函数的单调性证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性证明
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.
6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.
7.证明:函数y=在(﹣1,+∞)上是单调增函数.
8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.
10.已知函数f(x)=x+.
(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;
(Ⅱ)若>0对任意x∈[4,5]恒成立,数a的取值围.
11.证明:函数f(x)=在x∈(1,+∞)单调递减.
12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性.
14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.
15.求函数f(x)=的单调增区间.
16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.
17.求函数的定义域.
18.求函数的定义域.
19.根据下列条件分别求出函数f(x)的解析式
(1)f(x+)=x2+(2)f(x)+2f()=3x.
20.若3f(x)+2f(﹣x)=2x+2,求f(x).
21.求下列函数的解析式
(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)
(4)已知3f(x)﹣f()=x2,求f(x)
22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).23.已知3f(x)+2f()=x(x≠0),求f(x).
24.已知函数f(x+)=x2+()2(x>0),求函数f(x).
25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).
26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.
27.已知4f(x)﹣5f()=2x,求f(x).
28.已知函数f(+2)=x2+1,求f(x)的解析式.
29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.
30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)
31.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.
33.已知f(2x)=x2﹣x﹣1,求f(x).
34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.
36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.
37.若3f(x)+2f(﹣x)=2x,求f(x)
38.f(+1)=x2+2,求f(x)的解析式.
39.若函数f()=+1,求函数f(x)的解析式.
40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.
函数的单调性证明
参考答案与试题解析
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数.
【解答】证明:设x1<x2<0,则:
;
∵x1<x2<0;
∴x2﹣x1>0,x1x2>0;
∴f(x1)>f(x2);
∴f(x)在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.
【解答】证明:设0<x1<x2<,
则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+=(x1﹣x
)(),
2
又由0<x1<x2<,
则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,
则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,
设≤x3<x4,
同理可得:f(x3)﹣f(x4)=(x3﹣x4)(),
又由≤x3<x4,
则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,
则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.
3.证明f(x)=在定义域为[0,+∞)是增函数.
【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:
=;
∵x1,x2∈[0,+∞),且x1<x2;
∴;
∴f(x1)<f(x2);
∴f(x)在定义域[0,+∞)上是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.【解答】证明:任取x1,x2∈(0,2),且x1<x2,
则f(x1)﹣f(x2)=﹣(=
因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,
所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),
所以f(x)=x+在(0,2)上为减函数.
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.