计算机组成原理实验三数据输出移位门

合集下载

计算机组成原理实验三数据输出移位门

计算机组成原理实验三数据输出移位门

1
R-OE 右
(1) 按照下表 0 1 移门
连接线。
1
L-OE 左
1 0 移门
1
没有输
11 出
连信 接 接 号孔 入孔
作用
状态说明
J
J
将 K23-K26 接
实验模式:手
1
1 座 3 座 入 DBUS[7:0]

X
K
寄存器输出选
2
0
5

X
K
寄存器输出选
3
1
6

X
K
寄存器输出选
4
2
7

A
K
5
EN 3
分析 首先设置手动模式:按[TV/ME]键三次,进入"Hand......"手动状态。 系统清零 K23-K16 开关置零,按[RST]钮。将 55H 写入 A 寄存器,二进 制开关 K23-K16 依次置为:01010101,控制信号 K3,K2,K1,KO 依次为:0111。按住 STEP 脉冲键,CK 由高变低,这时寄存器 A 的黄色选择指示灯亮,表明选择 A 寄 存器。放开 STEP 键,CK 由低变高,产生一个上升沿,数据 55H 被写入 A
据总线 DBUS 上;观察移位门输出结果。
2、实验电路
CPTH 中有 7 个寄存器可以向数据总线输出数据,但在某一特定时刻
只能有一个寄存器输出数据,由 X2,X1,X0 决定那一个寄存器输出数据 ,
下表是 X2,X1,X0 与各个寄存器的关系表。图 8 是总线上的 7 个寄存器的
控制端原理图。
X
输出寄
寄存器。S2S1S0=111 时运算器结果为寄存器 A 内容。

计算机组成原理实验

计算机组成原理实验

二、通用寄存器单元实验
3.实验说明 (2)通用寄存器单元的工作原理
二、通用寄存器单元实验
3.实验说明 (2)通用寄存器单元的工作原理 通用寄存器单元的核心部件为2片GAL16V8,它 具有锁存、左移、右移、保存等功能。各个功能 都由X1、X2信号和工作脉冲RACK来决定。当置 ERA=0、X0=1、X1=1,RACK有上升沿时,把总线上 的数据打入通用寄存器。可通过设置X0、X1来指 定通用寄存器工作方式,通用寄存器的输出端Q0-Q7接入判零电路。LED(ZD)亮时,表示当前通用 寄存器内数据为0。
A+B
CN=0,M=0 A+1 (A+B)+1
(A+B) + 1
0
0
AB
B A⊕B A B A +B A⊕B
A+AB (A+B)+AB
A-B-1
AB- 1
A+AB+ 1 (A + B )+ A B +1
A-B
A B
A+AB A+B AB-1 A+A (A+B)+A
(A+B)+A
(A+B)+AB
A+AB+1 A+B+1
一、算术逻辑运算单元实验
4.实验步骤 (2)不带进位位加法 74LS181的M=0,CN=1,S3S2S1S0=1110,则 74LS181工作在无进位位加法运算状态,运算为 F=A加B 本实验中,A=33H,B=55H 应得结果为:F=33H加55H=88H LED显示结果:88H 结果正确?
一、算术逻辑运算单元实验
一、算术逻辑运算单元实验

DJ-CPT816计算机组成原理和系统结构实验仪

DJ-CPT816计算机组成原理和系统结构实验仪

DJ-CPT816计算机组成原理和系统结构实验仪产品介绍:·主要特点CPT816是我公司最新推出的八位、十六位计算机组成原理和系统结构实验仪,CPT816有CPTH 主板和CPT16实验板组成,CPTH主板以八位机模式,用TTL74系列器件+CPLD构建模型机部件,让学生以可视方式观察CPU内各部件工作过程和模型机的实现,CPT16实验板以十六位机模式,用10万门EP1K100 FPGA芯片构建模型机所有部件,并配置64K×16位存储器,在对八位机了解的基础上,让学生对十六位计算机组成原理有更深刻的理解,实现质的飞跃,为FPGA 设计CPU打下基础。

·CPTH主板简介DJ-CPTH是我公司最新推出的一款功能强、性能好,软件硬件都是一流的高性能计算机组成原理实验仪产品,系统电路采用了多片在线可编程CPLD大大提高了可靠性和功能提升的可能性,软件提供了详尽的信息窗口、运行图表和多类帮助信息,使教学的过程轻松自如。

一、系统特点⑴先进的硬件设计,充分展示计算机结构模型,每个模块均有实时监视,模块间线条明快,数据/指令流向一目了然。

⑵完善的硬件配置,实验电路以分立器件为主,同时配备CPLD,支持部分模块的重构。

⑶开放的软硬件设计,支持用户新建指令/微指令的系统设计。

⑷控制器的有机结合,只需拨动选择开关,就可实现微程序或组合逻辑控制的切换。

⑸提供多种工作方式,支持手动、脱机、联机。

⑹提供三总线接口和锁紧插座,支持I/O扩展。

⑺提供多种指令系统,支持基本模型机、指令流水线、RISC模型机实验。

⑻强大的指令功能,支持多种寻址方式和中断、调用等。

⑼丰富的调试手段,具有单步、微单步、运行、暂停等功能。

⑽提供联机调试软件,自带编译器、支持汇编语言源程序调试,图形化动态显示计算机结构模型的数据/指令流向,操作历史记录状态显示,方便用户查找历史记录。

⑾提供30路逻辑分析波形图,充分展示指令与时序的关系,可让学生在实验时直观地观测到指令与时序的关系,可有效的提高教学效果。

《计算机组成原理》实验

《计算机组成原理》实验

实验一、运算实验算术逻辑一、实验目的1、掌握简单运算器的数据传送通路2、验证运算功能发生器(74LS181)的组合功能二、实验设备CCT-IV计算机组成原理教学实验系统一台,排线若干。

三、实验原理实验中的运算器由两片74LS181构成。

运算器的输出经过一个三态门74LS245和数据总线相连,运算器的两个数据输入端,分别由二个锁存器74LS273锁存,锁存器的输入端和数据总线相连,数据输入输出都通过总线完成;数据显示灯(“BUS UNIT”)与数据总线相连,用来显示数据总线内容。

实验中的数据输入由数据开关(“INPUT DEVICE”)给出,并经过三态门74LS245和数据总线相连,数据输出可以经总线输出至七段数码管(“OUTPUT DEVICE”)显示S3S2S1S0MLDDR1 T4 LDDR2SW-B图1-2运算器数据通路图1-2中T4为脉冲信号,其它均为电平信号。

在实验中,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3、S2、S1、S0、Cn、M、LDDR、ALU-B、SW-B各电平控制信号用“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDR1,LDDR2为高电平有效进位控制运算的实验,是在前面实验的基础上增加进位控制部分(如1-3图所示),其中181的进位进入一个74锁存器,其写入是由T4的AR信号控制,T4是脉冲信号,实验时将T4连至“STATE UNIT”的微动开关KK2上。

AR是电平控制信号,可用于实现带进位控制实验,而T4脉冲是将本次运算的进位结果锁存到进位锁存器中。

四、实验内容1、按图1-1实验接线图连接线路,仔细查线无误后,接通电源。

2、用二进制数码开关分别向DR1和DR2寄存器臵数01100101,10100111。

①打开数据输入三态门SW-B=0 关闭运算器输出三态门ALU-B=1②向寄存器DR1传送数据,数据开关臵01100101,LDDR1=1,LDDR2=0,按下KK2,产生T4信号③向寄存器DR2传送数据,数据开关臵10100111,LDDR1=0,LDDR2=1,按下KK2,产生T4信号④关闭数据输入三态门SW-B=1,打开运算器输出三态门ALU-B=0⑤当臵S3、S2、S1、S0、M为11111时,总线指示灯DR1中的数,而臵成10101时总线指示DR2中的数。

计算机组成原理运算器移位器控制器

计算机组成原理运算器移位器控制器

计算机组成原理运算器移位器控制器1.运算器运算器是计算机中负责执行算术和逻辑运算的部件。

其主要功能是进行加法、减法、乘法、除法等运算,并且可以进行逻辑运算如与、或、非等操作。

一般来说,运算器由算术逻辑单元(ALU)和寄存器组成。

算术逻辑单元包括了算术运算电路和逻辑运算电路。

算术运算电路负责实现加法、减法、乘法等运算,而逻辑运算电路则负责实现与、或、非等逻辑运算。

2.移位器移位器是计算机中负责实现数据移位的部件。

数据移位是将二进制数的位进行移动的操作,分为逻辑移位和算术移位两种。

逻辑移位是指将二进制数按照指定方向进行移位,空出的位补0或删除多余位。

算术移位则是在逻辑移位的基础上,保留最高位的符号位。

在计算机中,移位操作可以通过位移电路来实现。

位移电路一般包括了多个触发器和逻辑门,根据控制信号来实现不同的移位操作。

3.控制器控制器是计算机中负责指挥和协调各个硬件部件工作的部件。

其主要功能是根据指令的执行流程,生成控制信号来控制各个硬件部件的工作。

一般来说,控制器由时序电路和控制存储器组成。

时序电路负责生成时序信号,即根据时钟信号的变化来确定各个操作的时机。

控制存储器则用来存储指令执行的顺序和所需的控制信号。

控制器通过读取有关指令的信息,对相应的硬件部件发出控制信号,根据指令的要求完成相应的操作。

总结起来,运算器、移位器和控制器是计算机中三个重要的功能模块。

运算器负责执行算术和逻辑运算,移位器负责数据移位操作,而控制器负责协调和控制各个硬件部件的工作。

这三个模块的协同工作使得计算机能够完成各种复杂的任务,实现计算、逻辑运算和控制等功能。

(完整word版)计算机组成原理实验1~4

(完整word版)计算机组成原理实验1~4

实验一寄存器实验一、实验目的1、了解CPTH模型机中寄存器的结构、工作原理及其控制方法.2、熟悉CPTH实验仪的基本构造及操作方法。

二、实验电路寄存器的作用是用于保存数据的,因为CPTH模型机是8位的,因此模型机中大部寄存器是8 位的,标志位寄存器(Cy, Z)是二位的.CPTH 用74HC574 (8—D触发器)来构成寄存器。

74HC574 的功能如表1—1所示:图1-1 74HC574的引脚图1. 在CLK的上升沿将输入端的数据打入到8 个触发器中2. 当OC = 1 时触发器的输出被关闭,当OC=0 时触发器的输出数据表1-1 74HC574功能表图1—2 74HC574工作波形图三、实验内容(一)proteus仿真平台1、proteus仿真平台简介Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件。

它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件.它的主界面如图1-3所示:图1—3 proteus仿真平台主界面2、在proteus平台上运行电路:寄存器_1.DSN。

拨动开关,观察灯的亮灭,回答思考题1。

思考题1:先使OC=1,拨D0~D7=00110011,按下CK提供CLK上升沿;再拨D0~D7=01000100,OC=0,此时Q0~Q7为多少?3、CPTH模型机上,寄存器A的电路组成如图1-4所示。

在proteus平台上运行电路:寄存器_2.DSN,回答思考题2。

图1-4 寄存器A原理图思考题2:数据从D端传送到Q端,相应的控制端如何设置?3、CPTH模型机上,寄存器组R0~R3的电路组成如图1-5所示。

在proteus平台上运行电路:寄存器_3。

DSN,回答思考题3。

图1—5 寄存器组R0~R3 原理图74LS139是2—4线译码器,由A、B两个输入端选择控制4个输出端Y0~Y3,使能端E低电平有效,允许译码输出。

74HC32是或门,两个输入端同时为低电平,输出为低电平.具体的控制方式见表1-2。

计算机组成原理实验教案(ly)

计算机组成原理实验教案(ly)

计算机组成原理实验教案李妍计算机学院计算机系前言学习《计算机组成原理》课程的目的,是让学生建立计算机系统的整机概念。

本实验的任务则侧重于:以基本模型机为对象,了解计算机系统的硬件组成。

在实验中涉及基本模型机的各主要部件的结构与功能任务;涉及微程序设计的方法与理论。

实验的开设是基于COP2000计算机组成原理教学实验系统,该系统的软硬件对用户的实验设计具有完全的开放特性。

COP2000 各实验模块的数据线、地址线与系统之间的挂接是通过三态门,而不是其它实验设备所采用的扁平连线方法,而数据线、地址线是否要与系统连通,则由用户连线控制,这样,就真实的再现了计算机工作步骤。

各寄存器、部件均有8 位数据指示灯显示其二进制值,两个8 段码LED 显示其十六进制值,清楚明了,两个数据流方向指示灯。

以直观反映当前数据值及该数据从何处输出,而又是被何单元接收的。

实验系统各部件可以通过J1、J2、J3 座之间不同的连线组合,可进行各部件独立的实验,也可进行各部件组合实验,再通过与控制线的组合,就可构造出不同结构及复杂程度的原理性计算机。

本实验台提供三种工作方式1、手动方式不连PC 机,通过COP2000 实验仪的键盘输入程序、微程序,用LCD及各部件的8 个状态LED,两个方向LED 观察运行状态和结果,手动进行实验;2、联机方式连PC 机,通过WINDOWS 调试环境及图形方式进行更为直观的实验。

在WINDOWS 调试环境中提供了功能强大的逻辑分析和跟踪功能,既可以以波形的方式显示各逻辑关系,也可在跟踪器中,观察到当前状态的说明及提示;3、模拟方式不需实验仪,仅需计算机即可进行实验。

系统的数据线、地址线、控制线均在总线插孔区引出,并设计了40 芯锁进插座,供用户进行RAM、8251、8255、8253、8259 等接口器件的扩展实验。

计算机组成原理实验教案1实验一寄存器实验一、实验目的1. 了解模型机中A, W寄存器结构、工作原理及其控制方法。

计算机组成原理移位运算实验报告

计算机组成原理移位运算实验报告

计算机组成原理移位运算实验报告移位运算是计算机中非常基础的运算之一,用于将二进制数的位数进行移动。

移位运算可分为左移和右移两种,左移是将二进制数的位数向左移动,右移则是将二进制数的位数向右移动。

移位运算通常用于二进制数的乘除运算、数据压缩、程序优化等方面。

在本次实验中,我们将通过Verilog HDL 设计一个移位器,实现移位运算。

1. 实验原理和设计设计移位器需要对移位运算的原理有一定的理解。

在二进制数的移位运算中,移位的方向和位移的距离都是明确的,因此我们可以通过调整输入信号的位置,分别实现左移和右移。

具体实现方法可以采用逻辑门电路实现,也可以采用移位指令指令直接实现。

在本次实验中,我们采用逻辑门的实现方法。

移位器的设计主要分为以下几个步骤:1. 采用Verilog HDL 自定义输入端口和输出端口。

2. 采用逻辑门电路实现移位器,包括左移和右移两种方式。

3. 对移位器进行仿真调试,验证移位器的正确性。

以下是实验所采用的Verilog HDL 代码:module shifter(input [15:0] in_data,input [1:0] shift_direction,input [3:0] shift_distance,output [15:0] out_data);wire [15:0] shift_out;assign shift_out = shift_direction[0] ? (in_data << shift_distance) : (in_data >> shift_distance);assign out_data = shift_direction[1] ? (in_data << shift_distance) : (in_data >> shift_distance);endmodule代码中定义了4 个输入端口和一个输出端口,在输入端口中,`in_data` 为需要进行移位的二进制数,`shift_direction` 为移动方向(0 为右移,1 为左移),`shift_distance` 为移动的距离。

指导-组成原理DICE-CP226实验一至五

指导-组成原理DICE-CP226实验一至五

实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。

各部件之间,通过三态缓冲器作接口连接。

2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。

各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。

3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。

模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。

4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。

②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。

5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。

用户还可以设计自己的指令/微指令系统。

系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。

计算机组成原理 系统认识及运算器实验报告

计算机组成原理 系统认识及运算器实验报告
ALU运算器由CPLD描述。运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。AWR、BWR在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的脉冲把总线上的数据打入,实现运算源寄存器A、暂存器B的写入操作。
2.实验过程
按照实验指导书上的操作将实验箱切换到“手动”,“搭接”模式,然后连接好线,接着按照指导书上的具体操作依次实现算术、逻辑、移位运算。
算数控制
运算表达式
M S2 S1 S0
A
B
运算结果
算术加
A+B
0100
44
22
66
算术减
A-B
0101
44
22
22
左移
RL A
0110
44
22
88
右移
RR A
0111
44
22
22
取B值
B
1000
22
22
A取反
NOT A
1001
44
BB
A减1
A-1
1010
44
43
清零
0
1011
44
22
0
逻辑或
A OR B
1100
44
22
66
逻辑与
A AND B
1101
44
22
00
A加1
A+1
1110
44
45
取A值
A

计算机组成原理实验指导书-CPTH

计算机组成原理实验指导书-CPTH

DJ-CPTH计算机组成原理实验系统实验指导阜阳师范学院计算机与信息学院2008年3月目录目录 (1)实验一认识实验装置 (2)实验二寄存器实验 (10)实验三运算器实验 (18)实验四数据输出和移位实验 (22)实验五存储器实验 (26)实验六uPC和PC 实验 (32)实验七微程序存储器uM实验 (37)实验八模型机综合实验一 (39)实验九模型机综合实验二 (46)实验十微程序设计实验 (55)实验十一扩展实验 (60)附录1:CPTH 集成开发环境使用 (63)附录2:指令/微指令表(insfile1.mic) (68)附录3:实验用芯片介绍 (79)实验一认识实验装置实验目的:了解实验仪的特点及组成;掌握实验仪键盘的使用。

实验器材:DJ-CPTH实验仪实验要求:1、认真填写预习报告,包括对实验仪器组成的理解、实验操作步骤等。

2、实验之后写出实验报告,包括实验过程中遇到的问题,解决方法,实验后的心得体会及对该次实验的建议与意见。

实验原理及步骤:一、DJ-CPTH特点1、采用总线结构总线结构的计算机具有结构清晰,扩展方便等优点。

DJ-CPTH实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。

各部件之间,通过三态缓冲器作接口连接,这样一方面增强总线驱动能力,另一方面在模型机停机时,三态门输出浮空,能保证不管模型机的CPU工作是否正常,管理单片机总能读/写主存或控存。

2、计算机功能模块化设计DJ-CPTH为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。

各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。

计算机组成原理实验指导及答案.docx

计算机组成原理实验指导及答案.docx

计算机组成原理实验指导实验一运算器实验一、实验目的1. 掌握简单运算器的数据传输方式。

2. 验证运算功能发生器(74LS1 81)及进位控制的组合功能。

二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用0三、实验原理实验中所用的运算器数据通路如图7-1-1所示。

其中运算器山两片74LS181以并/ 串形式构成8位字长的ALU 。

运算器的输出经过一个三态|' J(74LS245)以8芯扁平线方式 和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的 输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)川來给出参与运算 的数据,经一三态fJ(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT) 已和数据总线相连,用來显示数据总线内容。

图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接吋序启停单元时钟信号 來获得,剩余均为电平控制信号。

进行实验时,首先按动位于本实验装置右中侧 的复位按钮使系统进入初始待令状态,在LED 显示器闪动位岀现“P.”的状态下,按【增进! 二 I制' 开' 关• 单' 元I址】命令键使LED 显示器口左向右第4位切换到提示符“L” ,表示本装置已进入手动单 元实验状态,在该状态卜•按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、 LDDR2、ALU-B 、SW-B 、S3、S2、S1、SO 、CN 、M 各电平控制信号用位于LED 显示 器上方的26位二进制开关來模拟,均为高电平有效。

四、实验连线両时序启停JUUTO O图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:① 总线接口连接:用8芯扁平线连接图7-1-2屮所有标明“U 帕”或“目儷”图 案的总线接口。

② 控制线与时钟信号“皿1”连接:用双头实验导线连接图7-1-2中所侑标明“O+C”O或“受”图案的插孔(注:Dais-CMH 的吋钟信号已作内部连接)。

LG-CP226超强型计算机组成原理实验仪

LG-CP226超强型计算机组成原理实验仪

LG-CP226超强型计算机组成原理实验仪LG-CP226超强型计算机组成原理实验仪是我公司最新推出的一款功能强、性能好,软件硬件都是一流的高性能计算机组成原理实验仪产品,系统电路采用了多片CPLD大大提高了可靠性和功能提升的可能性,软件提供了详尽的信息窗口、运行图表和多类帮助信息,使教学的过程轻松自如。

产品说明:一、系统特点(1)结构清晰、实时监视器各单元部件都以计算机结构模型布局,清晰明了,各寄存器、部件均有8 位数据指示灯显示其二进制值,两个8 段码LED 显示其十六进制值,清楚明了,两个数据流方向指示灯,以直观反映当前数据值及该数据从何处输出,而又是被何单元接收的。

这是该产品独创的“实时监视器”,使得系统在实验时即使不借助PC 机,也可实时监控数据流状态及正确与否,彻底改变了其它实验设备为监控状态必须加入读操作的不真实实验方法,使得学生十分容易认识和理解计算机组成结构。

实验系统各部件可以通过J1、J2、J3 座之间不同的连线组合,可进行各部件独立的实验,也可进行各部件组合实验,再通过与控制线的组合,就可构造出不同结构及复杂程度的原理性计算机。

(2)开放式设计实验系统的软硬件对用户的实验设计具有完全的开放特性。

与众不同的是:LG-CP226 各实验模块的数据线、地址线与系统之间的挂接是通过三态门,而不是其它实验设备所采用的扁平连线方法,而数据线、地址线是否要与系统连通,则由用户连线控制,这样,就真实的再现了计算机工作步骤。

需要强调指出的是:用“连线跨接”并不能说明其开放特性,而所谓的开放性应指的是运算器、控制器及微程序指定的格式及定义能否进行修改和重新设计。

LG-CP226 系统的运算器采用了代表现代科技的EDA 技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,也可自行重新设计并通过JTAG 口下载。

控制器微指定格式及定义可通过键盘和PC 机进行重新设计,从而产生与众不同的指令系统。

计算机组成原理课设(多寄存器减法、右移位、输入输出、转移指令实验计算机设计)

计算机组成原理课设(多寄存器减法、右移位、输入输出、转移指令实验计算机设计)

目录1课设目的 (1)2课设内容 (1)3课设计算机的设计 (1)3.1设计整机逻辑框图 (1)3.2指令系统的设计 (3)3.3微指令的格式设计及微操作控制部件的组成原理 (6)3.4微程序设计 (9)3.5编写调试程序 (12)3.6编写实验程序 (14)4实验计算机的组装 (15)5、实验计算机的调试 (18)5.1.调试前准备 (18)5.2.程序调试过程 (18)5.3调试结果 (19)5.4出错和故障分析 (21)5.4.1出错分析 (21)5.4.2故障分析查找 (21)5.4.3确认是否属故障 (22)5.4.4正确判断故障原因 (22)6心得体会 (22)7参考文献 (22)1课设目的(1)组成一个复杂的计算机整机系统—模型机,输入程序并运行;(2)了解微程序控制器是如何控制模型机运行的,掌握整机动态工作过程;(3)定义几条机器指令,编写相应微程序并具体上机调试.(4)完成多寄存器算术减法\右移位\输入输出\转移指令实验计算机设计。

2课设内容利用EL-JY-II型计算机组成原理实验仪提供的硬件资源,通过设计(包括整机结构设计、指令设计、微程序设计、微指令设计、调试程序设计等)、组装、调试三个步骤完成台微程序控制的简单实验计算机的研制。

完成多寄存器算术减法\右移位\输入输出\转移指令实验计算机设计。

3课设计算机的设计3.1设计整机逻辑框图本系统的结构组成为:1.基板:本部分是8位机和16位机的公共部分,包括以下几个部分:数据输入和输出,显示及监控,脉冲源及时序电路,数据和地址总线,外设控制课设电路,单片机控制电路和键盘操作部分,与PC机通讯的接口,主存储器,电源,CPLD课设板(选件),自由课设区(面包板)。

2.CPU板:本板分为8位机和16位机两种,除数据字长分别为8位和16位以外,都包括以下几个部分:微程序控制器,运算器,寄存器堆,程序计数器,指令寄存器,指令译码电路,地址寄存器,数据、地址和控制总线。

《计算机组成原理》第01-10章在线测试答案

《计算机组成原理》第01-10章在线测试答案

《计算机组成原理》第01章在线测试《计算机组成原理》第01章在线测试剩余时间:59:54答题须知:1、本卷满分20分。

2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。

3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。

第一题、单项选择题(每题1分,5道题共5分)1、完整的计算机系统应包括______。

A、运算器、存储器、控制器B、外部设备和主机C、主机和实用程序D、配套的硬件设备和软件系统2、计算机系统中的存储器系统是指______。

A、RAM存储器B、ROM存储器C、主存储器D、主存储器和外存储器3、冯•诺依曼机工作方式的基本特点是______。

A、多指令流单数据流B、按地址访问并顺序执行指令C、堆栈操作D、存储器按内部选择地址4、邮局把信件进行自动分拣,使用的计算机技术是______。

A、机器翻译B、自然语言理解C、模式识别D、机器证明5、计算机高级程序语言一般分为编译型和解释型两类,在Java、Fortran和C语言中,属于编译语言的是______。

A、全部B、FortranC、CD、Fortran和C第二题、多项选择题(每题2分,5道题共10分)1、冯•诺依曼原理的基本思想是:A、采用二进制形式表示数据和指令。

指令由操作码和地址码组成。

B、将程序和数据存放在存储器中,使计算机在工作时从存储器取出指令加以执行,自动完成计算任务。

这就是“存储程序”和“程序控制”(简称存储程序控制)的概念。

C、指令的执行是顺序的,即一般按照指令在存储器中存放的顺序执行,程序分支由转移指令实现。

D、计算机由存储器、运算器、控制器、输入设备和输出设备五大基本部件组成,并规定了5部分的基本功能。

2、计算机总线结构分为:A、单总线结构B、双总线结构C、多总线结构D、全总线结构3、理解计算机的概念,应从以下几个方面:A、以电子器件为物质基础,即研究的对象是电子数字计算机(Digital Computer)B、不需要人的直接干预,说明具有自动化能力,其前提是存储程序C、处理各种数字化信息,计算机以二进制编码作为数字化编码及运算的基础D、具有算逻运算能力,基本运算操作是算术和逻辑运算E、计算机是快速工具,主要取决于两个因素:一是电子器件,二是存储程序F、由硬件和软件组成4、目前常见的系统软件有:A、操作系统B、各种语言处理程序C、数据库管理系统D、各种服务性程序5、计算机系统的主要技术指标有:A、机器字长B、数据通路宽度C、主存储器容量D、运算速度第三题、判断题(每题1分,5道题共5分)1、任何可以由软件实现的操作也可以由硬件来实现正确错误2、固件就功能而言类似于软件,而从形态来说又类似于硬件正确错误3、在计算机系统的层次结构中,微程序级属于硬件级,其他四级都是软件级正确错误4、面向高级语言的机器是完全可以实现的正确错误5、电子数字计算机中处理的信息是在时间上离散的数字量,运算的过程是不连续的;电子模拟计算机中处理的信息是连续变化的物理量,运算的过程是连续的。

计算机组成原理实验教案

计算机组成原理实验教案

《计算机组成原理》实验教案计算机科学学院计算机系第一章实验项目一、寄存器实验实验要求:利用COP2000实验仪上的K16..K23开关做为DBUS的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。

实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。

实验说明:寄存器的作用是用于保存数据的,因为我们的模型机是8位的,因此在本模型机中大部寄存器是8位的,标志位寄存器(Cy, Z)是二位的。

COP2000用74HC574来构成寄存器。

74HC574的功能如下:1. 在CLK的上升沿将输入端的数据打入到8个触发器中2. 当OC = 1 时触发器的输出被关闭,当OC=0时触发器的输出数据OC CLK Q7..Q0 注释1 X ZZZZZZZZ OC为1时触发器的输出被关闭0 0 Q7..Q0 当OC=0时触发器的输出数据0 1 Q7..Q0 当时钟为高时,触发器保持数据不变X D7..D0 在CLK的上升沿将输入端的数据打入到触发器中74HC574工作波形图2实验1:A,W寄存器实验寄存器A原理图寄存器W原理图寄存器A,W写工作波形图连接线表连接信号孔接入孔作用有效电平1 J1座J3座将K23-K16接入DBUS[7:0]2 AEN K3 选通A 低电平有效3 WEN K4 选通W 低电平有效4 ALUCK CLOCK ALU工作脉冲上升沿打入将55H写入A寄存器3按住CLOCK脉冲键,CLOCK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A 寄存器。

放开CLOCK键,CLOCK由低变高,产生一个上升沿,数据55H被写入A寄存器。

将66H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H按住CLOCK脉冲键,CLOCK由高变低,这时寄存器W的黄色选择指示灯亮,表明选择W 寄存器。

移位操作电路实验报告(3篇)

移位操作电路实验报告(3篇)

第1篇一、实验目的1. 理解移位操作电路的工作原理。

2. 掌握移位操作电路的设计与搭建方法。

3. 验证移位操作电路的功能和性能。

二、实验原理移位操作电路是数字电路中常用的基本单元,用于实现二进制数的移位操作。

根据移位方向的不同,移位操作可分为逻辑移位和算术移位。

1. 逻辑移位:将移位的数据视为无符号数据,移位过程中不考虑数据的符号位。

逻辑移位包括逻辑左移(SLL)和逻辑右移(SRL)。

2. 算术移位:将移位的数据视为带符号数据,移位过程中保持符号位不变。

算术移位包括算术右移(SRA)。

移位操作电路主要由移位寄存器和控制逻辑组成。

移位寄存器用于存储待移位的数据,控制逻辑根据移位指令控制移位寄存器的移位操作。

三、实验设备1. 移位寄存器:一片74LS1942. 逻辑门电路:若干3. 电源:+5V4. 导线:若干5. 实验平台:示波器、逻辑分析仪等四、实验内容1. 逻辑左移(SLL)实验(1)搭建电路:将74LS194连接成8位左移寄存器,并添加控制逻辑。

(2)输入数据:将初始数据输入移位寄存器。

(3)控制移位:通过控制逻辑,实现数据的逻辑左移操作。

(4)观察结果:使用示波器或逻辑分析仪观察移位寄存器的输出,验证逻辑左移功能。

2. 逻辑右移(SRL)实验(1)搭建电路:将74LS194连接成8位右移寄存器,并添加控制逻辑。

(2)输入数据:将初始数据输入移位寄存器。

(3)控制移位:通过控制逻辑,实现数据的逻辑右移操作。

(4)观察结果:使用示波器或逻辑分析仪观察移位寄存器的输出,验证逻辑右移功能。

3. 算术右移(SRA)实验(1)搭建电路:将74LS194连接成8位算术右移寄存器,并添加控制逻辑。

(2)输入数据:将初始数据输入移位寄存器。

(3)控制移位:通过控制逻辑,实现数据的算术右移操作。

(4)观察结果:使用示波器或逻辑分析仪观察移位寄存器的输出,验证算术右移功能。

五、实验结果与分析1. 逻辑左移实验结果:通过示波器或逻辑分析仪观察移位寄存器的输出,发现数据实现了逻辑左移,验证了逻辑左移功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛阳理工学院实验报告3
系别计算机系班级学号姓名
课程名称计算机组成与系统结构实验日期2015.4.27 实验名称数据输出/移位门成绩
实验目的:
1、掌握模型机中数据总线的原理。

2、掌握运算器中移位功能的实现方法。

实验条件:CPTH 实验仪
实验内容:
1、实验要求
利用CPTH 实验仪的开关做为控制信号,将指定寄存器的内容读到数据总线DBUS上;观察移位门输出结果。

2、实验电路
CPTH 中有7 个寄存器可以向数据总线输出数据,但在某一特定时刻只能有一个寄存器输出数据,由X2,X1,X0决定那一个寄存器输出数据,下表是X2,X1,X0与各个寄存器的关系表。

图8是总线上的7个寄存器的控制端原理图。

图8 数据输出选择器原理图
X2X1X0 输出寄存器
0 0 0 IN-OE外部输入门
0 0 1 IA-OE中断向量
0 1 0 ST-OE堆栈寄存器
0 1 1 PC-OEPC寄存器
1 0 0 D-OE直通门
1 0 1 R-OE右移门
1 1 0 L-OE左移门
1 1 1 没有输出。

相关文档
最新文档