒ b ⊥α a ⊥ba ⊥b 其中正确命题是(A ) ①、②(B )①、②、③ (C) ②、③、④ (D )①、②、④2.已知直线m 、n 和平面,则α⊥β的一个充分条件是(A )m ⊥n ,m ∥α,n ∥β(B )m ⊥n ,α∩β=m ,n ⊂α(C )m ∥n ,m ⊂α,n ⊥β(D)m ∥n ,m ⊥α,n ⊥β3.如果直线l 是平面α的斜线,那么在平面内(A )不存在与l 平行的直线(B)不存在与l垂直的直线(C)与l垂直的直线只有一条(D)与l平行的直线无数多条4.在下列命题中,偶命题是()(A)若a、b是异面直线,则一定存在平面α,过a且与b垂直(B)若a、b是异面直线,则一定存在平面α,过a且与b垂直(C)若a、b是异面直线,则一定存在平面α,与a、b所成的角相等(D)若a、b是异面直线,则一定存在平面α,与a、b的距离相等5.如图,点P是三棱锥S—AB C的面S B C内一点.(1)过P作PQ∥平面AB C;(2)过(1)中得到的PQ作平面α∥平面AB C;(3)在面AB C内求一点R,使PR∥平面S AB,且R到A C和B C的距离相等.6.已知M、N是棱长为a的正方体AB CD—A1B1C1D1中棱A1B1和A1D1的中点.(1)求证B D∥平面A MN;(2)求点B到平面A MN的距离.【创新园地】正四棱柱AB CD—A1B1C1D1中,AB=a,AA1=b (b>a),A M⊥A1B,交B1B于点M.(1)求证:B D1⊥平面M A C;(2)求点B到平面M A C的距离.证明:(1)D1A1是平面AA1B1B的垂线,B D1是平面AA1B1B的斜线,A1B是斜线B D1在平面AA1B1B内的射影,A M是平面AA1B1B内的一条直线,因为A M⊥A1B,由三垂线定理知B D1⊥A M;又D1B⊥A C,A C∩A M=点A,所以B D1⊥平面M A C.(2)解法(一),作对角面BB1D1D,交A C于O,连OM,则OM就是对角面BB1D1D 与平面M A C的交线,∵A C⊥平面BB1D1D,∴平面A MC⊥平面BB1D1D,在平BB1D1D内,作BH⊥OM于点H则BH就是点B到平面M A C的距离.∵AB=a,AA1=b,Rt△AB M∽Rt△A1AB,∴BMABABAA=1,∴B M=ab2.又∵B O=22a,∴MO=BM BOaba b2222242+=+.因此BH=BM BOMOa a ba b⋅=++2222222.解法(二):∵AB=a, AA1=b,同理求得B M=ab2.因为AB C的面积为12a2,所以三棱锥M—AB C的体积是V SH a a b a b==⋅⋅=1313126224. 另一方面,因为B O=a 22a ,MO=2222b a b a +, 所以A MC 的面积为 S A MC=12A C ·MO=22222b a ba +. 设B 到平面A MC 的距离为x ,则三棱锥M —AB C 的体积又可以这样计算:x S V A M C ⋅=∆31 所以 ba b a b a x 622314222=+⋅ 即 x =2222222ba b a a ++ 因此点B 到平面A MC 的距离为2222222b a b a a ++. 评析:求点到平面的距离,方法很多,可能直接作出这个距离来求,一般要用到平面与平面的垂直.因为两个平面互相垂直,在一个平面内垂直于它们交线的直线,垂直于另一个平面.点到平面的距离就可以求出来了.另一种方法是不作出距离,而是利用体积法换法,直接求出点到平面的距离.(本单元完)【思维基础】答案:1.C ;2.C ; 3.A ; 4.B ; 5.7;6.1360; 7.A E=6.【动脑动手】答案:1.A ;2.C ; 3.A ; 4.B ; 5.略; 6.a 32.四、同 步 题 库A 组(一)选择题1.下面说法中,正确的是( )(A )若一条直线与一个平面不相交,则这条直线和这个面平行;(B )若一条直线与一个平面内任何一条直线都不相交,则此直线与这个平面平行; (A ) 若直线上有无数个点不在平面内,则这条直线与平面平行;(B ) 若直线与平面内无数条直线平行,则这条直线与这个平面平行.2.直线与平面垂直是指( )(A ) 直线与平面只有一个公共点;(B ) 直线与平面内的两条直线都垂直;(C )直线与平面内无数条直线都垂直; (D )直线与平面成90°角.3.和一个平面成等角的两条直线的位置关系( )(A )平行; (B )相交; (C )异面; (D )以上都可能 4.P 是△ABC 所在平面外一点,若PA=PB=PC ,则P 在平面ABC 内的射影是△ABC 的( )(A )外心; (B )内心; (C )垂心; (D )重心 5.下列命题中正确的是( ) (A )⎩⎨⎧⊥⇒⊥b a a b a α//; (B )⎩⎨⎧⇒⊥⊥b a a b a //α(C )⎩⎨⎧⇒⊥⊥αα//a b a a (D ) ⎩⎨⎧⊥⇒⊥ααb ba a //6.如图,AD 是Rt △ABC 斜边BC 上的高,PA ⊥D 面ABC ,图中共有直角三角形有( )7.直角三角形ABC 的斜边AB 在平面α内,直角项点C 在α上的射影为C′,△ABC′是( ) (A )直角三角形 (B )锐角三角形;(C )钝角三角形 (D )锐角或钝角三角形8.在矩形ABCD 中,AB=3,BC=4,PA ⊥平面ABCD ,且PA=1,则P 到对角线BD 的距离是( )(A )2921; (B )513; (C )517; (D )119519.长方体的一条对角线与各个面所成的角为α、β、γ,则下列等式正确的是( ) (A )sin2α+sin2β+sin2γ=32; (B)cos2α+cos2β+cos2γ=1 (C) sin2α+sin2β+sin2γ=2; (D)cos2α+cos2β+cos2γ=210.对两条异面直线在同一平面内的射影,下列说法中正确的是( )(A )不可能是两点; (B )不可能是一直线和一点(C )不可能是两平行线; (D )不可能是两相交直线 (二)填空题1.a ∥b,b ⊂a,则直线a 、b 的位置关系是 .2.已知点A 和直线l ,A ∉l,则过点A 与直线l 平行的直线有 条;过点A 与直线l 垂直的直线有 条;过点A 作与直线l 平行的平面有 个;过点A 作与直线l 垂直的平面有 个.3.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,点A 到C 1D 的距离为 ;点A 到B 1C 的距离为 ;点A 到平面BB 1D 1D 的距离为 ;AA 1到平面BB 1D 1D 的距离是 ,AA 1与BD 1的距离是 .4.若PO ⊥平面AOB ,∠AOB=90°,AB=a ,∠PAO=∠PBO=α,C 是AB 的中点,则PC= .5.l 是平面α内直线,A 是α外一点,设A 到α的距离为d 1,A 到l 的距离为d 2,则d 1 d 2.6.AB ∥平面α,AA′⊥α于A′,BB′是α的斜线,B′是斜足,若AA′=9,BB′=36,则BB′与α所成角为 .7. ∠XOY=60°在平面α内,OA=α是α的斜线,∠AOX=∠AOY=45°,则点A 到α的距离是 .8.如果平面外的一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是 .9.△ABC 的面积为S ,BC α,点A 到面平α的距离等于点A 到BC 的距离的53,则△ABC 在α上的射影的图形面积是 .10.点P 到平面α的垂线段PO=12cm ,斜线段PA 、PB 分别为13cm 和20cm ,则A ,B 两点的最大距离是 .最小距离是 .(三)解答题1.已知P 是□ABCD 所在平面外一点,M 是PD 的中点(如图),求证:PB ∥平面MAC.2.已知直线l ∥平面α,l ∥平面β,且α β=m ,(如图).求证:l ∥m.3.在空间四边形ABCD 中,AB ⊥CD ,AD ⊥BC ,求证:BD ⊥AC.4. 如图,线段AB=α,在平面α内,CA ⊥α,BD 与α所成角为30°,BD ⊥AB ,C 、D 在α同侧CA=BD=b ,求:(1)CD 的长; (2)直线CD 与α所成角的正切值.5.如图,三棱柱ABC-A 1B 1C 1中,AB=2,BC=CA=AA 1=1,A 1在底面ABC 上的射影是O 点.(1)O 与B 能否重合?试证明你的结论;(2)若O 在AC 上.求BB 1与侧面AC 1的距离.B 组(一)选择题1.下列四个命题中 (1)若a ∥α,b ∥α, 则a ∥b ;(2)若a ∥b, a ∥α,则b ∥α; (3)若a ∥α,则a 平行于α内的任意直线;(4)若a 平行于α内的无数条直线,则a ∥α.其中正确的命题个数是( )(A )0; (B )1; (C )2; (D )3 2.下列命题中正确的是( ) (A )若a ⊥α,b ⊥α,c ⊥α,则直线α平行于过直线b 、c 的平面;(B ) 若a ∥α,b ∥α,且a 、b 到平面α的距离不相等. 则a 、b 是异面直线; (C ) 若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则a 、b 相交或平行;(D )若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则与a 、b 都相交的直线在平面α外.3.在同一平面α的射影等长的两条线段是( ) (A )如果有一公共端点,则它们必等长;(B ) 如果等长,则它们必有公共点;(C )如果平行,则它们必等长; (D )如果等长,则它们必平行.4.与空间四边形ABCD 四个顶点距离相等的平面有( )(A )4个; (B )5个; (C )6个; (D )7个5.AB 是⊙O 的直径,SA 垂直于⊙O 所在的平面M ,平面M 内有一动点P ,使PB ⊥PS ,则P 的位置( ) (A )⊙O 外; (B )⊙O 上; (C )⊙O 内; (D )不能确定6.如图,正方形SG 1G 2G 3中,E ,F 分别是G 1G 2,G 2G 3的中点,D 是EF 中点. 现沿SE 、SF ,及EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合,记作G 则(A )SG ⊥FEG ; (B )SD ⊥面EFG ; (C )GF ⊥面SEF ; (D )GD ⊥面SEF7.直角△ABC 的两直角边BC=3,AC=4,PC ⊥面ABC ,且PC=59,则P 到斜边AB 的距离是( ) (A )3; (B )4; (C )15; (D )428.斜线AB 与平面M 成θ角,BC M ,AA′⊥M ,A′是垂足,若∠ABC=α,∠A ′BC=β,则( ) (A )sinα=sinθsinβ; (B) sinβ=sinθsinα(C) cosα=cosθcosβ; (D) cosβ=cosθcosα(二)填空题1.将矩形ABCD沿着平行于BC的线段EF折起,连结AB和CD(如图),则AB与EF 所成角等于,BC与AE所成角等于,点A到BC的距离等于线段的长,若AE=EB=4cm,∠AEB=120°,则AD与BC的距离等于. AD与平面BCFE的距离等于, EF到平面BD的距离等于.2.Rt△ABC,∠C=90°,CA=12,BC=5,BC 平面αA到α的距离是10,则△ABC的垂心、内心到α的距离分别为.3.过平面α外一点引两条斜线,它们与α所成角分别是30°,45°,且它们在α内的射影互相垂直,则这两条线夹角的余弦值为.4.P是等腰梯形ABCD外一点,且PA=PB=PC=PD,若P在面ABCD的射影P′在梯形ABCD 外,则应满足.5.AC是平面α内的一条射线,P为α外一点,PA=2,P到α的距离为1,设∠PAC=θ,m=tgθ,则m的取值范围是.(三)解答题1.如图,两个全等正方形ABCD和ABEF,所在平面相交于AB,M∈AC,N∈FB,求证:MN∥平面BCE.2.已知AB是异面直线a、b公垂线,AB=2cm,a、b所成角为30°,在直线a上取一点P 使PA=4cm,求P到直线b的距离.3.空间四边形ABCD中,△ ABC是正三角形,AD⊥面ABC,H是A在面BCD上的射影. 求证:H不可能是△BCD的垂心.4.如图,已知斜边为AB的Rt△ABC,过点A作AP⊥平面ABC,AE⊥PB于点E,AF⊥PC 于点F,(1)求证:PB⊥平面AEF.(2)若AP=AB=2,试用tgθ(θ是∠BPC)表示△AEF 的面积.当tgθ取何值时,△AEF 的面积最大?最大面积是多少?C 组(一)选择题1.在空间中,给出如下命题 (1)垂直于同一直线的两直线平行;(2) 平行于同一平面的两直线平行;(3)与同一平面成等角的两直线平行; (4) 与同一平面内的射影是两条平行线的两直线平行,其中真命题的个数是( )(A )0; (B )1; (C )2; (D )3.2.从平面外一点向平面引垂线和若干斜线,若斜线与平面所成的角相等,则( )(A )斜足一定是正多边形的顶点; (B )垂足是斜足为顶点的多边形的内心;(C )垂足是斜足为顶点的多边形的外心; (D )垂足是斜足为顶点的多边形的垂心.3.如图,PC ⊥面α,垂足为C ,AB α,CB ⊥AB ,垂足为B ,则线段PA 、PB 的大小关系是( )(A )PA<PC<PB; (B) PC>PB>PA;(C) PA<PB<PC; (D) PB>PA>PC.4.若a ∥α,且a 和α的距离为d ,则平面α内( )(A )有且只有一条直线与l 的距离为d ; (B )所有直线与l 的距离都等于d ;(C ) 有无数条直线与l 的距离都等于d ; (D )所有直线与l 的距离都不等于d.5.线段AB 两端点到平面α的距离分别是6cm 和10cm ,则它的中点到α的距离是( ) (A )6cm; (B)8cm; (C)2cm; (D)8cm 或2cm6.异面直线a 、b 互相垂直,它们与平面β都相交,若α与β所成角为38°,则b 与β所成角大小()(A)一定是52°;(B)最大是52°;(C)最小是52°;(D)可以是0°90°中的任意角度(二)填空题7.直线与平面所成的角α的取值范围.8.若P是△ABC所在平面外一点,且PA、PB、PC两两垂直,则P在△ABC内的射影是△ABC的.9.直线EF平行于平面α内的两直线AB、CD,EF与α的距离为15,与AB的距离是17,又AB与CD间的距离是28,则EF和CD的距离是.10.如图,在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O是底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是.(第10题)(三)解答题11.如图,已知AB和CD是异面直线,AB⊥平面α于B,CD⊥平面β于D,且AC是AB 和CD的公垂线,α β=l.求证:AC∥l12.PA⊥矩形ABCD所在平面,M、N分别是AB和PC的中点. (1)求证:MN∥平面PAD.(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.(第11题) (第13题)13.如图,正方体,ABCD-A1B1C1D1的棱长为1,O、O1分别是ABCD与A1B1C1D1的中心;(1)求证:OD1∥平面A1C1B1.(2)求D1O与平面A1C1B的距离;(3)求BD 与平面A 1C 1B 所成角.答案与提示同步题库A 组(一)选择题1.B2.D3.D4.A5.B6.B7.C8.B9.D 10.A (二)填空题 1.异面成平行2.1; 无数; 无数;13.a; a; a a a 22;22;22. 4.α2212tg a+; 5.≤; 6.60° 7.a 338. 平行或相交 9.S 5410.21cm; 11cm (三)解答题 1.(略) 2.(略) 3.(略)4.(1)CD=22b a +; (2)2234ba b +5.(1)不垂直,(2)BB 1与侧面AC 1的距离即为BC 长即BC=1.B 组(一)选择题 1.A 2.D 3.C 4.D 5.B 6.A 7.A 8.C(二)填空题1. 90°; 90°; AB;43cm; 23cm; 2cm.2.310cm; 35cm 3.42 4.∠ABD>90°(或∠ACD=90°) 5.m≥33。
2025版新教材高中数学第四章立体几何初步4
![2025版新教材高中数学第四章立体几何初步4](https://img.taocdn.com/s3/m/c7b93d0e3d1ec5da50e2524de518964bce84d25a.png)
第1课时平面与平面平行的判定教材要点要点一平面与平面之间的位置关系位置关系图形写法公共点状况两平面相交____________ 有一条公共直线两平面平行____________ 没有公共点状元随笔(1)推断面面位置关系时,要利用好长方体(或正方体)这一模型.(2)画两个相互平行的平面时,要留意使表示平面的两个平行四边形的对应边平行.要点二平面与平面平行的判定定理文字语言假如一个平面内的________直线与另一个平面平行,那么这两个平面平行图形语言符号语言若a⊂α,b⊂α,________且a∥β,b∥β,则α∥β状元随笔(1)平面与平面平行的判定定理中的平行于一个平面内的“两条相交直线”是必不行少的.(2)面面平行的判定定理充分体现了等价转化思想,即把面面平行转化为线面平行.基础自测1.思索辨析(正确的画“√”,错误的画“×”)(1)已知平面α,β和直线m、n,若m⊂α,n⊂β,m∥β,n∥α,则α∥β.( )(2)一个平面内两条不平行的直线都平行于另一个平面,则两平面平行.( )(3)平行于同一条直线的两个平面平行.( )(4)平行于同一平面的两个平面平行.( )2.在正方体中,相互平行的面不会是( )A.前后相对侧面 B.上下相对底面C.左右相对侧面 D.相邻的侧面3.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( )A.肯定平行 B.肯定相交C.平行或相交 D.以上推断都不对4.如图,已知在三棱锥P ABC中D,E,F分别是棱PA,PB,PC的中点,则平面DEF 与平面ABC的位置关系是________.题型 1 平面与平面位置关系的判定例1 已知在两个平面内分别有一条直线,并且这两条直线相互平行,那么这两个平面的位置关系肯定是( )A.平行 B.相交C.平行或相交 D.以上都不对变式探究1 在本例中,若将条件“这两条直线相互平行”改为“这两条直线是异面直线”,则两平面的位置关系如何?变式探究2 在本例中,若将条件改为平面α内有多数条直线与平面β平行,那么平面α与平面β的关系是什么?方法归纳平面与平面的位置关系的判定方法(1)平面与平面相交的判定,主要是以基本领实3为依据找出一个交点;(2)平面与平面平行的判定,主要依据面面平行的判定定理.跟踪训练1 (1)已知平面α与平面β,γ都相交,则这三个平面可能的交线有( ) A.1条或2条 B.2条或3条C.1条或3条 D.1条或2条或3条(2)两个平面将空间分成________部分.题型 2 面面平行判定定理的应用例2 如图,在多面体ABCDEF中,底面ABCD是平行四边形,点G和点H分别是CE和CF的中点.证明:平面BDGH∥平面AEF.方法归纳平面与平面平行的判定方法(1)定义法:两个平面没有公共点.(2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.(3)利用线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.跟踪训练2如图所示,在三棱锥SABC中,D,E,F分别是棱AC,BC,SC的中点,求证:平面DEF∥平面SAB.题型 3 线面平行与面面平行的综合应用例3 如图所示,在正方体ABCDA1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、B、D四点共面;(2)平面MAN∥平面EFDB.方法归纳线线平行、线面平行与面面平行可以相互转化.要证面面平行需证线面平行,要证线面平行需证线线平行,因此,“面面平行”问题最终转化为“线线平行”问题.跟踪训练3 如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.易错辨析受思维定式的影响出错例4 如图,已知E,F分别是正方体ABCDA1B1C1D1的棱AA1,CC1上的点,且AE=C1F.求证:四边形EBFD1是平行四边形.证明:如图,在棱BB1上取一点G,使B1G=C1F=AE,连接A1G,GF,则GF綊B1C1綊A1D1,所以四边形GFD1A1为平行四边形,所以A1G綊D1F.因为A1E=AA1-AE,BG=B1B-B1G,AA1綊BB1,所以A1E綊BG,所以四边形EBGA1为平行四边形,所以A1G綊EB.所以D1F綊EB,所以四边形EBFD1是平行四边形.易错警示易错缘由纠错心得误认为E、B、F、D1四点共面,但由已知条件并不能说明这四点共面,同时条件AE=C1F也没有用到.证明结论是否成立时要有严格的推理过程,不能凭直观感觉.同时,若发觉有没用到的条件,则须要考虑自己的证明过程是否正确.课堂非常钟1.若M∈平面α,M∈平面β,则不同平面α与β的位置关系是( )A.平行 B.相交C.重合 D.不确定2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是( )A.α、β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,a∥β,b∥β3.六棱柱ABCDEFA1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中相互平行的有( )A.1对 B.2对C.3对 D.4对4.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是________.5.如图所示,四棱锥P ABCD的底面ABCD为矩形,E、F、H分别为AB、CD、PD的中点.求证:平面AFH∥平面PCE.第1课时平面与平面平行的判定新知初探·课前预习要点一α=aα∥β要点二两条相交a=A[基础自测]1.答案:(1)×(2)√(3)×(4)√2.解析:由正方体的模型知前后面、上下面、左右面都相互平行.答案:D3.解析:可借助于长方体推断两平面对应平行或相交.答案:C4.解析:在△PAB中,因为D,E分别是PA,PB的中点,所以DE∥AB.又DE⊄平面ABC,AB⊂平面ABC,所以DE∥平面ABC.同理,可证EF∥平面ABC.又DE=E,DE,EF⊂平面DEF,所以平面DEF∥平面ABC.答案:平行题型探究·课堂解透例1 解析:如图,可能会出现以下两种状况:故选C.答案:C变式探究1 解析:如图,a⊂α,b⊂β,a,b异面,则两平面平行或相交.变式探究2 解析:如图,α内都有多数条直线与平面β平行.由图知,平面α与平面β可能平行或相交.跟踪训练1 解析:(1)当三个平面两两相交且过同始终线时,它们有1条交线;当平面β和γ平行时,它们的交线有2条;当这三个平面两两相交且不过同一条直线时,它们有3条交线.故选D.(2)两个平面平行时,将空间分成三部分;两个平面相交时,将空间分成四部分.答案:(1)D (2)3或4例2 证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF,又因为GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC=O,连接OH,在△ACF中,因为OA=OC,CH=HF,所以OH∥AF,又因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.又因为OH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.跟踪训练2 证明:因为D,E分别是棱AC,BC的中点,所以DE是△ABC的中位线,DE∥AB.因为DE⊄平面SAB,AB⊂平面SAB,所以DE∥平面SAB,同理可证:DF∥平面SAB,又因为DE=D,DE⊂平面DEF,DF⊂平面DEF,所以平面DEF∥平面SAB.例3证明:(1)连接B1D1,如图.∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1,而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.(2)由题知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.如图,连接MF.∵M、F分别是A1B1,C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD,MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊂平面BDFE,∴AM∥平面BDFE.又∵AM=M,∴平面MAN∥平面EFDB.跟踪训练3 证明:(1)如图,连接SB.∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)如图,连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG=G,∴平面EFG∥平面BDD1B1.[课堂非常钟]1.解析:由基本领实3可知,平面α与平面β相交.答案:B2.解析:若a∥b,则不能断定α∥β,A错;若三点不在β的同一侧,α与β相交,B错;若a∥b,则不能断定α∥β,C错.答案:D3.解析:由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中相互平行的有4对.答案:D4.解析:∵A1E∥BE1,A1E⊄平面BCF1E1,BE1⊂平面BCF1E1,∴A1E∥平面BCF1E1.同理,A1D1∥平面BCF1E1.又A1E=A1,A1E,A1D1⊂平面EFD1A1,∴平面EFD1A1∥平面BCF1E1.答案:平行5.证明:因为F为CD的中点,H为PD的中点,所以FH∥PC,又PC⊂平面PCE,FH⊄平面PCE,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,又CE⊂平面PCE,AF⊄平面PCE,所以AF∥平面PCE.又FH⊂平面AFH,AF⊂平面AFH,FH=F,所以平面AFH∥平面PCE.。
高中数学北师大版选修4-5课件:1.4.3几何法、反证法2
![高中数学北师大版选修4-5课件:1.4.3几何法、反证法2](https://img.taocdn.com/s3/m/fe1d327c974bcf84b9d528ea81c758f5f61f29e4.png)
合作学习
当堂检测
思维辨析
因利用反证法证明问题时否定不全面而致误
【典例】如图,已知在△ABC 中,∠CAB>90°,D 是 BC 的中点.求
1
证:AD<2BC.
-17-
第3课时
探究一
几何法、反证法
探究二
首页
自主预习
合作学习
当堂检测
思维辨析
1
2
错解证明:假设 AD> BC.
1
1
因为 AD>2BC,BD=DC=2BC,
1
由(1),(2)可知 AD<2BC.
纠错心得 利用反证法证明问题时,否定要全面彻底,对否定的
1
2
每一种情况都要推出矛盾,才算证明完毕.本题中,“AD< BC”的否定
1
2
1
2
应是“AD≥ BC”而不是“AD> BC”.
-20-
第3课时
1
2
几何法、反证法
3
4
3
3
当堂检测
3
”的假设内容应是 (
)
3
A. =
a2+b2+c2>0,所以(a+b+c)2>0,这与a+b+c=0矛盾,所以原命题成立.
-24-
第3课时
1
2
几何法、反证法
3
4
首页
自主预习
合作学习
当堂检测
5
5.已知 a,b,c>0,a+b>c,求证:+1 + +1 > +1.
研究所证不等式两边的结构特点,再把其中的字母当作图形的边长,
高中数学立体几何知识点
![高中数学立体几何知识点](https://img.taocdn.com/s3/m/d748e543a88271fe910ef12d2af90242a895ab3f.png)
高中数学立体几何知识点高中数学立体几何知识1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
2025版新教材高中数学第四章立体几何初步4
![2025版新教材高中数学第四章立体几何初步4](https://img.taocdn.com/s3/m/7ed7e8e5970590c69ec3d5bbfd0a79563d1ed403.png)
4.1.1 几类简洁几何体(1)教材要点要点一空间几何体1.空间几何体的定义假如我们只考虑物体的________和________,而不考虑其他因素,那么由这些物体抽象出来的空间图形称为空间几何体.2.空间几何体的分类多面体旋转体定义由若干个____________(包括三角形)所围成的封闭体.把平面上一条封闭曲线内的区域围着该平面内的一条________旋转而成的几何体.图形相关概念面:围成多面体的各个多边形;棱:两个面的公共边;顶点:棱和棱的交点.轴:定直线称为旋转轴.状元随笔(1)随意一个几何体都是由点、线、面构成的.点、线、面是构成几何体的基本元素.我们还可以从运动的观点来理解空间基本图形之间的关系.在几何中,可以把线看成点运动的轨迹,假如点运动的方向始终不变,那么它的轨迹就是一条直线或线段;假如点运动的方向时刻在改变,则运动的轨迹是一条曲线或曲线的一段.同样,一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分)可以形成一个几何体.即点动成线,线动成面,面动成体.(2)多面体与旋转体的异同相同点:两者都是封闭的几何体,包括表面及其内部的全部点.不同点:多面体的表面是平面多边形,旋转体的侧面是曲面,底面为圆.要点二多面体多面体定义图形及表示相关概念特别几何体棱柱有两个面相互平行,其余各面都是______________,并且每相邻两个四边形的公共边都相如图可记作:棱柱底面(底):两个相互________的面;侧面:其余各面;侧棱:相邻两个侧面的公共边;直棱柱:侧面都是________的棱柱;正棱柱:底面是________多边形的直棱柱;互________,由这些面所围成的几何体叫作棱柱.ABCDEFA′B′C′D′E′F′顶点:侧棱与底面的公共点.长方体:底面和侧面都是矩形的棱柱;正方体:全部棱长都相等的长方体;平行六面体:两个底面是平行四边形的棱柱.棱锥有一个面是多边形,其余各面都是有一个________的三角形,这样的几何体叫作棱锥.如图可记作:棱锥S ABCD侧面:具有一个________的三角形的面;顶点:这个公共点;侧棱:相邻两个侧面的公共边;底面:除了侧面外,剩下的那一个多边形面.正棱锥:假如棱锥的底面是正多边形,将底面放置后,它的顶点又在过正多边形________的铅垂线上.棱台过棱锥任一侧棱上不与侧棱端点重合的一点,作一个与底面________的平面去截棱锥,截面和棱锥底面之间的这部分几何体叫作棱台.如图可记作:棱台ABCDA′B′C′D′上底面:截面;下底面:原棱锥的底面;侧面:其余各面;侧棱:相邻侧面的公共边.正棱台:由正棱锥截得的棱台.基础自测1.思索辨析(正确的画“√”,错误的画“×”)(1)棱柱的全部侧棱都平行且相等.( )(2)棱柱的两个底面是全等的多边形,侧面是平行四边形.( )(3)有一个面是多边形,其余各面都是三角形的几何体叫棱锥.( )(4)正三棱锥也称为正面体.( )2.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②3.下列图形中,是棱台的是( )4.下面属于多面体的是________(填序号).①建筑用的方砖;②埃及的金字塔;③茶杯;④球.题型 1 棱柱的结构特征例1 (1)下面的几何体中是棱柱的有( )A.3个 B.4个C.5个 D.6个(2)(多选)下列关于棱柱的说法中正确的是( )A.全部的面都是平行四边形B.每一个面都不会是三角形C.两底面平行,并且各侧棱也平行D.被平面截成的两部分可以都是棱柱方法归纳推断棱柱的两种方法1.扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即视察这个多面体是否有两个相互平行的面,其余各面都是四边形;②看“线”,即视察每相邻两个四边形的公共边是否平行.2.举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,赐予解除.题型 2 棱锥、棱台的结构特征例2 (1)(多选)下列关于棱锥、棱台的说法正确的是( )A.棱台的侧面肯定不会是平行四边形B.棱锥的侧面只能是三角形C.由四个面围成的封闭图形只能是三棱锥D.棱锥被平面截成的两部分不行能都是棱锥(2)如图,在三棱台A′B′C′ABC中,截去三棱锥A′ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.三棱台方法归纳推断棱锥、棱台形态的两种方法(1)举反例法结合棱锥、棱台的定义举反例干脆推断关于棱锥、棱台结构特征的某些说法不正确.(2)干脆法棱锥棱台定底面只有一个面是多边形,此面即为底面两个相互平行的面,即为底面看侧棱相交于一点延长后相交于一点题型多面体的平面绽开图例 3 (1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面绽开图应当为(对面是相同的图案)( )(2)如图所示,长方体的长、宽、高分别为5 cm,4 cm,3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?方法归纳推断棱柱的两种方法1.绘制绽开图:绘制多面体的平面绽开图要结合多面体的几何特征,发挥空间想象实力或者是亲自制作多面体模型.在解题过程中,经常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面绽开图.2.由绽开图复原几何体:若是给出多面体的平面绽开图,来推断是由哪一个多面体绽开的,则可把上述过程逆推,同一个几何体的平面绽开图可能是不一样的,也就是说,一个多面体可有多个平面绽开图.跟踪训练 1 (多选)如图所示,不是正四面体(各棱长都相等的三棱锥)的绽开图的是( )易错辨析凭直观感觉推断几何体致误例4 对如图所示的几何体描述正确的是________(填序号).①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个小三棱柱而得到;⑤此几何体可由四棱柱截去一个三棱柱而得到.解析:因为该几何体有六个面,属于六面体,①正确.因为侧棱的延长线不能交于一点,②错误.假如把几何体正面或背面作为底面就会发觉是一个四棱柱,③正确.④⑤都正确,如图(1)(2)所示.答案:①③④⑤易错警示易错缘由纠错心得易直观上感觉是棱台,忽视此几何体侧棱的延长线不能相交于一点,错选②.解答关于空间几何体概念的推断时,要留意紧扣定义,这就须要我们熟识各种空间几何体概念的内涵和外延,切记勿只凭图形主观臆断.课堂非常钟1.(多选)下列命题中,正确的命题是( )A.棱柱的侧面都是平行四边形B.棱锥的侧面为三角形,且全部侧面都有一个公共顶点C.多面体至少有四个面D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台2.用一个平面去截一个三棱锥,截面形态是( )A.四边形 B.三角形C.三角形或四边形 D.不行能为四边形3.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是( )4.一个棱柱至少有________个面,顶点最少的一个棱台有________条侧棱.5.如图所示,长方体ABCDA1B1C1D1.(1)这个长方体是棱柱吗?假如是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?假如是,是几棱柱?假如不是,说明理由.4.1.1 几类简洁几何体(1)新知初探·课前预习要点一1.形态大小2.平面多边形定直线要点二平行四边形平行平行矩形正公共顶点公共顶点中心平行[基础自测]1.答案:(1)√(2)√(3)×(4)×2.解析:依据棱锥的定义和结构特征可以推断,①②是棱锥,③不是棱锥,④是棱锥.答案:C3.解析:由棱台的定义知,A、D项的侧棱延长线不交于一点,所以不是棱台;B项中两个面不平行,不是棱台,只有C项符合棱台的定义.答案:C4.解析:①②属于多面体,③④属于旋转体.答案:①②题型探究·课堂解透例1 解析:(1)棱柱有三个特征:1〉有两个面相互平行;2〉其余各面是四边形;3〉侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合.(2)棱柱的底面不肯定是平行四边形,A错误;棱柱的底面可以是三角形,B错误;由棱柱的定义易知,C正确;棱柱可以被平行于底面的平面截成两个棱柱,D正确.所以正确说法的序号是CD.答案:(1)C (2)CD例2 解析:(1)棱台的侧面肯定是梯形,而不是平行四边形,A项正确;由棱锥的定义知棱锥的侧面只能是三角形,B项正确;由四个面围成的封闭图形只能是三棱锥,C项正确;如图所示,四棱锥被平面截成的两部分都是棱锥,D项错误.(2)由题图知,在三棱台A′B′C′ABC中,截去三棱锥A′ABC,剩下的部分如图所示,故剩余部分是四棱锥A′BB′C′C.答案:(1)ABC (2)B例 3 解析:(1)因为是对面图案均相同的正方体礼品盒,所以当盒子绽开后相同的图案就不行能靠在一起,只有A中没有相同的图案靠在一起.(2)依题意,长方体ABCDA1B1C1D1的表面可有如图所示的三种绽开图.绽开后,A,C1两点间的距离分别为:=(cm),=4(cm),=3(cm),三者比较得 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.答案:(1)A (2)见解析跟踪训练1 解析:可选择阴影三角形作为底面进行折叠,发觉A、B可折成正四面体,C、D不论选哪一个三角形作底面折叠都不能折成正四面体.答案:CD[课堂非常钟]1.解析:依据各种几何体的概念与结构特征推断命题的真假.A、B项均为真命题;对于C项,一个图形要成为空间几何体,则它至少需有4个顶点,3个顶点只能构成平面图形,当有4个顶点时,可围成4个面,所以一个多面体至少应有4个面,而且这样的面必是三角形,故C项也是真命题;对于D项,只有当截面与底面平行时才对.答案:ABC2.解析:按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.答案:C3.解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C4.解析:面最少的棱柱是三棱柱,它有5个面;顶点最少的一个棱台是三棱台,它有3条侧棱.答案:5 35.解析:(1)该长方体是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是四边形,其余各面都是矩形,当然是平行四边形,并且四条侧棱相互平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1DCFD1,其中四边形ABEA1和DCFD1是底面.。
高中数学立体几何总结
![高中数学立体几何总结](https://img.taocdn.com/s3/m/bc1f9bf5d05abe23482fb4daa58da0116c171f9d.png)
高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
2020新课标高考数学讲义:立体几何含解析
![2020新课标高考数学讲义:立体几何含解析](https://img.taocdn.com/s3/m/31a2780ee518964bcf847c86.png)
球
S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).
2025版新教材高中数学第四章立体几何初步4
![2025版新教材高中数学第四章立体几何初步4](https://img.taocdn.com/s3/m/598395d9e43a580216fc700abb68a98271feaca6.png)
4.5.2 几种简洁几何体的体积教材要点要点柱、锥、台、球的体积公式几何体体积公式柱体圆柱、棱柱底面积为S,高为h,V=________ 锥体圆锥、棱锥底面积为S,高为h,V=________台体圆台、棱台上底面积为S′,下底面积为S,高为h,V=(S′++S)·h球V球=________(R为球的半径) 状元随笔柱体、锥体、台体体积之间的关系基础自测1.思索辨析(正确的画“√”,错误的画“×”)(1)底面积相等且高相等的两个同类几何体的体积相等.( )(2)在三棱锥PABC中,V PABC=V APBC=V BPAC=V CPAB.( )(3)锥体的体积等于底面面积与高之积.( )(4)若长方体的相邻三个面的面积分别为2,6,9,则长方体的体积是6.( )2.三棱锥VABC底面是边长为2的正三角形,高为3,求三棱锥的体积( )A. B.2 C.3 D.3.若圆锥的母线长为8,底面周长为6π,则其体积是( )A.24π B.24C.3π D.34.若球的表面积为4π,则体积为________.题型 1 柱体、锥体、台体的体积例1 (1)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A.20+12 B.28C. D.(2)如图所示,已知E,F分别是棱长为a的正方体ABCDA1B1C1D1的棱A1A,CC1的中点,则四棱锥C1B1EDF的体积为________.(3)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. B.C.D.方法归纳简洁几何体体积的求法(1)干脆法:干脆套用体积公式求解.(2)等体积转移法:在三棱锥中,每一个面都可作为底面.为了求解的便利,我们常常须要换底,此法在求点到平面的距离时也常用到.(3)分割法:在求一些不规则的空间图形的体积时,我们可以将其分割成规则的、易于求解的空间图形.(4)补形法:对一些不规则(或难求解)的空间图形,我们可以通过补形,将其补为规则(或易于求解)的空间图形.跟踪训练1 (1)圆锥的轴截面是等腰直角三角形,侧面积是16π,则圆锥的体积是( )A. B. C.64π D.128π(2)三棱锥ABCD的高为4,底面BCD为直角三角形,两直角边BD和CD的长分别为5,3,则该三棱锥的体积为( )A.60 B.30 C.20 D.10(3)已知圆台的上、下底面半径和高的比为1∶4∶4,母线长为10,则圆台的体积为________.题型 2 有关球的体积问题角度1 球的切、接问题例2 (1)已知正方体的内切球的体积是π,则正方体的棱长为( )A.2 B. C. D.(2)棱长为a的正四面体的各个顶点都在半径为R的球面上,则球的体积为________.方法归纳常见几何体与球的切、接问题的解决策略(1)处理有关几何体外接球或内切球的相关问题时,要留意球心的位置与几何体的关系.一般状况下,由于球的对称性,球心总在特别位置,比如中心、对角线的中点等.(2)解决此类问题的实质就是依据几何体的相关数据求球的直径或半径,关键是依据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.角度2 球的体积在实际中的应用例3 把半径分别为6 cm,8 cm,10 cm的三个铁球熔成一个铁球,则这个大铁球的半径是________ cm.方法归纳解决本题的关键是总体积不变.跟踪训练2(1)圆柱形容器内部盛有高度为h的水,若放入两个直径为3 cm的铁球(球的半径与圆柱底面半径相等)后,水恰好沉没最上面的铁球(如图所示),则h=( ) A.2 cm B.3 cmC.4 cm D.5 cm(2)一底面边长为4的正六棱柱,高为6,则它的外接球(正六棱柱的顶点都在此球面上)的体积为________.题型 3 简洁组合体的体积例4如图所示,在棱长为4的正方体上底面中心位置打一个直径为2,深为4的圆柱形孔,求打孔后的几何体的表面积和体积.方法归纳求组合体的表面积与体积的关键是弄清组合体中各简洁几何体的结构特征及组合形式,对于与旋转体有关的组合体问题,要依据条件分清各个简洁几何体的底面半径及母线长,再分别代入公式求解.跟踪训练 3 已知某几何体的直观图如图所示(单位:cm),求这个几何体的体积为________cm3.易错辨析忽视对侧面绽开图的分类探讨致错例5 已知一个正三棱柱的侧面绽开图是一个长为9 cm,宽为6 cm的矩形,则此正三棱柱的体积为________cm3.解析:设正三棱柱的高为h cm,底面等边三角形的边长为a cm.①若正三棱柱的底面周长为9 cm,则高h=6 cm,3a=9 cm,∴a=3 cm.∴S底面=×3×3×=(cm2).∴V正三棱柱=Sh=×6=(cm3).②若正三棱柱的底面周长为6 cm,则高h=9 cm,3a=6 cm,∴a=2 cm.∴S底面=×2×2×=(cm3).∴V正三棱柱=Sh=×9=9(cm3).故该正三棱柱的体积为 cm3或9 cm3.答案:或9易错缘由纠错心得易忽视另一种状况,导致错误答案.解答此类问题肯定要留意侧面绽开图的长、宽都可能是底面的周长,不要漏解.课堂非常钟1.正方体的表面积为96,则正方体的体积为( )A.48 B.64 C.16 D.962.将半径为1,圆心角为的扇形围成一个圆锥,则该圆锥的体积为( )A.2π B. C. D.3.如图所示,三棱锥的顶点为P,PA,PB,PC为三条侧棱,且PA,PB,PC两两相互垂直,又PA=2,PB=3,PC=4,则三棱锥PABC的体积V=________.4.正四棱台的底面边长分别为20 cm和10 cm,侧面面积为,求其体积.4.5.2 几种简洁几何体的体积新知初探·课前预习要点Sh ShπR3[基础自测]1.答案:(1)√(2)√(3)×(4)√2.解析:底面是正三角形,边长为2,则面积为,V=Sh=··3=.答案:A3.解析:设圆锥的母线长为l,高为h,底面半径为r,由底面周长为2πr=6π,得r=3,所以h===.由圆锥的体积公式可得V=πr2h=3π.答案:C4.解析:∵S=4πR2=4π∴R=1∴V=πR3=.答案:题型探究·课堂解透例1 解析:(1)作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h==,下底面面积S1=16,上底面面积S2=4,所以该棱台的体积V=h(S1+S2+)=×(16+4+)=.(2)方法一连接EF,由题意得,VC1B1EDF=VB1C1EF+VDC1EF=2VB1C1EF=2VEB1C1F=2×·S△B1C1F·a=a3.方法二连接EF,B1D.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2,则h1+h2=B1D1=a.由题意得,VC1B1EDF=VB1C1EF+VDC1EF=·S△C1EF·(h1+h2)=a3.(3)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,易得EG=HF=,AG=GD=BH=HC=,则△BHC中BC边的高h=.∴S△AGD=S△BHC=×1=,∴该多面体的体积V=V EADG+V FBHC+V AGDBHC=2V EADG+V AGDBHC =2××1=.答案:(1)D (2)a3(3)A跟踪训练1 解析:(1)作圆锥的轴截面,如图所示,由题意知,在△PAB中,∠APB=90°,PA=PB.设圆锥的高为h,底面半径为r,则h=r,PB=r.由S侧=π·r·PB=16π,得πr2=16π,所以r=4.则h=4.故圆锥的体积V圆锥=πr2h=.(2)如图所示的三棱锥ABCD符合题意,把三棱锥ABCD放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD为直角三角形,直角边长分别为5和3,三棱锥ABCD的高为4,故该三棱锥的体积V=×5×3×4=10.(3)设上底面半径为r,则下底面半径为4r,高为4r,如图.∵母线长为10,∴102=(4r)2+(4r-r)2,解得r=2.∴下底面半径R=8,高h=8,∴V圆台=π(r2+rR+R2)h=224π.答案:(1)A (2)D (3)224π例2 解析:(1)正方体的棱长为a,其内切球的半径为R,则a=2R,又πR3=π,∴R3=2,∴R=,∴a=2.(2)把正四面体放在正方体中,设正方体棱长为x,则a=x,由题意知2R=x==a,所以R=a,所以V=π=a3π.答案:(1)A (2)a3π例3 解析:设大铁球半径为R cm,则πR3=π×63+π×83+π×103=π×1 728.∴R==12.答案:12跟踪训练2解析:(1)依题意由体积相等可得π×h+π××2=π××4,解得h=2 cm.(2)因为正六棱柱的底面边长为4,所以它的底面圆的半径为4,所以球的半径为=5,故球的体积为π×R3=π×53=π.答案:(1)A (2)π例4 解析:正方体的表面积为S正方体=4×4×6=96,圆柱形孔的半径为1,高为4,∴圆柱的侧面积S圆柱侧=2π×1×4=8π,∴所求的表面积为S=96+8π-2π=96+6π,正方体的体积为V正方体=4×4×4=64,圆柱的体积为V圆柱=4π,∴所求的体积为V=64-4π.跟踪训练3 解析:这个几何体可看成是正方体ABCDA1B1C1D1与直三棱柱B1C1QA1D1P的组合体.由PA1=PD1=,A1D1=AD=2,可得PA1⊥PD1.故所求几何体的体积V=23+×()2×2=10(cm3).答案:10[课堂非常钟]1.解析:设正方体的棱长为a,则6a2=96,∴a2=16,∴a=4,∴V正方体=a3=43=64.答案:B2.解析:设圆锥底面半径为r,扇形弧长为l,则l=2πr=π×1,∴r=,∴圆锥的高为=,∴圆锥的体积为V=×π×=.答案:B3.解析:三棱锥的体积V=Sh,其中S为底面积,h为高,而三棱锥的随意一个面都可以作为底面,所以此题可把B看作顶点,△PAC作为底面求解.故V=S△PAC·PB=×2×4×3=4.答案:44.解析:正四棱台的大致图形如图所示,其中A1B1=10 cm,AB=20 cm,取A1B1的中点E1,AB 的中点E,则E1E为斜高.设O1,O分别是上、下底面的中心,则四边形EOO1E1为直角梯形.∵S侧=4××(10+20)EE1=780 (cm2),∴EE1=13 cm.在直角梯形EOO1E1中,O1E1=A1B1=5 cm,OE=AB=10 cm,∴O1O==12 (cm).∴该正四棱台的体积为V=×12×(102+202+10×20)=2 800 (cm3).。
2025版新教材高中数学第四章立体几何初步4
![2025版新教材高中数学第四章立体几何初步4](https://img.taocdn.com/s3/m/9e92a449c4da50e2524de518964bcf84b8d52d4d.png)
第4课时直线与平面垂直的性质教材要点要点一直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线________符号语言⇒________图形语言作用①线面垂直⇒线线平行;②作平行线状元随笔(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,供应了“垂直”与“平行”关系转化的依据.(3)线面垂直的性质定理可简记为“线面垂直,则线线平行”.要点二点面距、线面距1.点到平面的距离过一点S向平面ABC作垂线,垂足为A,则称垂线段SA的长度为点S到平面ABC的距离.2.直线与平面的距离一条直线和一个平面平行时,这条直线上随意一点到这个平面的距离,叫作这条直线与这个平面的距离.要点三直线与平面所成的角有关概念对应图形斜线一条直线l与一个平面α________,但不与平面α________,则直线l称为平面α的一条斜线.斜足斜线l与平面α的交点A称为斜足.投影过斜线l上斜足以外的一点P向平面α作垂线,过垂足O和斜足A的直线AO称为斜线l在平面α上的投影.直线与平面所成的角(1)平面的一条斜线与它在该平面上的投影所成的锐角,叫作这条直线与这个平面所成的角.(2)直线与平面所成的角θ的取值范围是__________.状元随笔把握定义应留意两点:①斜线上不同于斜足的点P的选取是随意的;②斜线在平面上的投影是过斜足和垂足的一条直线而不是线段.基础自测1.思索辨析(正确的画“√”,错误的画“×”)(1)若l⊥β,且α∥β,则l⊥α.( )(2)垂直于同一条直线的两平面平行.( )(3)假如一条直线上有两点到一平面的距离相等,那么直线不肯定与平面平行.( )(4)假如一个平面内随意一点到另一个平面的距离相等,那么这两个平面平行.( )2.已知△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则不重合的直线l,m的位置关系是( )A.相交 B.异面C.平行 D.不确定3.棱长为2的正方体ABCDA′B′C′D′中,P是平面ABCD内一点,则点P到平面A′B′C′D′的距离是( )A.1 B.2C.3 D.44.在正方体ABCDA1B1C1D1中,直线AC与平面A1D所成的角为________.题型 1 直线与平面垂直的性质定理的应用例1 如图,已知正方体ABCDA1B1C1D1.(1)求证:A1C⊥B1D1.(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.方法归纳(1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直.(2)在证明时留意利用正方形、平行四边形及三角形中位线的有关性质.跟踪训练1如图所示,在正方体ABCDA1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:MN∥AD1.题型 2 有关距离的计算例2 已知在长方体ABCDA1B1C1D1中,棱AA1=12,AB=5.(1)求点B1到平面A1BCD1的距离;(2)求B1C1到平面A1BCD1的距离.方法归纳(1)从平面外一点向平面作垂线,该点到垂足间的线段的长度叫作点到平面的距离.求点到平面的距离的关键是作出或找出点到平面的垂线段.(2)当直线与平面平行时,直线上随意一点到平面的距离都是直线到平面的距离,求解的基本方法是在直线上任选一点,找出该点到平面的距离,然后依据求点到平面的距离的有关方法求解,即将线面距离转化为点面距离.跟踪训练2 正方体ABCDA1B1C1D1,棱长为2,求:(1)直线A1A到平面B1BCC1的距离;(2)点A1到平面D1DBB1的距离.题型 3 直线与平面所成的角例3 在正方体ABCDA1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.方法归纳求斜线与平面所成角的步骤(1)作图:作(或找)出斜线在平面内的投影,作投影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,留意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和投影所组成的直角三角形中计算.跟踪训练 3 在正三棱柱ABCA′B′C′中,AB=1,AA′=2,求直线BC′与平面ABB′A′所成角的正弦值.易错辨析对线面垂直的性质应用不当致误例4 已知m,n为异面直线,m⊥α,n⊥β,直线l满意l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线与l垂直D.α与β相交,且交线与l平行解析:若α∥β,则由m⊥平面α,n⊥平面β,可得m∥n,这与m,n是异面直线冲突,故α与β相交.设α=a,过空间内一点P,作m′∥m,n′∥n,m′与n′相交,m′与n′确定的平面为γ.因为l⊥m,l⊥n,所以l⊥m′,l⊥n′,所以l⊥γ.因为m⊥α,n⊥β,所以m′⊥α,n′⊥β,所以a⊥m′,a⊥n′,所以a⊥γ.又因为l⊄α,l⊄β,所以l与a不重合.所以l∥a.答案:D易错警示易错缘由纠错心得解答本题时,简单忽视α∥β时,可由条件推出m∥n,与m,n为异面直线冲突,导致错选A.也简单忽视构造协助平面γ,无法利用线面垂直的性质定理证明线线平行,导致错选C.解答此类问题的方法是依据线面垂直的性质逐项作出推断,必要时画出图形,借助图形进行直观的推断.课堂非常钟1.对于随意的直线l与平面α,在平面α内必有直线m,使m与l( )A.平行 B.相交C.垂直 D.互为异面直线2.如图,在正方体ABCD A 1B1C1D1中,若G为CC1的中点,则直线AG与侧面BCC1B1所成角的正弦值是( )A. B.C. D.3.△ABC的三个顶点A,B,C到平面α的距离分别为2 cm,3 cm,4 cm,且它们在α的同侧,则△ABC的重心到平面α的距离为________ cm.4.如图,PA⊥平面ABD,PC⊥平面BCD,E,F分别为BC,CD上的点,且EF⊥AC.求证:=.第4课时直线与平面垂直的性质新知初探·课前预习要点一平行a∥b要点三相交垂直[0°,90°][基础自测]1.答案:(1)√(2)√(3)√(4)√2.解析:∵直线l⊥AB,l⊥AC,且AB=A,∴l⊥平面α,同理直线m⊥平面α.由线面垂直的性质定理可得l∥m.答案:C3.答案:B4.解析:如图,因为CD⊥平面ADD1A1,所以直线AC与平面A1D所成的角为∠CAD,因为△ADC是等腰直角三角形,所以∠CAD=45°.答案:45°题型探究·课堂解透例1 证明:(1)如图,连接A1C1.∵CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴CC1⊥B1D1.∵四边形A1B1C1D1是正方形,∴A1C1⊥B1D1.又∵CC1=C1,∴B1D1⊥平面A1C1C.又∵A1C⊂平面A1C1C,∴B1D1⊥A1C.(2)如图,连接B1A,AD1.∵B1C1綊AD,∴四边形ADC1B1为平行四边形,∴C1D∥AB1.∵MN⊥C1D,∴MN⊥AB1.又∵MN⊥B1D1,AB1=B1,∴MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又∵AB1=B1,∴A1C⊥平面AB1D1.∴A1C∥MN.跟踪训练1 证明:因为四边形ADD1A1为正方形,所以AD1⊥A1D.又因为CD⊥平面ADD1A1,所以CD⊥AD1.因为A1D=D,所以AD1⊥平面A1DC.又因为MN⊥平面A1DC,所以MN∥AD1.例2解析:(1)如图,过点B1作B1E⊥A1B于点E.由题意知BC⊥平面A1ABB1且B1E⊂平面A1ABB1,∴BC⊥B1E. ∵BC=B,∴B1E⊥平面A1BCD1,∴线段B1E的长即为所求.在Rt△A1B1B中,B1E===,∴点B1到平面A1BCD1的距离为.(2)∵B1C1∥BC,且B1C1⊄平面A1BCD1,BC⊂平面A1BCD1,∴B1C1∥平面A1BCD1.∴点B1到平面A1BCD1的距离即为所求,∴直线B1C1到平面A1BCD1的距离为.跟踪训练2 解析:(1)∵A1A∥平面B1BCC1,∵A1B1⊥平面B1BCC1,∴直线A1A到平面B1BCC1的距离等于线段A1B1的长,∵A1B1=2,∴直线A1A到平面B1BCC1的距离等于2.(2)连接A1C1,B1D1,BD,A1C1与B1D1交于点O1,如图.∵A1O1⊥平面D1DBB1,∴点A1到平面D1DBB1的距离等于线段A1O1=.例3解析:(1)连接AC,因为直线A1A⊥平面ABCD,所以∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=,所以tan ∠A1CA= .(2)连接A1C1交B1D1于O,连接BO,在正方形A1B1C1D1中,A1C1⊥B1D1,因为BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以BB1⊥A1C1,又BB1=B1,所以A1C1⊥平面BDD1B1,垂足为O.所以∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt△A1BO中,A1O=A1C1=A1B,所以∠A1BO=30°,即A1B与平面BDD1B1所成的角为30°.跟踪训练3 解析:如图所示,取A′B′的中点D,连接C′D,BD.因为底面△A′B′C′是正三角形,所以C′D⊥A′B′.因为AA′⊥底面A′B′C′,所以A′A⊥C′D.又AA′=A′,所以C′D⊥侧面ABB′A′,所以BD是斜线BC′在平面ABB′A′上的投影,∠C′BD是直线BC′与平面ABB′A′所成的角.等边三角形A′B′C′的边长为1,C′D=,在Rt△BB′C′中,BC′==,故直线BC′与平面ABB′A′所成的角的正弦值为=. [课堂非常钟]1.答案:C2.解析:连接BG.因为AB⊥平面BB1C1C,所以∠AGB是直线AG与侧面BCC1B1所成角,在Rt△ABG中,若AB=a,则AG=a,所以sin ∠AGB=.答案:A3.解析:如图,设A,B,C在平面α上的投影分别为A′,B′,C′,△ABC的重心为G,连接CG并延长交AB于点E,又设E,G在平面α上的投影分别为E′,G′,则E′∈A′B′,G′∈C′E′,EE′=(A′A+B′B)=,CC′=4,CG∶GE=2∶1,在直角梯形EE′C′C中可求得GG′=3.答案:34.证明:∵PA⊥平面ABD,PC⊥平面BCD,∴PA⊥BD,PC⊥BD,PC⊥EF.又PA=P,∴BD⊥平面PAC.又EF⊥AC,PC=C,∴EF⊥平面PAC,∴EF∥BD,∴=.。
第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
![第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)](https://img.taocdn.com/s3/m/eb8fac3117fc700abb68a98271fe910ef12daeb8.png)
第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥ABCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥SABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥DABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥AECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ABC =V N ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC A 1B 1C 1的体积为V ,则V =3VB 1ABC =3VA B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABCA1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥PABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥QBCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCDA1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D MAB =V M DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。
高中数学立体几何知识点总结(超详细)
![高中数学立体几何知识点总结(超详细)](https://img.taocdn.com/s3/m/e14a314ca76e58fafbb00301.png)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
立体几何初步)课件-2024-2025学年高一下学期数学人教B版(2019)必修第四册
![立体几何初步)课件-2024-2025学年高一下学期数学人教B版(2019)必修第四册](https://img.taocdn.com/s3/m/03d282301fb91a37f111f18583d049649b660ebc.png)
2
1
1 1
且△ABC 为直角三角形,则有 VE-ABC=3S△ABC·AE=3 × 2 ×1×
2
6
3 × 2 = 12.
专题二
平行问题
【例2】 如图,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,
AD⊥DC,CD=2,DD1=AB=1,P,Q分别是CC1,C1D1的中点.
求证:AC∥平面BPQ.
且长度不变.
平面图形中与y轴平行(或重合)的线段画成与y'轴平行(或重合)的线段,且
长度为原来长度的一半.
2.构成空间几何体的基本元素有哪些?
提示:点、线、面.
3.试比较棱柱、棱锥、棱台的结构特征,请完成下表.
结构特征
底面
棱柱
两个底面是全等的多
边形
棱锥
多边形
棱台
两个底面是相似的多
边形
侧面
平行四边形
a⋂b ≠ ⌀
l⊥α,l⊥β⇒α∥β
α ∥ γ,
⇒ ∥β
β∥γ
如果两个平面平行,那么其中一个
平面内的 任一 直线都平行于另一
α ∥ β,
⇒a∥β
a⊂α
个平面(即面面平行⇒线面平行)
如果两个平行平面同时与第三个
性
质
平面相交,那么它们的 交线 平行
(即面面平行⇒线线平行)
α ∥ β,
α⋂γ = l, ⇒
定理
文字语言
判定 如果一个平面经过另外一个平面的
定理 一条 垂线 ,那么这两个平面互相垂直
性质
定理
如果两个平面互相垂直,那么在 一个
平面内 垂直于它们交线的直线垂直
于另一个平面
图形表示
2020高考数学冲刺 回归教材 5 立体几何与空间向量
![2020高考数学冲刺 回归教材 5 立体几何与空间向量](https://img.taocdn.com/s3/m/fa612f5c482fb4daa58d4bbf.png)
例1 (2019·全国Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,
f(x)=x(x-1).若对任意 x∈(-∞,m],都有 f(x)≥-89,则 m 的取值范围是
A.-∞,94
√B.-∞,73
C.-∞,52
D.-∞,83
2 易错提醒
PART TWO
1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,
a⊂α.
2.在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体
的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形
状时一般是以正(主)视图和俯视图为主.
由此作出函数f(x)的图象,如图所示.
由图可知当 2<x≤3 时,令 22(x-2)·(x-3)=-89, 整理,得(3x-7)(3x-8)=0,解得 x=73或 x=83,将这两个值标注在图中. 要使对任意 x∈(-∞,m]都有 f(x)≥-89,必有 m≤73, 即实数 m 的取值范围是-∞,73,故选 B.
5.用向量求空间角 (1)直线l1,l2的夹角θ满足cos θ= |cos〈l1,l2〉| (其中l1,l2分别是直线l1,l2的方 向向量). (2)直线l与平面α的夹角θ满足sin θ= |cos〈l,n〉| (其中l是直线l的方向向量,n 是平面α的法向量). (3)平面α,β的夹角θ满足cos θ= |cos〈n1,n2〉| ,则二面角α-l-β的平面角为θ 或π-θ(其中n1,n2分别是平面α,β的法向量).
A.1
B.2
√C.3
D.4
解析 由三视图得到空间几何体,如图所示, 则PA⊥平面ABCD,平面ABCD为直角梯形,PA=AB=AD=2,BC=1, 所以PA⊥AD,PA⊥AB,PA⊥BC. 又BC⊥AB,AB∩PA=A,AB,PA⊂平面PAB, 所以BC⊥平面PAB. 又PB⊂平面PAB, 所以BC⊥PB. 在△PCD 中,PD=2 2,PC=3,CD= 5,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学回归课本校本教材4——献给2009年赣马高级中学高三考生直线、平面、简单几何体(一)(一)基础知识1.(1)三视图包括:正视图:物体 方向投影所得到投影图;它能反映物体高度和长度;左视图:物体 方向投影所得到投影图;它能反映物体高度和宽度;俯视图:物体 方向投影所得到投影图;它能反映物体的长度和宽度;(2)三视图画法规则:高平齐: 图与 图高要保持平齐;长对正: 图与 图长应对正;宽相等: 图与 图宽度应相等; 先画主视图,其次画俯视图,最后画左视图。
画的时候把轮廓线要画出来,被遮住的轮廓线要画成 。
(3)斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox 、Oy 。
画直观图时,把它画成对应轴 o'x'、o'y'、使∠x'o'y'=45°(或135° );(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.如图(1),三角形ABO 的面积是 ;答案:122.表(侧)面积与体积公式:⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:S 侧=rh π2;③体积:V=S 底h⑵锥体:①表面积:S=S 侧+S 底;②侧面积:S 侧=rl π;③体积:V=31S 底h : ⑶台体①表面积:S=S 侧+S 上底S 下底②侧面积:S 侧=l r r)('+π③体积:V=31(S+''S SS +)h ; ⑷球体:①表面积:S=24R π;②体积:V=334R π 如:已知正六棱柱的底面边长为3cm ,侧棱长为3cm,如果用一个平面把六棱柱分成两个棱柱,则所得两个棱柱的表面积之和的最大值为 2cm提醒:因为正六棱柱的高度较小,所以从中间截取两个棱柱,增加的面积最大。
2cm 。
3.正四面体(设棱长为a )的性质:①全面积2S =;②体积3V =;③对棱间的距离d =;④相邻面所成二面角13arccos α=;⑤外接球半径R =;⑥内切球半径r =;⑦正四面体内任一点到各面距离之和为定值h =. 4.坐标系的建立:作空间直角坐标系O-xyz 时,使∠xOy=135°(或45°),∠yOz=90°。
(1)让右手拇指指向x 轴正方向,食指指向y 轴正方向,中指能指向z 轴的正方向,则称为右手直角坐标系;(2) OQ=x 、OR=y 、PA=z 分别叫做点A 的横坐标、纵坐标和竖坐标,记作A (x,y,z );(3) 平面法向量:由直线与平面垂直的判断定理可知,不共线,,⊥⊥,则为平面α的法向量。
5.正多面体的概念:每个面都是有相同边数的全等的正多边形,每个顶点为端点都有相同棱数的凸多面体,叫做正多面体.(1)正方体:是一类非常特别的多面体:它的六个面都是正方形,每个顶点处都有三条棱.正方体我们也可以称为正六面体.(2)正四面体:它的四个面都是全等的正三角形,每个顶点处都有三条棱正多面体的特性:正多面体是一种特殊的凸多面体,它有两个特点:6. 球的定义:第一定义:半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
第二定义:球面是空间中与定点的距离等于定长的所有点的集合(1)球的截面:小圆:不过球心的截面圆叫小圆。
大圆:过球心截面圆叫大圆, 大圆是所有球的截面中半径最大的圆。
球面上任意两点间最短的球面距离:是过这两点大圆劣弧长如:已知P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP =P 的轨迹的长度是32π (二)基本计算1. 三视图斜二测画法计算: (1)一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为 。
(2)如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是 (3)如图左,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其左视图的面积为 . 6.(4).正三棱锥V ABC -的主视图、俯视图如图下,V A=4,AC=,则该三棱锥的左视图的面积为 222S a =2.运用展开图:(1)在一个直径是5cm 高度为2cm π的圆柱形玻璃杯子的上沿A 处有一只苍蝇,而恰好在相对的底沿A 处有一只蜘蛛,蜘蛛要想用最快的速度捕捉到(2)有一根长为6π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,使铁丝两端落在同一条母线两头上,则铁丝的长度最少为 10π3.求体积:(1)棱柱:体积=底面积×高,或体积V =直截面面积×侧棱长,特别地,直棱柱的体积=底面积×侧棱长;三棱柱的体积12V Sd =(其中S 为三棱柱一个侧面的面积,d 为与此侧面平行的侧棱到此侧面的距离)。
提醒:该公式需要补形后用; (2)棱锥:体积=31×底面积×高。
注意:求多面体体积的常用技巧是割补法(割补成易求体积的多面体) i 补形:三棱锥⇒三棱柱⇒平行六面体;ii 分割:三棱柱中三棱锥、四棱锥、三棱柱的体积关系是 和等积变换法(平行换点、换面)和比例(性质转换)法等.(1)四面体A -BCD 中,AC =BD BC =AD AB =CD =4,则四面体A -BCD 外接球的面积为 提醒:补长方体(2)已知P A ,PB ,PC 两两互相垂直,且△P AB 、△P AC 、△PBC 的面积分别为1.5cm 2,2cm 2,6cm 2,则过P ,A ,B ,C 四点的外接球的表面积为 cm 2.(注 24πS r =球,其中r 为球半径)答案:26π.(3) 三个平面两两垂直,它们的交线交于一点O ,P 到三个面的距离分别为3、4、5,则OP 的长为_____(答:5 2 ) 4.空间距离的求法:(特别强调:立体几何中有关角和距离的计算,要遵循“一作,二证,三计算”的原则)(1)异面直线的距离:①直接找公垂线段而求之;②转化为求直线到平面的距离,过其中一条直线作平面和另一条直线平行。
③转化为求平面到平面的距离,即过两直线分别作相互平行的两个平面。
(2)点到平面的距离:①垂面法:借助于面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②体积法:转化为求三棱锥的高; ③等价转移法。
(3)球面距离(球面上经过两点的大圆在这两点间的一段劣弧的长度):求球面上两点A 、B 间的距离的步骤:①计算线段AB 的长;②计算球心角∠AOB 的弧度数;③用弧长公式计算劣弧AB 的长。
已知P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP =P 的轨迹的长度是3π2.点P 是120°的二面角α-l -β内的一点,点P 到α、β的距离分别是3、4,则P 到l 的距离为 _______) 已知球面上的三点A 、B 、C ,AB=6,BC=8,AC=10,球的半径为13,则球心到平面ABC 的距离为______(答:12)高中数学回归课本校本教材5(一)基础知识 直线、平面、简单几何体(二)1棱柱概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱。
两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)(1)棱柱总体分类:a. 直棱柱:侧棱不垂直于底面的棱柱叫斜棱柱;侧棱垂直于底面的棱柱叫直棱柱。
b. 正棱柱:底面是正多边形的直棱柱叫正棱柱。
正四棱柱:底面是正方形的直四棱柱⑵{平行六面体}⊃≠{直平行六面体}⊃≠{长方体}⊃≠{正四棱柱}⊃≠{正方体};长方体:底面是矩形的直平行六面体是长方体;正方体:棱长都相等的长方体叫正方体。
平行六面体:底面是平行四边形的四棱柱叫做平行六面体①平行六面体的任何一个面都可以作为底面; ②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和; ④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和;(3)性质 :①棱柱各个侧面都是平行四边形,所有侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱各个侧面都是全等矩形。
②与底面平行的截面是与底面对应边互相平行的全等多边形。
③过棱柱不相邻的两条侧棱的截面都是平行四边形。
如下列关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直棱柱;③若四个侧面两两全等,则该四棱柱为直棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直棱柱。
其中真命题的为_____(答:②④)。
2. 棱锥概念:有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥。
其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;(1)正棱锥:如果一个棱锥底面是正多边形,且顶点在底面的射影是底面的中心,这样棱锥叫正棱锥。
正三棱锥叫正四面体。
①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等。
②正棱锥的高h 、斜高h '、斜高在底面的射影(底面的内切圆的半径r )、侧棱、侧棱在底面的射影(底面的外接圆的半径R )、底面的半边长可组成四个直角三角形。
如图,正棱锥的计算集中在四个直角三角形中:,Rt SOB Rt SOE ∆∆,,Rt EOB Rt SBE ∆∆,其中,,,a l αθ分别表示底面边长、侧棱长、侧面与底面所成的角和侧棱与底面所成的角。
(2)棱锥的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点至截面距离与棱锥高的平方比,截得小棱锥的体积与原来棱锥的体积比等于顶点至截面距离与棱锥高的立方比。
如若一个锥体被平行于底面的平面所截,若截面面积是底面积的14,则锥体被截面截得的一个小棱锥与原棱锥体积之比为__3. (1)直线和平面平行:判定定理:如果 一条直线和 一条直线平行,那么这条直线和这个平面平行.性质定理: 如果一直线和一个平面平行,经过这直线平面和这个平面相交, 那么这条直线和 平行.(2)平面和平面平行:判定定理: 如果一个平面内的两条 直线平行于另一平面,那么这两个平面平行.推论: 如果一个平面内有两条 直线平行于另一平面内的两条直线, 那么这两个平面平行.性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线 .4.(1)直线和平面垂直:判定定理: 如果一条直线和一个平面内的两条 直线都垂直, 那么这条直线和这个平面垂直.性质定理: 垂直于同一平面的 平行,垂直于同一条直线的 平行.(2)平面和平面垂直:两个平面垂直的判定定理:如果一个平面经过另一个平面的 ,那么两个平面互相垂直.两个平面垂直的性质定理:如果两个平面互相垂直, 那么在一个平面内 直线垂直于另一个平面.如:设b a ,是两条不同直线,βα,是两个不同平面,给出下列四个命题:①若,,,αα⊄⊥⊥b a b a 则α//b ;②若βαα⊥,//a ,则β⊥a ;③若βαβ⊥⊥,a ,则α//a 或α⊂a ;④若βα⊥⊥⊥b a b a ,,则βα⊥。