手机充电器电路原理图分析(DOC)

合集下载

手机万能充电器原理图

手机万能充电器原理图

三、我修改过的图纸(我认为原图可能有错误)四、超力通电路原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。

在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。

PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。

由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。

当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。

开关管的截止时间取决于负载电流的大小。

开关管的导通/截止由电平开关从输出电压取样进行控制。

因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。

由V2和开关变压器组成间歇振荡器。

开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。

由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。

开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。

此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。

V2的截止时间与其输出电压呈反比。

VD17的导通/截止直接受电网电压和负载的影响。

手机充电器电路图讲解(DOC)

手机充电器电路图讲解(DOC)

手机充电器电路图讲解时间:2012-12-18 来源:作者:分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

诺基亚USB手机充电器AC-8c

诺基亚USB手机充电器AC-8c

诺基亚USB 手机充电器AC-8C中山市技师学院 葛中海如图3-13所示为赛尔康技术(深圳)有限公司为诺基亚制造USB 手机充电器AC-8C 。

产品规格:输入AC100~240V ,50Hz-60Hz&150mA ;输出5V@600mA 。

图3-13 诺基亚USB 手机充电器AC-8C 如图3-14所示为诺基亚USB 手机充电器AC-8C 电路原理图。

由于充电器的输出功率较小、体积小,所以没有设置共模干扰抑制电路。

市电经保险1R (也叫熔断电阻,兼具电阻和保险丝的双重功能)输入,D 5~D 8桥式整流、1C 、1L 与2C 组成 型滤波电路;滤波后的电压经变压器M 1初级绕组加到开关管T 2(13003G )的集电极。

2L 是磁阻,抑制差模干扰。

图3-14 诺基亚USB 手机充电器AC-8C 电路原理图 满载时,AC110V 输入整流滤波后的直流平均电压约为160V ,如图3-15所示。

若是AC220V 输入,则整流滤波后的直流平均电压为AC110V 输入的2倍。

图3-15 AC110V 输入整流滤波电压波形 1.工作原理 初始上电时,电阻2R 和3R 给T 2提供启动电流,一旦启动工作,断开2R 和3R 系统仍能自激振荡,但断电后不能重新启动,故2R 和3R 称启动电阻。

T 2导通时,集电极电流C i 由零开始上升,主绕组(1-4)电感励磁储能,感应电压“上正下整流滤波电压 近似于锯齿波 直流电压平均值 基准电平 CH 1档位负”。

根据变压器同名端可知,辅助绕组(2-3)感应正极性电压,经阻容振荡电路(9R 、3C )加到T 2基极、加速其导通饱和;次级侧,二极管D 51截止。

T 2截止时,变压器绕组极性反转,辅助绕组形成使T 2基极电流减小的正反馈、加速其截止,3C 放电以准备进入下一个振荡周期;次级侧,二极管D 51导通,变压器次级释放能量供给负载。

在图3-14中,3C 充电时间设定了T 2导通的最大脉冲宽度。

(完整word版)电子制作课程项目手机电池简易万能充电器

(完整word版)电子制作课程项目手机电池简易万能充电器

手机电池简易万能充电器的原理与制作目前市场上面充斥着形形色色、各式各样的手机电池万能充电器,这里暂且不讨论这些万能充电器的充电效果如何,以及是否有损电池寿命等问题,因为事实上,有相当一部分人在使用这类万能充电器为手机电池充电.这些充电器虽然电路简单、成本低廉,但其内部大都采用了一个小型的开关电源电路,对于初学者而言,若能亲自动手组装一个手机万能充,并绘制其电路、剖析其原理,不失为入门学习开关电源原理的一个好途径。

这里介绍两款廉价、简易的手机电池万能充电器,该类充电器在市面上随处可见,价钱从4元到10几元不等,可以联系相关小厂购买电路散件套件,价格也仅为4—6元,如图1所示。

一. 跑马灯指示型万能充图2为该款跑马灯指示型万能充电路原理图,本电路完全根据实物绘制整理。

图2 跑马灯指示型万能充(一) 电路组成 从原理图中可知,该万能充实质就是一个小型开关电源电路,整个电路大致可分图1 廉价的手机万能充电器为以下几个部分:输入整流滤波电路、开关振荡电路、过压保护电路、次级整流滤波电路、稳压输出电路、自动识别极性及充电电路、跑马灯充电指示电路等。

(二)电路基本工作原理当充电器插到交流电源上后,220V交流电压经D1半波整流、C1滤波,得到约300V左右的直流电压。

由 Q1、T1、R1、R3、R4、R5、C2等元件组成的开关振荡电路将直流转换为高频交流,振荡过程如下:通电瞬间,+300V电压通过启动电阻R1为开关管Q1提供从无到有增大的基极电流I B,Q1集电极也随之产生从无到有增大的集电极电流I C,该电流流经开关变压器T1的1—2绕组,产生上正下负的自感应电动势,同时在T1的正反馈绕组3-4中也感应出上正下负的互感电动势,该电动势经R3、C2等反馈到Q1的基极,使I B进一步增大,这是一个强烈的正反馈过程:I I B↑在这个正反馈的作用下,Q1迅速进入饱和状态,变压器T1储存磁场能量。

此后正反馈绕组不断的对电容C2充电,极性为上负下正,从而使Q1基极电压不断下降,最后使Q1退出饱和状态,T1 1—2绕组的电流呈减小趋势,T1各绕组的感应电动势全部翻转,此时T1 3—4绕组的感应电动势极性为上负下正,该电动势反馈到Q1的基极后,使IB进一步减小,如此循环,进入另一个强烈正反馈过程,使Q1迅速截止.随后C2在自身放电及+300V对它的反向充电的作用下,又使Q1基极电压回升,进入下一轮循环,从而产生周期性的振荡,使Q1工作在不断的开、关状态下。

常见手机充电器电路图2

常见手机充电器电路图2

手机充电器电路图2随风吹去收集整理超力通手机旅行充电器适合给摩托罗拉308、328、338及368等系列手机电池充电。

该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。

在150~250V、40mA的交流市电输入时,可输出300±50mA电流。

该充电器采用了RCC振荡抑制型变换器,它与PWM型开关电源有一定的区别。

PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。

由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。

当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。

开关管的截止时间取决于负载电流的大小。

开关管的导通/截止由电平开关从输出电压取样进行控制。

因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。

由V2和开关变压器组成间歇振荡器。

开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。

由于正反馈作用,V2Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。

开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。

此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。

V2的截止时间与其输出电压呈反比。

VD17的导通/截止直接受电网电压和负载的影响。

手机充电器电路原理图分析

手机充电器电路原理图分析

专门找了几个例子,让大家看看。

自己也一边学习。

分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

充电器 电路图 (B5纸 可直接打印)

充电器 电路图 (B5纸 可直接打印)

三星座充充磷酸铁锂3.65V完美停充之简单改装(更新成品图)简单改装见下图:在图中已焊电阻的基础上,另按图中所示R04,接一个10K电阻在图示位置,粗红色电线接待充磷酸铁锂电池正极,粗黑色电线接电池负极,即可在不过充的这前提下充满磷酸铁锂电池,3.65V左右变灯停充。

三星座充原有的保护功能仍然保留。

电池断开闪黄灯报错,电池电压低(误放AA充电电池或反接)报错,电池电压高报错等都完美保留。

R01取值范围680K-820K,也可在上面并联10M电阻微调截止电压;R02取值范围100K-180K,若接入AA镍电座充不闪黄灯,可加大此电阻;R03,2.2K即可,R04取10K;R05为扩流电阻,不扩流即可不用。

加一常开按钮开关短路R03(2.2K),按下开关一秒左右即可复位充电器。

如果XD们想兼容锂离子、锂聚及磷酸铁锂,可以分别断开R01,R02一端,分别接入双刀双掷开关。

即可切换4.2V及3.65V截止电压,兼容各种锂电池。

增加一组改好的成品图(有内部裸~照):内部接线图,不懂电路的XD可参照下面的图直接改装:看不清焊点的话可与下图对照:请问LZ:为什么要加R4呢?加了R4在充满之后,如果电池没取下来就会通过R4放电,时间长了不是又要充?电池两端并联10K电阻后,缺点是停充后,电池会通过这个电阻放电,放电电流约为0.365毫安,600mAh的磷酸铁锂,1643小时放完,不过好像影响不大对吧?变灯后即取出或放几个小时取出都可以忽略不计。

如果不并联R4,没装电池时,电源正极通过改装加上的R02,使MCU9脚电压过高,使MCU认为有电池,所以亮红灯使充电器工作在充电状态(本应闪黄灯报错)。

取电池后也一样,充电器状态不改变,不闪黄灯报错。

加上R4后,当取下电池,电池夹端电压下降,R4的作用通过板上的R14(47K)拉低了UCU 9脚电压使充电器报错,这样就保持了三星座充的原保护功能。

改铁锂充啊,那是找不到!R6上并联180K,或R6换成56K,可改截止电压为3.65V;R17上并联220K,可欺骗MCU(不行的话改成150K-220K左右从MCU 12脚引至电源正极,同时,R10上可能也要并联个20K-30K左右的电阻以保证座充原有的保护功能。

苹果iphone55s充电器(A1443)及电路原理图

苹果iphone55s充电器(A1443)及电路原理图

苹果iphone55s充电器(A1443)及电路原理图苹果iphone5/5s充电器(A1443)及电路原理图笔者花费许多时间,在同事的帮助下把我的iphone5原配充电器拆解开来,经过艰苦卓绝地测试、分析,终于艰难地反绘出其电路原理图。

由于许多元件⾮常⼩,常常是0402封装,故这些元件没法给出参数。

电阻参数部分是根据其3位或4位数码(标识法)推出,部分是测试得到,可能不准确。

(整流后滤波电压155V是市电经2:1隔离变压器降压为AC110V时测出)FAN301H是Fairchild公司出品的另外⼀种型号的原边反馈控制器,功能与FAN104W相似。

本电路负载输出电流在 1A以下时按恒压(CV)调节设计,次级侧采⽤电阻偏置分压(次级元件⽆编号:上偏置电阻为100kΩ,下偏置为两个电阻并联,等效电阻为31.8kΩ)检测输出电压,加到基准稳压源(Y3HU类似TL431,参考电压为1.25V)参考端,控制光耦构成的稳压反馈信号。

稳定输出电压为VO=1.25 *(1+100k/31.8)=5.18V注:实测Y3HU参考电压为1.23V,因此实际输出电压约为5.1V。

THR1是热敏电阻,常温时阻值较⼤,与R19//R21串联为Q2提供基极电流太⼩,可以忽略不计,Q2近乎截⽌。

此时,R17与R10//R11(≈R10)串联,经C4滤波加到IC1的4脚,作为原边反馈电流感测信号。

若因充电使充电器内环境温度升⾼,Q2开始导通, Q2与R17串联,然后与R12并联,再与R10//R11串联,加到IC1的4脚,⽐常温时电压升⾼,输出电流下降,减⼩输出功率,降低充电器温升。

其典型应⽤电路如下图。

拆解图⽚:⾼压板(可见控制器FAN301H,整流桥堆,过温保护三极管Q2等元件)⾼压板内⾯(可见被绝缘薄膜包裹的开关管,初级滤波电感,RCD吸收电路的阻容等元件),由于我操作不慎,温度电阻THR1被搞丢,也因为元件太⼩,我把MOS管源极检测电流的电阻R5(标记为100,即10欧姆)焊接掉,专门测试R4(标记为I7Y)的阻值,完了,再把R5焊上时焊锡过多。

手机充电器电路图(“电压”文档)共9张

手机充电器电路图(“电压”文档)共9张
整个充电器只是通过一个电阻,把电池上的温度检测端接到了电 池正极上,相当于直接把电池温度检测端屏蔽掉了,所以对电池的充 电温度是没有任何监控的。
手机万能充电器电路工作原理与检修
深圳亚力通实业有限公司四海通S538型万能充电器实物测绘出工作原理图。 S538型万能充电器有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试 开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性 ,并通过状态指示灯可方便看出电池的充电情况。
充电时,随着电池电压不断升高,U1A+电压也随着升高。当电池充满时,U1A+的电压会高过基准电 压,此时U1A输出高电平,负责控制充电的Q1和充电指示灯LED2关闭,充电停止。因为U1B+得到的电压 要比U1A+低一些,所以此时U1B+的电压依然低于塞:准电压,U1B输出低电平,LED1继续发光,此时 LED呈现微弱的红光,表明电池已经充满。
多普达696充电器电路图
多普达696充电器电路图
充电电流、截止电压以及温度控制:在充电过程中,对电池性能 与寿命影响最大的是充电电流、充电温度和截止电压三个参数,所以 过效如电电在流防果路平充接 可 关 电 , 的保 止 三 工 , 电下 以 作 过 所 电护开极作然之来 看 用 程 以 压:关管原后前笔出,中个大在管V理经,者,所,充致T接:过先V3详充以充电在T正通接接R1细电电电过33因常电上上.反6分电池电程V冲,源电待馈左析 流 的 流 中击再瞬之充后右并主充充I电用间后电c处会,测要电电流表或,池于随V试受电电过测当因,高c着一控流流大电e某为看电的三而容下于大是种充C平电极3损C充致不Q原电锁的压31管坏电等一因器(,定延等的。使面器于样1因状时于0V三板的的Q0态作为c输μ1极上e这 。,用F在集电入/管的三 在1黄,整电压电6测V个 电色使V个极、T压试)参 池的经2电的I的-指两bD充过数 刚路通电电示1端电R。 刚降中过流流灯1电指从 充、压Q电的过是压示1原 电R-流变大只否电,灯2理 时I化、时亮起正池cL围 ,。而ER,?常一电D3我 电在在改若在个、压2们 池充和R变亮直R开,5负9,流、、责表8RR.控6示1上O制极的分充性压压电正降的电确就U流,I大A的可+,端Q以使1的接都过电通处流压电于保高源关护于充闭管U电状IVA;T态-端1。导的通电,压V,T2此截时止U,IA从输而出有高 2V其左右中,实此际时测V量ce得大到致D为1降0. 压在0.4V左右,Vce大致为1V,此时实际测量 三极到管的V充T1电是电过流流为保0护.3管9A,。R5、R6是VT2的过流取样保护电阻。 多普达6电96池充快电要器充电满路时图,电池电压会上升到4.2V左右,此时Vce大致为 当电0.容4VC,2两实端际电测压量超到过的稳充压电二电极流管为V0D.Z21A的。稳这压款值充时电,器稳使压二用极的管三V极D管Z1型击号穿导通,三极管VT2的基极电压拉低,使其导通时间缩短或迅速截 止,为经S8开55关0,变压参器考T器1件耦合手后册,以使及次实级际输测出重电结压果降绘低制。了电流图(下图所示) 5V。电压开始向电池E充电。 例2:接上充待电充器电的池充及电电截源止后电,压各由状态UI指A控示制灯显,示电正池常的,电但压是经充过不R进8、电R或9、充电时间长。 当电RI池O充分满压时电,路U以1A1/+1的.7的电比压例会高分过压基得准到电测压试,电此压时,U然1A后输与出U高1得电平到,的负2.5责V控制充电的Q1和充电指示灯LED2关闭,充电停止。 基准电压比较。当电池电压达到4.25V时,U1A+的电压高于U1A-的电 压,U1A输出低电平,充电结束,也就是说充电截止电压为4.25V。在 充电温度监控方面,没有找到任何检测电路。

手机充电器电路原理和检修方法

手机充电器电路原理和检修方法

手机充电器电路原理和检修方法一、手机充电器电路原理1.交流输入电路:手机充电器一般采用交流输入电压,交流输入电路主要由输入电源插座、保险丝、开关、滤波电容和稳压电容等组成。

输入电源插座将外部交流电源与充电器连接,通过保险丝保护充电器电路的安全,开关控制电路的通断,滤波电容用于消除输入电压的高频噪声,稳压电容能够对输入电压进行稳定。

2.整流滤波电路:整流滤波电路用于将交流电转换为直流电。

它一般由整流桥、滤波电容和滤波电阻组成。

整流桥将交流电转换为脉冲直流电,滤波电容通过充电和放电的过程平滑输出电流,滤波电阻能够进一步消除输出电流中的高频噪声。

3.电压稳定电路:电压稳定电路用于将输出电压稳定在手机所需的电压范围内。

它一般由稳压二极管、稳压三极管和反馈电路组成。

稳压二极管能够将输出电压稳定在一定范围内,稳压三极管通过反馈电路对输出电压进行调整,保持其稳定工作。

4.输出电路:输出电路用于将稳定电压输出给手机进行充电。

它一般由输出插座、输出滤波电容和保护电路组成。

输出插座将手机连接到充电器,输出滤波电容能够消除输出电压中的杂波,保护电路用于保护充电器和手机免受电流过大或电压过高的损害。

二、手机充电器的检修方法1.检查充电线:有时手机充电器不能正常工作是由于充电线断裂或损坏导致的。

可以通过检查充电线上是否有外露的金属线,或使用万用表检测充电线是否通电来判断充电线是否正常。

2.检查充电插座:有时手机充电器不能正常工作是由于充电插座接触不良或脱落导致的。

可以通过检查插座是否有变形、氧化或松动来判断插座是否需要更换。

3.检查保险丝:有时手机充电器不能正常工作是由于保险丝熔断导致的。

可以通过检查保险丝是否熔断或使用万用表测试保险丝是否导通来判断保险丝是否需要更换。

4.检查电容和电阻:有时手机充电器不能正常工作是由于电容和电阻损坏导致的。

可以通过使用万用表测试电容和电阻的阻值是否正常来判断它们是否需要更换。

5.检查稳压电路:有时手机充电器不能正常工作是由于稳压电路故障导致的。

手机充电器原理解析

手机充电器原理解析

手机充电器原理详解分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE130 03),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF 电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

手机充电器电源变换电路原理分析

手机充电器电源变换电路原理分析

手机充电器电源变换电路原理分析分析一个电源,往往从输入开始着手。

220V 交流输入,一端经过一个4007 半波整流,另一端经过一个10 欧的电阻后,由10uF 电容滤波。

这个10 欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF 电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003 关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003 为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

手机充电器用电源变换器由于13003 下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148 后,加至三极管C945 的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A 时,三极管C945 导通,从而将开关管13003 的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA 左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148 整流,22uF 电容滤波后形成取样电压。

为了分析方便,我们取三极管C945 发射极一端为地。

那么这取样电压就是负的(-4V 左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V 稳压二极管后,加至开关管13003 的基极。

前面说了,当输出电压越高时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专门找了几个例子,让大家看看。

自己也一边学习。

分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V 稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。

右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。

没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。

这里可以用常见的1N5816、1N5817等肖特基二极管代替。

同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。

1 移动通信手持机锂电池的安全要求和试验方法1.1 一般要求本标准对电池的电路和结构设计提出了一些建议,希望生产厂家在电池的设计环节能充分考虑到电池的安全性。

1.1.1 绝缘与配线常见的电池外壳都是非金属的,但有的电池也采用金属外壳,后种情况下电池的电极终端与电池的金属外壳之间的绝缘电阻在500V直流电压下测量应大于5M&O1527;,除非电池的电极终端与电池的金属外壳有连通。

手机电池并非电池芯的简单组合,电池芯之外还有保护电路和控制电路,其内部配线及绝缘应充分满足预计的最大电流、电压和温度的要求,配线的排布应保证端子之间有足够的间隙和绝缘穿透距离,内部连接的整体性能应充分满足可能发生误操作时的安全要求。

1.1.2 泄放泄放的含义即电池或电池芯内部的过高压力在安全阀处释放以防止其破裂或爆炸。

标准要求电池或电池芯在内部压力过高达到一定限值时能以一定的速率将压力泄放以防止电池的破裂、爆炸和自燃。

如果电池的电池芯被封装在外壳内,则该封装的形式和封装的方法在正常操作过程中不应引起电池过热,也不应约束内部压力的泄放。

1.1.3 温度/电流管理电池充电过程中,电池和充电器内部的电路都会产生热量,若散热不佳导致热量聚集会影响电池正常的化学反应过程,造成电池的热失效,因此,电池的设计应能防止电池温度的异常上升。

必要时,电池的充电和放电应设定安全限流,防止电流过大而产生过多热量。

1.1.4 终端连接电池外壳应清晰地标明终端的极性。

终端的尺寸大小和形状应能确保承载预计的最大电流。

外部终端表面应采用机械性能良好并耐腐蚀的导电材料。

终端应设计成最不可能发生短路的样式。

1.1.5 电池芯装配成电池电池芯与所装配电池的容量应紧密匹配,装配在同一电池里的电池芯应结构相同,化学成分相同,并且是同一厂家生产的。

不同厂家生产的电池芯在电解液和电极材料等方面均会有所差异,如此规定的目的是为了保证装配在同一电池中电池芯的一致性,防止落后电池芯造成整个电池技术指标和安全性能的下降。

1.2 正常使用时的安全要求考虑到试验的一致性及各电池试验结果具有可比性,试验所用电池芯或电池的生产日期应在3个月以内,但并不表示电池3个月后安全性能会下降。

常态试验在20℃±5℃的环境温度下进行。

1.2.1 连续低倍率充电完全充电的电池芯以额定的低倍率电流0.01C5 A持续充电28天后,应不起火、不爆炸、不漏液。

1.2.2 振动用完全充电的电池芯或电池进行X、Y、Z三个方向的振动试验,振动源单振幅0.76mm (双振幅1.52mm), 频率变化率1Hz/min, 频率范围10Hz到55Hz,往返振动90 min±5min后,电池应不起火、不爆炸、不漏液。

1.2.3 高温性能完全充电的电池置于70℃±2℃恒温箱中,保持7小时,然后取出置于室温条件下,检查其外观,其外壳应无变形或其变形不会导致电池内部元件暴露出来。

1.2.4 温度循环完全充电的电池或电池芯置于可强制调温的恒温箱中,按下列程序做-20℃到+75℃的温度循环:(1)30min内使恒温箱的温度升到75℃±2℃,并在此温度下保持4h;(2)30min内使恒温箱的温度降到20℃±5℃,并在此温度下保持2h;(3)30min内使恒温箱的温度降到-20℃±2℃,并在此温度下保持4h;(4)30min内使恒温箱的温度升到20℃±5℃,并在此温度下保持2h;(5)再重复1-4的步骤做4个循环;(6)第5次循环完成后,电池保存2h 再作检查,应符合相关要求。

该试验可以在一个可强制调温的恒温箱中进行,也可以在3个不同温度的恒温箱之间进行。

试验后,电池芯或电池应不起火、不爆炸、不漏液。

1.2.5 低压性能完全充电的电池芯置于温度为20℃±5℃的真空干燥箱中,抽真空使气压小于11.6kpa后保持6小时后,应不起火、不爆炸、不漏液。

1.3 可能发生误操作时的安全要求1.3.1 外部短路完全充电的电池或电池芯分别在20℃±5℃和55℃±5℃的环境中放置2h。

然后,用连线短接每个电池芯或电池的正负极终端并确保全部外部电阻小于100mΩ。

短接后,保持24h,到电池芯或电池外壳的温度下降到电池芯或电池原始温度+电池芯或电池短路后的最大温升×20%。

试验后,电池或电池芯应不起火、不爆炸。

1.3.2 自由跌落完全充电的电池芯或电池以任意方式从1米高处自由跌落到水泥地面3次后,应不起火、不爆炸。

1.3.3 机械碰撞在20℃±5℃环境中,完全充电的电池承受X、Y、Z三个方向的碰撞。

如果电池只有两个对称轴,只作两个方向的碰撞。

在最初3ms内的平均加速度应≥75gn,最高加速度应在125gn 和175gn之间。

碰撞1000次±10次后,电池应不起火、不爆炸、不漏液。

1.3.4 热冲击完全充电的电池芯,置于一个烘箱中加热。

烘箱的温度以(5±2)℃/min的速率上升至130℃±2℃,保持10min,电池芯应不起火、不爆炸。

1.3.5 耐挤压性能完全充电的电池芯置于两平行平板间,施加挤压力为13kN±1kN,一旦达到最大压力或压力突然下降1/3,即可卸压。

对圆形或方形电池芯进行挤压试验时,要使电池芯的纵轴与挤压设备扁平表面保持平行。

方形电池芯要沿其纵轴旋转90°,以便电池芯的宽边和窄边都能受到挤压的作用,外壳为铝塑复合膜的电池芯只做宽面的挤压。

试验后,电池芯应不起火、不爆炸。

1.3.6 冲击完全充电的电池芯置于一个扁平表面上,将一个半径为8mm、质量为10kg的棒垂直置于样品中心的正上方,从600mm 高度处落下作用到样品上。

圆柱形或方形电池芯在接受冲击试验时,其纵轴要平行于扁平表面,垂直于棒的纵轴。

方形电池芯要沿其纵轴旋转90°,以便电池芯的宽边和窄边都能受到冲击作用。

外壳为铝塑复合膜的电池芯只做宽面的冲击试验。

每只样品只能接受一次冲击试验,每次试验只能使用一只样品。

试验后,电池芯应不起火、不爆炸。

1.3.7 过充性能完全放电的电池芯,以≥10V的电压、0.2C5A的电流充电12.5h后,应不起火、不爆炸。

1.3.8 强制放电性能完全放电的电池芯承受1C5A电流强制放电90min后,应不起火、不爆炸。

外部短路试验、自由跌落试验、热冲击试验、耐挤压性能试验、冲击试验、过充性能试验、强制放电性能试验是破坏性试验,电池或电池芯的外壳均可能发生变化,漏液很难避免,但尚未影响安全性,因此标准中对这些试验没有要求不漏液。

1.4 安全标识安全标识的作用应引起足够的重视,电池本身应具有安全警示,并且附加适当的警告声明,需检查确认标识的一致性。

另外,电池的说明书中应写清合适的使用指导和推荐的充电方法等。

2 移动通信手持机锂电池充电器的安全要求和试验方法市场上的电池充电器形色各异,有的使用电源线,有的不使用。

直接插入式充电器不使用电源线,电源插头和充电器外壳构成一完整部件,其重量靠墙上插座来承载,市场上常见的“坐充”就是这类充电器。

使用电源线的充电器,与电源连接的方式又分两种:可拆卸的和不可拆卸的。

可拆卸的电源软线利用适当的电器连接器与充电器连接以供电,不可拆卸的电源软线固定在充电器上或与充电器装配在一起来供电。

市场中有的产品称为充电器,但实际上是适配器,我们有必要区分这两种功能。

适配器主要是把交流市电转换成直流电,根据电池的规格提供相应的电压电流,一般采用恒压恒流方式,能够隔离主电压和危险电压,对市电波动有一定耐受力,需要时可安全关断。

而充电器的主要功能是把充电电流限制在一个安全水平上,主要采用恒流方式,能检测充电的完成,根据某种算法终止充电以延长电池寿命,若发现电池异常可终止充电。

这两种功能可分别实现,也可组合在一个物理实体中。

GSM手机通常包含充电功能,与手机配套的只需适配器,而CDMA手机往往不包含充电功能,这样减少了手机设计的复杂性和工作状态时产生的热量。

相关文档
最新文档