频谱分析仪测量谐波的方法

合集下载

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。

它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。

现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。

仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。

频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。

输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。

LO 的频率由扫频发生器控制。

随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。

然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。

随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。

该迹线示出了输入信号在所显示频率范围内的频率成分。

频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。

混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。

在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。

本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。

其频率稳定度锁相于参考源。

扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。

谐波、杂波抑制测量方法

谐波、杂波抑制测量方法

谐波、杂波抑制测量方法
谐波、杂波抑制是在信号处理和通信领域中非常重要的问题。

谐波是原始信号频率的整数倍,而杂波则是非整数倍频率的信号。

在实际应用中,谐波和杂波可能会干扰到我们所关心的信号,因此需要采取相应的测量方法来抑制它们。

一种常见的谐波、杂波抑制测量方法是使用滤波器。

滤波器可以通过选择性地通过或抑制特定频率范围内的信号来实现谐波、杂波的抑制。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

通过合理选择滤波器的类型和参数,可以有效地抑制谐波和杂波的干扰。

另一种常见的方法是使用数字信号处理技术。

数字信号处理技术可以通过数学算法和数字滤波器来实现对信号的处理和分析。

例如,可以使用傅里叶变换将信号从时域转换到频域,然后通过选择性地抑制特定频率分量来实现谐波、杂波的抑制。

除了滤波器和数字信号处理技术,还可以采用混频器、混频器和锁相放大器等方法来实现谐波、杂波的抑制。

这些方法可以根据具体的应用场景和要求来选择和组合,以实现对谐波、杂波的有效
抑制。

总之,谐波、杂波抑制是实际应用中需要解决的重要问题,针对不同的应用场景和要求,可以采用滤波器、数字信号处理技术、混频器等多种方法来实现对谐波、杂波的抑制。

在实际应用中,需要根据具体情况选择合适的方法,并进行有效的设计和实现,以确保信号的准确性和可靠性。

使用频谱分析测量谐波

使用频谱分析测量谐波

使用频谱分析测量谐波用频谱分析测量谐波无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。

射频信号可能是已调信号或连续波信号。

这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。

现代频谱分析仪能利用本文中所述方法来进行这些测量。

本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。

我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。

傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。

按一定目的产生的频率最低的正弦波称为基频信号。

其它正弦波则称为谐波信号。

可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。

谐波常常是人们不希望存在的。

在无线电发射机中,它们可能干扰射频频谱的其它用户。

例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。

因此,通常应对它们进行监控并将其减小到最低限度。

利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。

为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。

分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。

因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性:V0=K1V i+K2V i2+K3V3i (1)式中V0=输出电压V i=输入电压K1、K2和K3均为常数利用上面的关系式,可以直接证明:输入电压加倍将引起V i2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。

类似类推,三阶谐波失真随输入电平按三次方规律增加。

有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。

为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法来源:仪商网在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。

PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。

下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。

谐波测量基本原理目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。

在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。

其中同步采样法和频率重心法使用最为广泛。

同步采样法顾名思义,就是使采样频率与基波频率同步改变。

该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。

同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。

频率重心法使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。

最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。

通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。

至此,非同步采样法同样得到了各次谐波。

受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。

频谱分析仪使用说明

频谱分析仪使用说明

,按他对应屏幕右侧的键盘此时屏幕会进入校准画面,如图就可以自动校准了。

按进入更多进入更多按进入更多进入更多进入更多进入更多平滑和直观,可以进行设置。

通过简单的步骤就能实现。

其中第三项就是检波方式,这是按右边的数字键进入另一个对话框,如下图其中第五项Average会对这些波形以平均值的方式表现处理,按就选择了这个方式,这时就可以得到一个干净的波形图因为我们是以频谱仪内置的信号源做为参考,所以我们知道我,中心频率就选择20M,我们先按+ + ,我们就把频率选在+ + +了,如下图到自动扫频的功能。

按会出现上图,其中第七项有一个按就会进行自动扫频了,得到下图,当我们得到想要的波形时,我们需要查看频谱的最大值,就可以把当前波形上的功率最大点找出来,找出来后也可以用旋钮2,我们也可以按这时如图第一项为选择标识点,按一次通过第二项按来打开或关闭选择的标识点,如下图个标识点,可以通过旋钮来选择自己需要的点。

按Clear All,把所有marker消除.再按按,第四项是来打开两个标识点的功率和频率的差值。

在上图位置按找到两个需要的标识点,此时在屏幕上就会显示这两个点的频率差和功率差。

如下图测试谐波按功能键,按打开谐波测试功能。

按选择测试谐波数量,通过旋钮来改变。

这次就打开次谐波。

按,这样就能看到里面的菜单,这里可以进行模板的设置。

此时按进入设置画面,里面有些参数说明一下,显示只个频率段,但是实际写完这返回上一个画面后,选择。

然后按打开Show在图中橙色线就是刚才设定的频谱发射模板,红色线显示峰值键,把Ref Power改为CHN,那麽红色线显示的就是通道功率Channel Power了.因为我们输把频率选到20MHz按进入设置,和模板设置相似,设置好后按,按然后按按退回频谱画面.请注意,这时频谱画面是停止扫描的,要按右上角的,按再按口就是刚才设定的邻信道范围.,按, .输入20MHzCAL OUT 信号.把中心频率设定为20MHz,Span为。

安捷伦 E4402B频谱分析仪使用操作说明书

安捷伦 E4402B频谱分析仪使用操作说明书

频谱分析仪使用方法简介1简介频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、频谱度、频谱稳定度和交调失真等信号参数的测量,可用于测量放大器和滤波器等电路系统的某些参数,分析信号频率分量(频率和功率),是一种多用途的电子测量仪器。

频谱分析仪是对无线电信号测量的必备手段,是从事电子产品研发、生产、检验的常用工具。

因此被称为工程师的射频万用表2.面板2.1 操作区1.观察角度键,用于调节显示,以适于使用者的观察角度。

2.Esc键,可以取消输入,终止打印。

3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。

4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和AmplitudeY scale(幅度Y刻度)三个键,可以激活主要的调节功能(频率、X轴、Y 轴)并在右边栏显示相应的菜单。

5.Control(控制)功能区。

6.Measure(测量)功能区。

7.System(系统)功能区。

8.Marker(标记)功能区。

9.软驱和耳机插孔。

10.步进键和旋钮,用于改变所选中有效功能的数值。

11.音量调节。

12.外接键盘插口。

13.探头电源,为高阻抗交流探头或其它附件提供电源。

14.Return键,用于返回先前选择过的一级菜单。

15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。

16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话框的域中移动。

17.信号输入口(50Ω)。

在使用中,接50ΩBNC(卡口配合性连接器)电缆,探头上必须串联一隔直电容(30PF左右,陶瓷封装)。

18.Next Window键,可用来选择在支持分屏显示方式功能中(如区域标记)的有效窗口,在这样的方式下,按下Zoom键将允许在有效窗口的分屏显示与全屏显示间进行转换。

19.Help键,按下后屏幕会提示按面板或菜单上的键,按后会显示相应说明。

谐波如何测试?

谐波如何测试?

谐波如何测试?1.谐波测试两种主要方式有源RF和FEM的第二个关键属性是谐波行为。

谐波行为由非线性器件引起,会导致在比发射频率高数倍的频率下产生输出功率。

由于许多无线标准对带外辐射进行了严格的规定,所以工程师会通过测量谐波来评估RF或FEM是否违反了这些辐射要求。

测量谐波功率的具体方法通常取决于RF的预期用途。

对于通用RF等器件备来说,谐波测量需要使用连续波信号来激励DUT,并测量所生成的不同频率的谐波的功率。

相反,在测试无线手机或基站RF时,谐波测量一般需要调制激励信号。

另外,测量谐波功率通常需要特别注意信号的带宽特性。

1)使用连续波激励测量谐波使用连续波激励测量谐波需要使用信号发生器和信号分析仪。

对于激励信号,需要使用信号发生器生成具有所需输出功率和频率的连续波。

信号发生器生成激励信号后,信号分析仪在数倍于输入频率的频率下测量输出功率。

常见的谐波测量有三次谐波和五次谐波,分别在3倍和5倍的激励频率下进行测量。

RF信号分析仪提供了多种测量方法来测量谐波的输出功率。

一个直截了当的方法是将分析仪调至谐波的预期频率,并进行峰值搜索以找到谐波。

例如,如果要测量生成1GHz信号时的PA三次谐波,则三次谐波的频率就是3GHz。

测量谐波功率的另一种方法是使用信号分析仪的零展频(zero span)模式在时域中进行测量。

配置为零展频模式的信号分析仪可以有效地进行一系列功率带内测量,并将结果以时间的函数形式表现出来。

在此模式下,可以在时域上测量选通窗口中不同频率的功率,并使用信号分析仪内置的取平均功能进行计算。

2)使用调制激励的谐波实际上,许多PA被用来放大调制信号,而且这些PA的谐波性能需要调制激励。

与使用连续波类似,通常在接近设备饱和点的功率电平下,将已知功率激励信号发送到PA的输入端。

测量谐波输出功率时,工程师通常会根据测量时间和所需的准确度等不同限制条件而采用图通方法。

实际上,3GPP LTE和IEEE 802.11ac等无线标准并没有对谐波的要求进行具体的规定,而是规定了在一定频率范围内最大杂散辐射要求。

频谱分析仪的操作规范

频谱分析仪的操作规范

频谱分析仪的操作规范最常用的频谱分析仪是扫瞄调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大、滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系,信号流程架构如图1.3所示。

影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-ShapedFilter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth)。

RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低于频谱分析仪的RBW,此时该两信号将重迭,难以分辨,较低的RBW固然有助于不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助于宽带带信号的侦测,将增加噪声底层值(NoiseFloor),降低量测灵敏度,对于侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。

图1.2:频谱分析仪的外观另外的视频频宽(VBW,VideoBandwidth)代表单一信号显示在屏幕所需的最低频宽。

如前所说明,量测信号时,视频频宽过与不及均非适宜,都将造成量测的困扰,如何调整必须加以了解。

通常RBW的频宽大于等于VBW,调整RBW而信号振幅并无产生明显的变化,此时之RBW 频宽即可加以采用。

量测RF视频载波时,信号经设备内部的混波器降频后再加以放大、滤波(RBW决定)及检波显示等流程,若扫描太快,RBW滤波器将无法完全充电到信号的振幅峰值,因此必须维持足够的扫描时间,而RBW的宽度与扫描时间呈互动关系,RBW较大,扫描时间也较快,反之亦然,RBW适当宽度的选择因而显现其重要性。

频谱分析仪测量谐波的方法

频谱分析仪测量谐波的方法

频谱分析仪测量谐波的方法嘉兆科技无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。

射频信号可能是已调信号或连续波信号。

这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。

现代频谱分析仪能利用本文中所述方法来进行这些测量。

本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。

我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。

傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。

按一定目的产生的频率最低的正弦波称为基频信号。

其它正弦波则称为谐波信号。

可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。

谐波常常是人们不希望存在的。

在无线电发射机中,它们可能干扰射频频谱的其它用户。

例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。

因此,通常应对它们进行监控并将其减小到最低限度。

利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。

为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。

分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。

因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性:V0=K1V i+K2V i2+K3V3i (1)式中V0=输出电压V i=输入电压K1、K2和K3均为常数利用上面的关系式,可以直接证明:输入电压加倍将引起V i2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。

类似类推,三阶谐波失真随输入电平按三次方规律增加。

有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。

为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。

谐波的定义及测试方法

谐波的定义及测试方法

供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。

谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。

电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics )或分数谐波。

谐波实际上是一种 干扰量,使电网受到“污染”。

目前公司常用测试输入电流谐波的仪器有TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析),测试输出电压谐波的仪器有GW GAD-201G (失真仪)和TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析)。

使用下面的方法计算信号的THD : () ++++++=272625242322211A A A A A A A THD 其中A 1是幅频特性中基波的幅值,而A 2 、A 3、A 4、A 5、……分别是2、3、4、5、……次谐波的幅值。

选取不同数量的谐波分量,可以计算出对应的THD 值。

采用WAVESTAR 软件进行分析可以得到完整谐波分析数据,下图为分析得出的柱型图,从图中可以针对各次谐波异常的状况采取相应的对策进行改善: Harmonic magnitude as a % of the fundamental amplitude0.0%0.7%1.5%2.2%3.0%3.7%4.4%5.2%5.9%6.6%7.4%8.1%Voltage:Current: Ch 1# Harmonics: 20Type: Current Magnitude波峰因数定义为交流信号峰值与有效值之比(峰均比),典型的波峰因数是: 正弦波:1.414;方波: 1;25%的占空比的脉冲:2 。

波峰因数(CREST FACTOR )的概念在UPS 行业是用来衡量UPS 带非线性负载的能力,对线性负载(R LOAD )而言,正弦波电流峰值Ipeak 与均方根值Irms 之比为1.414:1;在非线性负载(RCD LOAD )时,波峰因数则被认定为:在相同的有功功率条件下,非线性负载的电流峰值与非线性负载电流均方根值之比。

频谱仪原理及使用方法

频谱仪原理及使用方法

频谱仪原理及使用方法频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。

频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。

1.频谱仪的原理频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。

频谱分析仪采用频率扫描超外差的工作方式。

混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。

检波后的信号被视频放大器进行放大,然后显示出来。

由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。

当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。

进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。

2.频谱分析仪的使用方法要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。

(1)频率扫描范围通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。

扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。

在设置这个参数时,可以通过设置扫描开始频率目”无“’。

04朋和终止频率来确定,例如:startfrequeney=150MHz,stopfrequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:eenterfrequeney=155MHz,span=10MHz。

这两种设置的结果是一样的。

Span越小,光标读出信号频率的精度就越高。

一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。

如分析一个正弦波,则扫描范围应大于2f(f为调制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。

电力系统谐波测量算法

电力系统谐波测量算法

电力系统谐波测量算法
谐波是指由正弦波的几倍频率构成的复合波,多用于电力系统中,它们会影响电力系统的稳定性、可靠性、有效性及发电成本。

因此,为了检测和分析谐波,必须有一个精确准确的谐波测量算法。

电力系统中谐波测量算法,一般可分为离散傅里叶变换(DFT)和连续傅里叶变换(CFT)两种。

DFT是在一个离散信号序列上进行转换,可以得到特定频率的信号分量。

而CFT则倾向于连续变换,可以提供精确的频率分辨率。

DFT是一种常用的谐波测量算法,它是通过离散傅里叶变换将时域信号变换到频域信号,并以与信号时间频率参数相关的函数系数给出结果。

基于DFT算法,一般会采用N点快速傅里叶变换(FFT)算法,它是一种快速的算法,可以得到电力系统瞬时有功率、谐波总功率因素、瞬时谐波电压等参数。

另一方面,连续傅里叶变换(CFT)也是一种可用的测量算法,它可以比DFT更准确地测量电力系统中谐波的参数。

它通过积分的方式,用时域信号在每个频率上的功率谱积分和计算电力系统谐波的参数,具有高精度和高准确度。

频谱分析仪常用测量

频谱分析仪常用测量
成都信息工程学院电子工程学院
现代微波测试技术
7
FFT频域法 – 频谱分析仪在时域波形上用快速傅氏变换(FFT) 功能可得到对载波归一化的信号频谱。
MARKER 1kHz - 26dB
dB
fm
成都信息工程学院电子工程学院
现代微波测试技术
8
FFT的幅度精度可以达到±0.2dB,这比扫频频域法 好得多。 FFT的频率精度主要取决于扫描时间准确度。 频谱分析仪的扫描时间准确度一般为±20%,这就 限制了FFT频率准确度不超过±20%。
现代微波测试技术
23
AM/FM 解调----驱动扬声器
成都信息工程学院电子工程学院
现代微波测试技术
24
A(ω) 理想信号 谐波
分谐波
谱密度
寄生
实际信号
ω
成都信息工程学院电子工程学院
现代微波测试技术
25
谐波失真测量
• 方法一 – 设置频谱分析仪的起始频率略小于基波频率。 – 设置频谱分析仪的终止频率略大于被测n次谐波频 率。 – 减小视频带宽,平滑噪声。 – 为提高测量精度,设置基波峰值电平值为参考电平。 – 使用频标和频标差值△可以直接读出谐波失真值。
现代微波测试技术
1
频谱分析仪测量
成都信息工程学院电子工程学院
现代微波测试技术
2
频谱仪的基本应用
调制信号测量 调幅信号 调幅信号 调频信号 调频信号 脉冲调制信号 脉冲调制信号
扫频测量 时域测量 FFT变换
频域测量 Bessel函数法 Haberly法
窄带测量 宽带测量
成都信息工程学院电子工程学院
现代微波测试技术
成都信息工程学院电子工程学院
现代微波测试技术

功率分析仪详解:谐波测量的解析(一)要点

功率分析仪详解:谐波测量的解析(一)要点

功率分析仪详解:谐波测量的解析(一)要点1. 功率分析仪详解:谐波测量的解析(一)几乎所有的功率分析仪都有谐波测量功能,有的支持40次,有的支持100次,有的支持128次,这个值是不是越大就越好呢?这个功能又用在哪些测试领域呢?常规谐波测量,IEC 谐波测量以及FFT 都是与谐波有关的,他们之间有何区别,实际使用过程中又该如何选择呢?说到谐波,我们首先关注的参数就是THD(总谐波畸变率,总谐波畸变率就是各次谐波的均方根值除以基波值(有时候是除以总波值叫THF ),其值以百分比方式显示。

从上面的计算公式我们可以看出,除数基波值是基本不变的,但是被除数各次谐波的均方根值,则随着谐波次数的增多而增大。

也就是说,用于计算THD 的谐波次数越大,THD 值就越大。

而谐波次数越多测试出来的THD 值离真实值就越接近。

接近真实值有什么用呢?那需要测试多少次谐波的THD 值才算比较接近真实值呢?THD 就是告诉你,被测信号里面含有多少谐波成分,是否足够“纯净”。

我们的常识里面谐波就是危害很大的,几乎没有好处(谐波当然也可以废物利用,比如供电线融冰),THD 的真实值可以最准确的告诉我们,被测信号的“纯度”,就像饮用水里面各种成分的含量一样,谐波就像水里面的漂白粉、重金属、有机物成分等,我们当然希望了解我们的饮用水里面所有各种成分的含量。

PA6000最高支持256次谐波,让你看到信号里面的各种”成分”。

希望总是美好的,但现实总是残酷的。

由于国内大部分仪器都只能测试40次或以内的谐波,所以目前国内的THD 测试标准还是沿用比较落后的40次。

不同的谐波测试次数又有什么区别呢?测试40次与测试256次的差异就像,测试饮用水的成分,测试40次只检测了漂白粉的含量;测试256次则除了除漂白粉外,还检测了铜、铁、钠、钾、氨、氰化物等的含量。

欧美的一些最新标准已经开始沿用64次谐波的测量标准,德国并网逆变器谐波测量的最新要求已经达到178次。

频谱分析仪的工作原理和使用方法

频谱分析仪的工作原理和使用方法



节到混频器的最佳信号电平,已防止发生混频压缩和失真。 信号经过预选器和低通滤波器进入混频器。 信号经过混频后,在其输出端有原来的信号、本振信号,两个输入信号 的和频信号/差频信号,以及其他高次谐波信号。通常我们取其差频信号, 称之为中频信号。 中频滤波器滤出中频信号并进行放大。 中频信号经检波和视频滤波后加到显示器上进行显示,视频滤波器的作 用是对显示屏上所显示的扫迹进行平均或平滑。 频谱仪所显示的谱线是被测信号叠加上频谱仪内部的噪声的总效应。为 了减小噪声对信号幅度的影响,要对经检波后的信号进行视频滤波或视 频平均。 当所选择的视频带宽等于或小于所选择的分辨力带宽(RBW)时,视频电 路的响应已经跟不上中频电路信号的变化,因此对所显示的信号就进行 了平均和平滑,两者之间的比值越小,平滑的效果越好。 视频平均是智能频谱仪为平滑提供的另一种选择。它对多次扫描的数据 逐点进行平均,因此显示的谱线更加平滑。
1 概述
Amplitude (power)
fr e
y e nc qu
tim
e
时域测量
频域测量
1 概述
1.1 时域分析 所谓时域分析就是观察并分析电信号随时间的变化情 况。例如,信号的幅度,周期或频率等。时域分析常 用仪器是示波器。但是示波器还不能提供充分的信息, 因此就产生了用频域分析的方法来分析信号。 1.2频域分析 观察并分析信号的幅度(电压或功率)与频率的关系,它 能够获取时域测量中所得不到的独特信息。例如谐波 分量,寄生信号,交调、噪声边带。最典型的频域信 号分析是测量调制,失真和噪声。通常进行信号频域 分析的仪器就是频谱分析仪。
2.1.2 扫频频谱分析仪
扫频分析仪 A
滤波器扫过关注的测量 频率范围

如何准确测量发射机谐波分量

如何准确测量发射机谐波分量
首先确定频谱仪产生谐波的程度我们按照美国惠普公司推表10频谱仪内置衰减10db20db30db40db基波55555555二次谐波56565657三次谐波666666n70频谱仪内置衰减10db基波85二次谐波n100三次谐波84频谱仪内置衰减10db20db30db40db基波111114112二次谐波406070n70三次谐波274764n70频谱仪内置衰减10db20db30db基波二次谐波6780n80三次谐波5776n80信号源hp8648滤波器频谱分析仪图2测试框图频谱仪内置衰减器低噪声高频宽带放大器混频器图3频谱仪工作原理射频输入口中频滤波器中频放大器检波器显示器表11hp8593e13f幅度dbm31865157682262057884n75889n85频谱仪测试f幅度dbm1010频谱仪内置衰减attdb10203010203010202f幅度dbm361421512519461156885706178783f幅度dbm287446631854537319n758291n85幅度dbm50995712649566927488n75839n85幅度dbm41551676156153707n758157n85幅度dbm3956017n756987n86n75n93n86hp8593e2hp8593e3chinaradiomanagement中国无线电管28


使用 H 8 6 E进行测试 P 53
3 HI .# J可变 衰 减器 ( - 0 S ,测 试结 果见 表 3 ] = 2d ) 。 4 HI .# J可变 衰 减器 ( - 0 B) 试结 果见 表 4 ] = 3d ,测 。
1 .未加 入 谐 波测 量辅 助 设 备 ,测 试结 果 见表 1 。
5 HI 波 测量 滤 波器 ,测 试结 果 见表 5 .# J谐 ] 。

谐波的定义及测试方法

谐波的定义及测试方法

谐波的定义及测试方法谐波是指波形中频率相对于基波是整数倍关系的波动现象。

简单来说,谐波是由基波的震动而引起的次要波动。

在物理学中,任何复杂的周期函数都可以表示为一系列谐波的叠加。

谐波存在于各种波动现象中,包括电磁波、声波和机械波等。

对于周期性现象,如周期性机械振动和周期性电流,谐波是普遍存在的。

以下是一些测试谐波的方法:1.频谱分析仪:频谱分析仪是一种常用的测试设备,可以用于分析信号的频率成分。

通过连接信号源到频谱分析仪上,可以直观地查看信号的频率谱,进而观察和分析谐波的存在和强度。

频谱分析仪可以提供信号的幅度、相位和频谱等信息。

2.傅里叶变换:傅里叶变换是一种重要的数学工具,可以将时域信号转换为频域信号。

通过对信号施加傅里叶变换,可以得到信号的频率谱密度,并从中分析和提取谐波的信息。

傅里叶变换的实现可以使用数字信号处理算法,如快速傅里叶变换(FFT)。

3.声谱仪:声谱仪是一种专门用于声波频谱分析的设备。

通过将声音输入到声谱仪上,可以显示声音的频谱,并帮助我们观察和研究声音中的谐波。

声谱仪可以用于诸如音乐、语音和机械振动等领域的研究。

4.电力质量分析仪:电力质量分析仪是一种用于分析电力系统工作状态的设备。

通过连接到电力系统上,电力质量分析仪可以监测和记录电压、电流等参数,并进行频谱分析,以检测和识别电力系统中的谐波问题。

这些设备通常应用于电力行业和电力设备的故障排查。

除了上述方法外,还可以使用示波器、信号发生器和计算机等设备进行谐波的测试和分析。

这些工具和方法可以帮助我们全面了解信号中谐波的特性和影响,从而对信号进行优化和改善。

总之,谐波是波动现象中频率相对于基波是整数倍关系的次要波动。

通过使用频谱分析仪、傅里叶变换、声谱仪和电力质量分析仪等设备和方法,可以对谐波进行测试和研究,进而分析信号的频率结构和特性。

这些方法可以应用于各种波动现象的研究和工程应用中。

频谱分析仪实际操作基础(最新)

频谱分析仪实际操作基础(最新)

2)、静电防护
电子仪器(尤其是微波仪器设备)对静电非常敏感, 应采取严格的静电防护措施(特别是对于仪器的输入输出 端口)。(公司以前有多台仪器因静电而损坏,超过100V 静电可能会损坏仪器灵敏度性能)。仪器操作一般要求: 防静电工作台、座椅、穿防静电服、佩戴防静电手腕(在 生产现场现已达到)。
频谱分析仪基础—仪器规范性操作及注意事项 3).所有仪器必须接地良好: 如果某一设备(仪器)未接地或地线接触不良,会造 成设备端口带电,这对于功率探头、信号源输出口、频谱仪 输入输出端口及HPIB、GBIP端口是致命的,可在该端口与其 它设备相连的瞬间放电损坏内部电路(输入衰减器ATT、混频 器、放大器、或输入电路等),造成较大的经济损失。CRT显 示的仪器后面都有专门的接地端,有的仪器则没有。仪器的接 地保证,国外都是通过三芯电源插头\插座的接地端与地相连. 但目前实际使用的电源插座质量不合格或接触不良,没法保证 接地,所以要求所有仪器设备都必须另接地线(并联接地), 与地网相连。特别是有时根据需要,仪器需在各岗位之间调 用,必要注意别忘接地线。
频谱分析仪和信号发生器实际操作 基础
---仪器培训课程之四--主讲:林胜辉
主要内容:
一、频谱分析பைடு நூலகம்的基本原理;
二、产品常用指标概念及测试方法; 三、仪器操作注意事项; 四、仪器规范性操作步骤;
五、产品实际测试演示;
一、频谱分析仪的基本原理
1、扫频式频谱仪组成框图
输入衰 减器 混频器
Input signal
3dB
3dB带宽
三、仪器操作注意事项
频谱分析仪基础—仪器规范性操作及注意事项
1、仪器操作注意事项
仪器设备是公司进行生产经营的主要工具,它的 精度直接影响着公司的产品质量。公司的仪器设备大 多精贵,且使用率较高,若损坏一台精贵仪器,公司 不仅要承担昂贵的维修费,而且也影响着公司生产的 有序进行,其间接经济损失无法估计。

频谱分析仪的失真测量

频谱分析仪的失真测量

频谱分析仪的失真测量Distortion Measurement by Spectrum Analysis摘要随着通信系统的发展和系统质量的提高,失真的测量与分析将会日益受到重视。

本文将描述的各种失真,如谐波或互调失真等,以及如何用频谱分析仪来精确测量这些失真。

关键词失真谐波互调总谐波失真频谱分析仪AbstractWith the development of communication system and the improvement of quality, distortion measurement and analysis are becoming increasingly important. This article describes predictable distortion characteristics and how to measure them using a spectrum analyzer. KeywordsDistortion, Harmonic, intermodulation, total harmonic distortion, spectrum analyzer1 前言在通信系统中,失真信号表现为通信频带中的干扰信号,使系统的信噪比下降,严重影响通信系统的容量和质量,因此精确的测量各种失真显得非常重要。

失真通常分成两大类:伪信号杂散(spurious)和谐波及互调产物。

伪信号与载波信号是不相关的,例如放大器产生的寄生振荡与其输入信号频率并不相关。

谐波和交调失真产物是属于可预见性的失真,它们直接与输入信号的频率相关。

信号谐波及互调失真的测量,通常使用频谱分析仪,结合对失真分量计算分析来实现。

RIGOL的DSA1030A频谱分析仪是一款采用全数字中频技术,富有丰富的高级测量功能,如谐波失真测量、TOI测量等,我们可以用这些测量功能直接对信号的失真进行测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频谱分析仪测量谐波的方法
嘉兆科技
无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。

射频信号可能是已调信号或连续波信号。

这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。

现代频谱分析仪能利用本文中所述方法来进行这些测量。

本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。

我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。

傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。

按一定目的产生的频率最低的正弦波称为基频信号。

其它正弦波则称为谐波信号。

可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。

谐波常常是人们不希望存在的。

在无线电发射机中,它们可能干扰射频频谱的其它用户。

例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。

因此,通常应对它们进行监控并将其减小到最低限度。

利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。

为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。

分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。

因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性:
V0=K1V i+K2V i2+K3V3i (1)
式中
V0=输出电压
V i=输入电压
K1、K2和K3均为常数
利用上面的关系式,可以直接证明:输入电压加倍将引起V i2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。

类似类推,三阶谐波失真随输入电平按三次方规律增加。

有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。

为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。

图1示出这个过程的图解实例。

从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。

而更高阶次的失真通常可忽略不计。

图1 频谱分析仪的失真极限可以分别针对二次和三次谐波电平绘出
与技术指标有关的数据点1:1和2:1钭率进行予测
请注意,所关注的参数即三阶谐波失真不同于已规定的参数三阶互调失真(IMD3)。

在未被预选的频段内,三阶谐波失真应比微弱非线性的互调(IM)分量低9.5dB。

这个关系可以由将对V i的Acos(xt)+Bcos(yt)代人上面提到的(4)式,并将IM项如cos[(x-2y)t]与谐波项如cos(3xt)相比较来导出。

若前端增益在基频与三次谐波信号之间变化,则将使IM与所观察的分析仪产生的谐波电平之间的关系有相同数量的变化。

若三次谐波处在预选的频段内,则它将比规定的IM分量低得多,因为预选滤波器使基频信号不受前端非线性的影响。

从实验上判断分析仪是否会引人失真更加容易。

仅仅增大输入衰减,观察失真电平是否发生变化即可。

如发生了变化,则分析仪对测得的失真有影响。

尽管分析仪对测得的谐波的影响可以仅靠增大输入衰减来降低,但这会降低信噪比(SNR),从而限制了分析仪测量低谐波电平的能力。

不过,对接近本底噪声的信号的测量可以通过对数平均方法来改善。

频谱分析仪可以通过对测量结果取平均来降低测量结果的变化。

取平均的一种形式是对分析仪屏幕的若干条数据迹线进行平均。

另一种形式是视频滤波。

在完成取平均操作时,重要的是应知道取平均所在的幅度刻度。

当视频滤波或迹线平均是对在对数刻度上显示的信号完成时,其结果是信号对数的平均。

另一种方法是,取平均可以在线性(电压)刻度上完成。

某些分析仪能在功率(有效值电压)刻度上取平均。

基于快速傅里叶变换(FFT)的分析仪通常只能在功率刻度上取平均。

众所周知,对于上述三种刻度,测得的纯噪声电平是不相同的。

其中,对数刻度的噪声被低估了2.51dB。

无疑,对数刻度最适于测量低谐波电平,因为它能给出受本底噪声影响最小的信号电平。

因此,应当使用对数刻度来测量谐波电平,并根据需要减小视频带宽或增加取平均数。

现实中并不存在上面所讨论的理想重复信号。

与理想情况的两大偏离是漂移和调制。

来自未锁定压控振荡器(VCO)的漂移信号可能造成测量困难。

漂移可能是如此之大,以致为了测量某个谐波而必须对可能的整个频率范围扫描,并利用峰值检波器来测量谐波电平。

对于频率的这种高变化性,取平均可能引起误差而不宜采用。

此外,峰值检波特别适于检测噪声,所以,当用这种扫描——峰值检波方法进行测量时,分析仪的测量范围会受到损害。

尽管如此,这类解决方案仍十分有用而被用于某些频谱分析仪中,如安捷伦科技公司的8560E系列,该系列频谱分析仪配备有该公司的85672A寄生响应测量应用程序。

已调信号也是一个测量难题。

当信号被调制时,其谱宽增加。

因此,必须使用足够宽的分辨带宽来对信号中的所有能量起响应。

使用宽的带宽将增大本底噪声,从而减小可利用的动态范围。

采用频率调制(FM)、脉冲调制(PM)和普通数字调制格式的信号谱宽与谐波数成正比增大,因此,建议针对谐波数来增大分辨带宽。

已调信号几乎总是锁相信号。

因此,一种可能的解决方案是利用频率计数器仔细测量基频频率。

然后,利用频谱分析仪的零频率间隔分析功能在预计的谐波上寻找所有谐波信号。

零频率间隔分析(分析仪不进行扫描的工作方式)是最佳分析方式,因为它对所有扫描数据而不仅是峰值幅度进行平均。

安捷伦科技公司的ESA系列频谱分析仪(图2)采用了零频率间隔的计数和平均解决方案,并具有按比例变化的分辨带宽。

尽管这种解决方案不及扫描峰值检波解决方案完善,但它能很快取得离散很小的结果,且适于用调制源进行工作。

图2 频谱分析仪的内置“谐波”测量示出含各个谐波电平
(dBc)和计算出的总谐波失真(THD)结果的数据表
所有谐波的幅度之和是音频产品中常用的一个品质因数。

它也称为总谐波失真(THD)。

总谐波失真是以功率相加而不是以电压相加为依据的。

THD的定义为:
THD=100%×(n max n=2×E2n)0.5/E f(2)
式中:
E n=n次谐波电压
E f=基频电压
n max=被考察的最高谐波次数(在许多情况下,n max限定到10。

在另一些情况下,n max是不超过20kHz的最高次谐波,即音频范围的上限)
上面讨论了可能进行平均的三种刻度即电压、对数或功率。

应当注意THD测量结果与这几种刻度之间的关系。

数据最好是按对数刻度进行采集和平均。

THD的计算是按平方和的平方根(RSS)进行计算的,它与RMS或功率计算相关。

但是,结果是由电压算出的,而百分比指的则是电压百分比。

总之,射频和音频谐波以及THD可以利用所述方法由频谱分析仪进行测量。

在某些频谐分析仪中,为了加快测量速度,这些测量的实施已实现了自动化。

相关文档
最新文档