奥数:排列组合的基本理论和公式

合集下载

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

(完整word版)排列组合公式(全)(word文档良心出品)

(完整word版)排列组合公式(全)(word文档良心出品)

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

排列组合基础知识

排列组合基础知识

排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1n 中不同的方法,第二类方法中有2n 种不同的方法......第n 类方法中n n 种不同的方法,那么完成这件事共有n n n n N +++=...21种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

例1. 从甲地到乙地,可以乘动车,也可以乘汽车;一天中动车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?如上图,从甲地到乙地共有3+2种方法。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

例 2. 从甲地到乙地,要先从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中火车2班,汽车3班。

那么两天中,从甲地到乙地共有多少种不同的方法?解:由上图可知共有的可能路线为:火车1—汽车1,火车2—汽车1火车1—汽车2,火车2—汽车2火车1—汽车3,火车2—汽车3所以共有82=⨯种方式。

4二、排列组合1.排列(1)排列的定义:从n个不同的元素中,任取m个(nm≤)元素,按照一定的顺序排成一列,叫做从n个不同的元素中取出m个元素的一个排列。

(2)使用排列的三条件①n个不同元素;②任取m个;③讲究顺序。

2.组合(1)组合的定义:从n个不同的元素中,任取m个(nm≤)元素并为一组,叫做从n个不同的元素中取出m个元素的一个组合。

(2)使用三条件①n个不同元素;②任取m个;③并为一组,不讲顺序。

排列与组合的共同点:都是“从n个不同元素中任取m个元素”;排列与组合的不同点:排列与元素的顺序有关系,而组合与元素的顺序无关。

排列组合基础知识讲解

排列组合基础知识讲解

排列组合基础知识讲解
排列组合是数学中的一个重要概念,用于计算从给定元素中选择若干个元素的不同方式。

以下是排列组合的基础知识讲解:
排列(Permutation):从给定的元素中选择若干个元素进行排列,且这些元素的顺序是重要的。

例如,从3 个元素a,b,c 中选择2 个元素进行排列,可以得到6 种不同的排列方式:ab,ac,ba,bc,ca,cb。

组合(Combination):从给定的元素中选择若干个元素进行组合,且这些元素的顺序是不重要的。

例如,从 3 个元素a,b,c 中选择2 个元素进行组合,可以得到3 种不同的组合方式:ab,ac,bc。

排列组合的计算公式如下:
排列的计算公式:$A_{n}^{k}=\frac{n!}{(n-k)!}$
组合的计算公式:$C_{n}^{k}=\frac{n!}{k!\times(n-k)!}$
其中,$n$ 表示元素的总数,$k$ 表示选择的元素个数。

排列组合在实际生活中有广泛的应用,例如在概率统计、组合数学、
计算机科学等领域。

掌握排列组合的基础知识对于理解和解决这些领域中的问题非常重要。

排列组合的运算法则

排列组合的运算法则

排列组合的运算法则摘要:一、排列组合的概念二、排列组合的运算法则1.排列公式2.组合公式3.排列组合公式三、实例解析四、应用场景正文:排列组合是组合数学中的基本概念,它广泛应用于各种学科和实际问题中。

排列组合的研究对象是有限的、不同的元素,主要研究将这些元素进行有序排列或无序组合的问题。

接下来,我们将介绍排列组合的运算法则,并通过实例进行解析。

一、排列组合的概念1.排列:从n个不同元素中取出m个元素进行有序排列,称为排列。

排列用符号A(n,m)表示。

2.组合:从n个不同元素中取出m个元素,不考虑元素之间的顺序,称为组合。

组合用符号C(n,m)表示。

二、排列组合的运算法则1.排列公式排列公式为:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n*(n-1)*(n-2)*...*3*2*1。

2.组合公式组合公式为:C(n,m) = n! / [m! * (n-m)!]其中,n!和m!分别表示n和m的阶乘。

3.排列组合公式排列组合公式为:P(n,m) = C(n,m) * A(m,m)其中,P(n,m)表示从n个元素中取出m个元素的排列组合数。

三、实例解析例如,有5个人参加一场比赛,需要分成3个小组,求不同的分组方法数量。

解:根据组合公式,C(5,3) = 5! / [3! * (5-3)!] = 10所以,有10种不同的分组方法。

四、应用场景1.密码学:在密码学中,排列组合可用于计算密码组合的数量,以评估密码的安全性。

2.组合优化:在组合优化问题中,排列组合可用于计算不同方案的数量,以便找到最优解。

3.概率论:在概率论中,排列组合可用于计算事件的组合概率。

4.生物学:在生物学中,排列组合可用于研究基因组合和生物多样性。

总之,排列组合的运算法则在许多领域具有广泛的应用价值。

排列组合数学公式

排列组合数学公式

排列组合一、两个原理.1.乘法原理、加法原理.2.可.以有..重复..元素..的排列.从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·…m =m n ..例:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法?(解:n m 种)二、排列.1.基本概念。

⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑵相同排列.如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--= 注意:!)!1(!n n n n -+=⋅规定0!=1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==nn n C C2.含有..可重..元素..的排列问题.对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n =n 1+n 2+……n k ,则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1.⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--== ⑶两个公式:①;m n n m n C C -=②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸几个常用组合数公式nn nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n k nC kC C C C C C C C C C C C 四、例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2判断下列问题是排列问题还是组合问题?(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.五、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有()A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即2143,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).(三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()A.140种B.84种C.70种D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种)可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).例62名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有()A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

排列组合知识点总结

排列组合知识点总结

排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n m n C - 11m m m n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

数学排列组合知识点精要讲解

数学排列组合知识点精要讲解

数学排列组合知识点精要讲解在我们的数学世界中,排列组合是一个既有趣又实用的知识领域。

它就像是一把神奇的钥匙,能够帮助我们解决各种各样看似复杂的计数问题。

首先,让我们来理解一下什么是排列。

排列指的是从给定的元素中,按照一定的顺序选取若干个元素进行排列。

比如说,从 5 个不同的数字中选取 3 个进行排列,那么第一个位置有 5 种选择,第二个位置剩下 4 种选择,第三个位置则剩下 3 种选择。

所以总的排列数就是5×4×3 = 60 种。

排列的计算公式为:A(n, m) = n! /(n m)!这里的“!”表示阶乘,比如 5! = 5×4×3×2×1 。

接下来,再说说组合。

组合与排列不同,它不考虑选取元素的顺序。

还是上面那个例子,如果是从 5 个不同的数字中选取 3 个进行组合,那么组合的数量就会比排列少。

因为在组合中,只要元素相同,不管顺序如何,都算作同一种情况。

组合的计算公式是:C(n, m) = n! / m!(n m)!为了更好地理解排列组合,我们来看几个实际的例子。

假设要从 10 个人中选出 3 个人参加比赛,这就是一个组合问题。

因为选出的 3 个人去参加比赛,他们的顺序不影响结果。

但如果是要从 10 个人中选出3 个人分别参加不同的比赛项目,这就是一个排列问题,因为不同的比赛项目,人员的顺序是有影响的。

在解决排列组合问题时,有一些常见的方法和技巧。

比如插空法,如果有一些元素要求不能相邻,那么我们就先排好其他元素,然后在这些元素形成的空隙中插入不能相邻的元素。

还有捆绑法,当有一些元素必须相邻时,我们可以把它们看作一个整体,先和其他元素一起排列,然后再考虑内部的排列。

另外,在一些复杂的问题中,可能需要分类讨论。

把问题分成不同的情况,分别计算每种情况的排列组合数,最后再把结果相加。

排列组合在实际生活中的应用也非常广泛。

比如在彩票抽奖中,计算中奖的可能性就用到了排列组合的知识。

排列组合的基本知识点

排列组合的基本知识点

排列组合的基本知识点在数学的广阔领域中,排列组合是一个充满趣味和实用性的重要分支。

它帮助我们解决在各种情况下如何计算可能性的问题,无论是安排座位、挑选物品,还是计算比赛的结果可能性,排列组合都发挥着关键作用。

接下来,让我们一起深入了解排列组合的基本知识点。

首先,我们来认识一下什么是排列。

排列指的是从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

打个比方,如果有三个字母 A、B、C,从中选取两个进行排列,那么就有 AB、BA、AC、CA、BC、CB 这六种不同的排列方式。

排列的计算公式为:A(n, m) = n! /(n m)!这里的“n”表示总数,“m”表示选取的个数。

“!”表示阶乘,例如 5! = 5 × 4 × 3 × 2 × 1 。

接着,我们来看组合。

组合则是从给定的元素集合中,不考虑顺序地选取若干个元素。

还是以三个字母 A、B、C 为例,从中选取两个的组合,就只有 AB、AC、BC 这三种。

组合的计算公式是:C(n, m) = n! / m!(n m)!。

在实际应用中,我们要注意区分排列和组合的情况。

比如,从 10个人中选 3 个人组成一个小组,这是组合问题;而让这 3 个人分别担任组长、副组长和组员,这就是排列问题。

再说说排列组合的一些重要性质。

比如,A(n, n) = n! ,C(n, 0) =1 ,C(n, n) = 1 。

然后是一些常见的解题方法。

分步计数原理和分类计数原理是基础。

分步计数原理就是做一件事,需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。

分类计数原理则是完成一件事,有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +…+ mn 种不同的方法。

奥数:排列组合的基本理论和公式

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。

如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。

(一)两个基本原理是排列和组合的基础:(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。

(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。

这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。

这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

3C表示从5个元素中取出3个,总共有多少种不同的取5法。

这是组合的运算。

例如:从5个人中任选三个人去参加比赛,共有几种选法?这就是从5个元素中取出3个的组合运算。

可表示为3C。

其计算过程是35C=5!/[3!×(5-3)!]5叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6,(5-3)!=2!=2×1=2,所以3C=5!/[3!×(5-3)!]=120/(6×2)=105针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。

排列组合公式:公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

n—元素的总个数;r—参与选择的元素个数。

(完整版)排列组合知识点总结+典型例题及答案解析

(完整版)排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列与组合的基本原理

排列与组合的基本原理

排列与组合的基本原理排列与组合是概率与统计学中常见的概念和工具,用于描述对象的不同排列和组合方式。

在数学中,排列和组合是基于集合和元素的概念,通过数学运算来计算不同的排列和组合情况。

一、排列的基本原理排列是指从一组元素中选择出若干个元素进行排列的过程。

在排列中,元素的顺序是重要的,不同的排列顺序将得到不同的结果。

以n个元素进行全排列为例,可以使用以下公式来计算可能的排列数:P(n) = n!其中,n!表示n的阶乘,即n*(n-1)*(n-2)*...*2*1。

该公式计算了n 个元素全排列的可能性。

对于从n个元素中选择r个元素进行排列的情况,可以使用以下公式计算排列数:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,(n-r)!表示(n-r)的阶乘。

该公式计算了n个元素中选择r个元素进行排列的可能性。

二、组合的基本原理组合是指从一组元素中选择出若干个元素进行组合的过程。

在组合中,元素的顺序不重要,不同的组合顺序将得到相同的结果。

以n个元素进行全组合为例,可以使用以下公式来计算可能的组合数:C(n) = 2^n其中,^表示幂运算。

该公式计算了n个元素的全组合的可能性。

对于从n个元素中选择r个元素进行组合的情况,可以使用以下公式计算组合数:C(n, r) = n! / ((n-r)! * r!)其中,n!表示n的阶乘,(n-r)!和r!分别表示(n-r)的阶乘和r的阶乘。

该公式计算了n个元素中选择r个元素进行组合的可能性。

三、应用举例在实际应用中,排列和组合的原理可以用于解决多种问题。

以下是一些常见的应用示例:1. 选课排班:一所学校有10门选修课,每个学生需要选择3门课进行学习。

计算一下共有多少种不同的选课排班可能性。

根据排列的计算公式,可以得到结果:P(10, 3) = 10! / (10-3)! = 7202. 抽奖活动:一次抽奖活动中,有10个人参与,每人可以抽取3个奖品。

计算一下共有多少种不同的奖品分配方式。

小学六年级奥数 计数方法之捆绑法、插空法、插板法

小学六年级奥数 计数方法之捆绑法、插空法、插板法

Ann n! n(n 1)(n 2) 2 1
(2)组合数公式:
Cnm

Anm Amm

n(n 1) (n m 1) m (m 1) 2 1
(3)组合C nm n

C
0 n

C
1 n

C
2 n



Cnn
1
【例3】(★★★) 核桃组的9个人继续照相,这次排队有了新的讲究:天天、向向、 汤汤三位帅哥强烈要求必须相邻,任谁劝都不听,这时候只见 摄像师小段拿着一根绳子笑着就走过来了说:我能很快解决你 们这样一共有几种排队方式的问题。
【例4】 (★★★) 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书, 全部竖起排成一排,如果要求童话书排在一起,漫画书排在一起 有多少种排法?
【例2】(★★★) 4月5日早上核桃组刚到桃园仙谷,组长美美和她八个小伙伴都很 兴奋,想站在一块儿合个影,请分别求出以下情况有多少种不同 的站法? (1)天天固执的认为站成一排并且自己必须站在正 中间,因为自己长的比别人帅一些。 (2)向向发言:站成一排并且自己和汤汤站两端, “我们俩宽度一样,这样比较对称”。 (3)小熊老师:“我和天天不站两端,其余的随便 排,快点,不要磨叽。”

2n
【例1】(★★) 4月4日晚上饼干组刚到桃园仙谷,大家都很兴奋,璐璐、关关、 兔兔、小雷、峰峰、阳阳、成成,媛媛八个人想站在一块儿合个 影,请分别解出以下情况的不同方法数。 ⑴组长兔兔觉得: 8个人随便站成一排,她认为这 样简单公平。 ⑵副组长关关认为: 8个人可以站成三排,前2中3后3, 这样看起来比较美观。
【例5】 (★★★) 饼干组的一行8人同样在照相,但排队过程中一个小插曲影响了 照相的进度,兔兔与关关、小新起了一点小矛盾, 3人带着情绪强 烈要求:互不相邻,这样有几种排队的方式?

排列组合的一些公式及推导(非常详细易懂)

排列组合的一些公式及推导(非常详细易懂)

排列组合的一些公式及推导(非常详细易懂)绪论:加法原理、乘法原理分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn 种不同的方法。

分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×⋯×mn种不同的方法。

区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是总数。

排列问题排列数从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,用符号Amn表示。

排列数公式Amn=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!,n,m∈N∗,并且m≤n(规定0!=1)推导:把n个不同的元素任选m个排序,按计数原理分步进行:取第一个:有n种取法;取第二个:有(n−1)种取法;取第三个:有(n−2)种取法;……取第m个:有(n−m+1)种取法;根据分步乘法原理,得出上述公式。

排列数性质Amn=nAm−1n−1 可理解为“某特定位置”先安排,再安排其余位置。

Amn=mAm−1n−1+Amn−1 可理解为:含特定元素的排列有mAm−1n−1,不含特定元素的排列为Amn−1。

组合问题组合数从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,用符号Cmn表示。

组合数公式Cmn=AmnAmm=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,n,m∈N∗,并且m≤nC0n=Cnn=1证明:利用排列和组合之间的关系以及排列的公式来推导证明。

将部分排列问题Amn分解为两个步骤:第一步,就是从n个球中抽m个出来,先不排序,此即组合数问题Cmn;第二步,则是把这m个被抽出来的球排序,即全排列Amm。

高三数学知识点排列组合

高三数学知识点排列组合

高三数学知识点排列组合在高三数学教学中,排列组合是一个重要的知识点。

它涉及到对对象的选择和排列方式的计算,对于解决实际问题和应用数学领域具有广泛的应用。

本文将介绍排列组合的基本概念、计算方法以及一些常见的应用场景。

一、排列的概念和计算方法排列是指从一组对象中按照一定的顺序选择和排列若干个对象,形成不同的排列方式。

在数学上,用P表示排列,n表示元素个数,r表示选取的元素个数。

根据排列的性质,可以得到排列的计算公式如下:P(n, r) = n! / (n - r)!其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * ... * 2 * 1。

从公式中可以看出,当选取的元素个数r较小时,排列的数量较大;当选取的元素个数r较大时,排列的数量较小。

二、组合的概念和计算方法组合是指从一组对象中按照一定的顺序选择若干个对象,不考虑其排列顺序。

在数学上,用C表示组合,n表示元素个数,r表示选取的元素个数。

根据组合的性质,可以得到组合的计算公式如下:C(n, r) = n! / [(n - r)! * r!]与排列不同的是,组合中的元素个数不再影响组合的数量,只有选取的元素顺序不同,组合才会发生变化。

因此,当选取的元素个数相同时,组合的数量是相等的。

三、排列组合的应用场景1. 彩票中奖概率计算:在彩票中,通过排列组合可以计算出中奖的概率。

例如,从1到10共有10个号码,中奖号码为5个,那么从10个号码中选中5个号码的中奖概率可以通过计算C(10, 5)来得到。

2. 字母的排列和组合:在密码破解和密码生成中,排列组合的知识可以应用到字母的排列和组合。

例如,某个密码由4个字母组成,且可以重复使用相同的字母,那么可以通过计算出排列的数量来确定密码的可能性。

3. 座位的安排:在会议或者活动中,可能需要安排参与者的座位。

通过排列组合的知识,可以计算出不同座位的安排方式。

例如,有10个人和10个座位,每个人只能坐一个座位,那么可以通过计算P(10, 10)来得到不同座位安排的数量。

小学奥数专题--排列组合

小学奥数专题--排列组合

.✧排列问题题型分类:1.信号问题2.数字问题3.坐法问题4.照相问题5.排队问题✧组合问题题型分类:1.几何计数问题2.加乘算式问题3.比赛问题4.选法问题✧常用解题方法和技巧1.优先排列法2.总体淘汰法3.合理分类和准确分步4.相邻问题用捆绑法5.不相邻问题用插空法6.顺序问题用“除法”7.分排问题用直接法8.试验法9.探索法10.消序法11.住店法12.对应法13.去头去尾法14.树形图法15.类推法16.几何计数法17.标数法18.对称法分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。

二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别⏹做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同⏹这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号P m n表示.P m n =n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.C m n = P m n /m!=n! (n-m)!×m!一般当遇到m比较大时(常常是m>0.5n时),可用C m n = C n-m n来简化计算。

排列组合知识点总结

排列组合知识点总结

排列组合知识点总结排列组合是数学中一个重要的分支,它在解决许多实际问题中都有着广泛的应用,比如抽奖、选座位、安排比赛等等。

下面让我们一起来详细了解一下排列组合的相关知识点。

一、基本概念1、排列从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同。

排列数用 A(n, m) 表示。

2、组合从 n 个不同元素中,任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。

组合数用 C(n, m) 表示。

二、排列数与组合数的计算公式1、排列数公式A(n, m) = n(n 1)(n 2)…(n m + 1) = n! /(n m)!2、组合数公式C(n, m) = n! / m!(n m)!三、排列组合的基本性质1、排列的性质(1)A(n, n) = n!(2)A(n, m) = nA(n 1, m 1)2、组合的性质(1)C(n, 0) = C(n, n) = 1(2)C(n, m) = C(n, n m)四、解决排列组合问题的常用方法1、特殊元素优先法对于存在特殊元素的问题,优先考虑特殊元素的排列或组合。

2、捆绑法当要求某些元素必须相邻时,可以将这些元素看作一个整体,与其他元素一起进行排列,然后再考虑这些相邻元素的内部排列。

3、插空法当要求某些元素不能相邻时,先将其他元素排列好,然后在这些元素之间及两端的空位中插入不能相邻的元素。

4、间接法有些问题直接求解较为复杂,可以先求出总的排列或组合数,然后减去不符合要求的排列或组合数。

5、分类讨论法当问题包含多种情况时,需要对不同情况进行分类讨论,然后将各种情况的结果相加。

五、常见的排列组合问题类型1、排队问题例如,n 个人排成一排,共有多少种不同的排法;某些人必须相邻或不能相邻的排法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。

如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。

(一)两个基本原理是排列和组合的基础:
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。

(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。

这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。

这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

3
C表示从5个元素中取出3个,总共有多少种不同的取5
法。

这是组合的运算。

例如:从5个人中任选三个人去参加
比赛,共有几种选法?这就是从5个元素中取出3个的组合
运算。

可表示为3
C。

其计算过程是35C=5!/[3!×(5-3)!]
5
叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6,
(5-3)!=2!=2×1=2,所以3
C=5!/[3!×(5-3)!]=120/(6×2)=10
5
针对上面例子,就是从5个人中任选三个人去参加比赛,共
有10几种选法。

排列组合公式:
公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

n—元素的总个数;r—参与选择的元素个数。

!—阶乘,如 9!=9×8×7×6×5×4×3×2×1。

举例:
Q1:有从1到9共计9个号码球,请问,可以组成多
少个三位数?
A1: 123和213是两个不同的排列数。

即对排列顺序
有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9×8×7个三位数。

计算公式=3
P=9×8×7。

9
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数3
C= 9!/3!×6!=9×8×7/3×2×1
9。

相关文档
最新文档