高频开关电源技术方案

合集下载

高频开关稳压电源的设计

高频开关稳压电源的设计

高频开关稳压电源的设计高频开关稳压电源是一种采用高频开关技术来实现稳定输出电压的电源设计。

它在很多应用场景中都得到了广泛的应用,如电子设备、通信设备、工业控制系统等。

本文将从原理、设计和应用等方面对高频开关稳压电源进行详细介绍。

一、高频开关稳压电源的原理1.输入滤波电路:用于滤除输入电源中的电源干扰,避免其传播到输出端,以保证输出电压的稳定性。

2.整流电路:将输入电源交流信号变换为直流信号,一般使用整流桥或者整流二极管来实现。

3.DC-DC变换器:通过快速开关器件(如MOSFET)的开闭控制,将输入电压转换为高频交流信号,并经过变压器、滤波电路等处理后,得到所需的输出稳定电压。

4.控制电路:用于对DC-DC变换器进行调整和控制,以维持输出电压的稳定性。

通常采用PWM(脉宽调制)技术,通过调节开关器件的开闭时间来控制输出电压的大小。

二、高频开关稳压电源的设计步骤设计高频开关稳压电源通常需要经过以下几个步骤。

1.确定设计要求:包括输出电压、输出电流、转换效率、负载变化响应时间等。

这些指标将直接影响到电源设计的具体参数选择和性能。

2.选择开关器件:根据设计要求和应用场景的需求,选择合适的快速开关器件,如MOSFET或IGBT等。

一般来说,MOSFET具有开关速度快、功耗低、可靠性高等优点,在大多数情况下被广泛采用。

3.选择变压器:根据设计要求和开关器件的特性来选择合适的变压器。

变压器的参数包括输入输出电压比、变压器的绕制方式、匝数、铁芯材料等。

通过合理的设计和选择,可以使变压器的效率和体积得到优化。

4.设计控制电路:根据PWM技术,设计一个合适的控制电路。

控制电路的关键是根据反馈信号来对开关器件进行调整,以维持输出电压的稳定性。

同时,还需要考虑保护电路的设计,如过压保护、过流保护等,以提高电源的安全性和可靠性。

5.电路仿真和测试:设计完成后,需要进行电路的仿真和测试,验证电源的性能和稳定性。

通过仿真和测试,可以根据需要对电路进行优化和改进,以满足实际应用的需求。

高频开关电源技术规范书

高频开关电源技术规范书

通讯系统电源(高频开关电源、免维护电池)技术规范书1、概述1.1本技术规范书仅适用于2011主网技改工程。

1.2本规范未对一切技术细节做出规定,也未充分引述有关标准和规范,卖方应提供符合本规范书和遵照国际电工委员会标准(IEC)、国际公制(SI)及国家标准的符合国家电力行业标准的优质产品。

技术指标应符合YD/T731《通讯用高频开关整流器》的规定。

1.3本规范未尽事宜,双方协商解决。

2、主要技术要求2.1 供货数量:高频开关电源:-48V/120A (4*30A) 4套蓄电池: -48V/300AH 4组(包括电池柜)每套两组每组24只,2V/只2.2设备电气性能3.单套高频开关电源配置:1)具备交流输入配电单元、整流单元、直流输出配电单元、监控单元,并为一体化机柜,应能至少接入2组蓄电池。

2)具备完善的故障告警、保护功能(交流输入故障、直流输出故障、整流单元故障、监控单元故障等自动保护功能),且部分状态具有自动恢复功能(交流过压、欠压、直流过流、过温)。

3)交流配电单元:输入2路,输入电压:三相五线制:380V±20%,50±10%HZ,2路交流输入电源能自动切换,且互为主备用。

输出:三相输出分路(2路):2路32A,2路25A单相输出分路(14路):2路20A,8路10A,4路6A。

4)直流配电单元:输入:整流4路:48V/4*30A,可调整为(10A-20A-30A-60A,最大能达到120A。

蓄电池: -48V≤300AH蓄电池保护值:43V±1%输出电压:-48V(-40V~-58V)输出总容量为120A。

输出电流规格:40A 6路、20A 40路、10A 14路直流输出采用端子接线。

5)整流模块单元:整流模块采用N+1方式工作由多个整流模块组成的整流单元,当其中一个(或几个)模块故障时,不得造成整个系统停止工作。

输入电压:304~456V(45~66HZ)输出电压:53.5V(可调范围40~60V)输出电流:25A效率:>90%纹波电压:<2MV稳压精度:≤±0.5%当输出电压在56.4V时,整流模块应能输出额定电流。

高频开关电源技术规范书

高频开关电源技术规范书

通讯系统电源(高频开关电源、免维护电池)技术规范书1、概述1.1本技术规范书仅适用于2011主网技改工程。

1.2本规范未对一切技术细节做出规定,也未充分引述有关标准和规范,卖方应提供符合本规范书和遵照国际电工委员会标准(IEC)、国际公制(SI)及国家标准的符合国家电力行业标准的优质产品。

技术指标应符合YD/T731《通讯用高频开关整流器》的规定。

1.3本规范未尽事宜,双方协商解决。

2、主要技术要求2.1 供货数量:高频开关电源:-48V/120A (4*30A)4套蓄电池:-48V/300AH 4组(包括电池柜)每套两组每组24只,2V/只2.2设备电气性能3.单套高频开关电源配置:1)具备交流输入配电单元、整流单元、直流输出配电单元、监控单元,并为一体化机柜,应能至少接入2组蓄电池。

2)具备完善的故障告警、保护功能(交流输入故障、直流输出故障、整流单元故障、监控单元故障等自动保护功能),且部分状态具有自动恢复功能(交流过压、欠压、直流过流、过温)。

3)交流配电单元:输入2路,输入电压:三相五线制:380V±20%,50±10%HZ,2路交流输入电源能自动切换,且互为主备用。

输出:三相输出分路(2路):2路32A,2路25A单相输出分路(14路):2路20A,8路10A,4路6A。

4)直流配电单元:输入:整流4路:48V/4*30A,可调整为(10A-20A-30A-60A,最大能达到120A。

蓄电池:-48V≤300AH蓄电池保护值:43V±1%输出电压:-48V(-40V~-58V)输出总容量为120A。

输出电流规格:40A 6路、20A 40路、10A 14路直流输出采用端子接线。

5)整流模块单元:整流模块采用N+1方式工作由多个整流模块组成的整流单元,当其中一个(或几个)模块故障时,不得造成整个系统停止工作。

输入电压:304~456V(45~66HZ)输出电压:53.5V(可调范围40~60V)输出电流:25A效率:>90%纹波电压:<2MV稳压精度:≤±0.5%当输出电压在56.4V时,整流模块应能输出额定电流。

高频开关电源技术方案[范文大全]

高频开关电源技术方案[范文大全]

高频开关电源技术方案[范文大全]第一篇:高频开关电源技术方案高频开关电源技术方案客户需求技术参数30929003.pdf 技术方案 2.1 概述现场的实际应用情况:12台15V/12000A的电源配1台90V/2000A的电源,每6台15V/12000A 的电源配一台6kV/380V/1MW的变压器,其中90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作。

电源关注核心指标是可靠性和系统效率。

电源可以考虑采用3种主回路方式,每种方式各有优缺点。

2.2主回路原理图方案1 2.2.1方案1 总体思想为输入36脉波移相变压器,6组功率模块并联的方式,具体电路如下:15V/12000A 开关电源最大输出功率180kW,90V/2000A开关电源最大输出功率180kW,功率等级一样,考虑采用同样的主回路原理,如下:整流器整流器36脉移相变压器整流器整流器整流器整流器功率模块1输出15V/12000A或90V/2000A功率模块2输入380V/50Hz 功率模块3功率模块4功率模块5功率模块6功率模块原理如下:高频变压器及整流输入端配置36脉波移相变压器,可有效拟制输入电流谐波,基本能满足3%的要求;每台开关电源采用6个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A的开关电源每个模块的等级设计为15V/2200A,90V/2000A的开关电源每个模块的等级设计为90V/360A。

逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右;二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。

输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。

90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加36脉波移相变压器,输出也不需要LC 滤波,直流输出高频方波电压。

高频开关电源技术

高频开关电源技术

高频开关电源技术开关电源的发展使电源摆脱了笨重、低效的变压线性电源,但是,随着电子技术的发展,很多设备都向便携式、微型化发展,这促使电源技术必须向高频化发展,研究表明,电源产品的体积,重量与供电频率的平方成反比。

1)电力电子设备的小型化、轻量化和高功率密度化电力电子设备的发展方向之一是小型化,降低其体积、重量,提高功率密度。

例如,随着微处理器大规模集成电路(VLSI)尺寸的不断减小,而供电电源的尺寸与微处理器相比却要大得多。

因此,必须采取新的技术来降低开关电源的体积重量。

20世纪人们在提高开关电源功率密度方面做了不少工作。

开关电源的小型化、减轻重量对便携式电子设备(如移动电话、数码相机)尤为重要。

为了实现开关电源高功率密度,必须提高PWM DC/DC转换器的工作频率,从而减小电路中储能元件的体积和重量。

2)高频电力电子技术1980年以前,开关电源中PWM DC/DC转换器的开关频率为20~50 kHz,从1980年起,提高开关频率成为减少开关电源尺寸的最有效手段,同时也改善了开关电源的动态性能。

现在⒛0~500 kHz已成为输出100 W以下开关电源的标准开关频率。

特殊制造的小功率开关电源,其开关频率已经达到了几兆赫。

如表给出了20世纪70年代以后的30年,通信和计算机用开关电源DC/DC转换器高功率密度的发展进程。

可见,高频化、高功率密度和高效率是开关电源技术发展进步的重要标志。

如表开关电源DC/DC转换器的发展进程3)高效率和软开关技术PWM开关电源按硬开关模式工作时,在开关过程中,功率开关器件的电压和电流波形有交叠,因而开关损耗大。

高频化可以缩小感性元件和容性元件的体积重量,但开关频率越高,开关损耗越大。

为此,必须采取措施来提高高开关频率DC/DC转换器的效率。

人们研究了在开关过程中开关器件的电压和电流波形不相交叠的技术,即所谓零电压开关(ZVS)和零电流开关(ZCS)技术,总称为软开关技术(相对于PWM硬开关技术而言)。

开关电源设计方案机载高频开关电源设计方案

开关电源设计方案机载高频开关电源设计方案

开关电源设计机载高频开关电源设计机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。

应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。

机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V直流电源。

两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高。

而28V 直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。

机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选实验,因此设计机载电源的可靠性给我们提出了更高的要求。

下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至-40℃~+55℃,完全适应军品级电源的需要。

系统构成及主回路设计图1所示为整机电路原理框图。

它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。

115Vac/400Hz 中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。

图1 整机电路原理框图升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。

本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。

隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。

反激和正激拓扑主要应用在中小功率电源中,不适合本电源的3000W输出功率要求。

高频电源技术方案

高频电源技术方案

高频电源技术方案引言高频电源技术是一种用于转换电力的关键技术,广泛应用于各种电子设备和系统中。

本文将介绍高频电源技术的基本原理、常见的方案以及其在不同领域的应用。

高频电源技术原理高频电源技术通过将输入电压转换为高频交流电,并通过变压器和滤波器进一步转换为所需的输出电压。

其主要原理包括以下几个方面:1.变频器:高频电源技术使用变频器将输入电压转换为高频交流电。

变频器通常采用开关电源技术,通过控制开关管的通断来实现电压的转换。

常见的变频器包括升压变频器和降压变频器。

2.变压器:高频交流电经过变频器转换后,需要进一步通过变压器进行电压的转换。

变压器是高频电源技术中的关键组件之一,通过变压器的绕组比例可以实现输入电压到输出电压的转换。

3.滤波器:高频电源技术通过滤波器对输出电压进行滤波,以去除高频噪声和杂波。

滤波器通常采用电容器和电感器组成的LC滤波网络,可以有效地滤波输出电压。

高频电源技术方案高频电源技术有多种方案可供选择,具体方案的选择取决于应用需求以及系统的功率和效率要求。

以下是几种常见的高频电源技术方案:1.开关电源:开关电源是一种常见的高频电源技术方案,它通过开关管的通断控制来实现电压转换。

开关电源具有体积小、效率高、输出电压稳定等优点,广泛应用于各种电子设备中。

2.谐振变换器:谐振变换器是一种利用电感和电容的谐振作用来进行能量转换的高频电源技术方案。

谐振变换器具有高效率、高频率、低噪声等特点,在电池充电、电焊等领域得到广泛应用。

3.逆变器:逆变器是一种将直流电转换为交流电的高频电源技术方案。

逆变器通过采用高频开关电路和逆变电路,将直流电转换为高频交流电,并通过变压器将交流电输出。

4.共振变换器:共振变换器是一种利用共振电路来实现能量转换的高频电源技术方案。

共振变换器具有高效率、低杂散、高频率等特点,适用于高频电源和电力转换。

高频电源技术在不同领域的应用高频电源技术在各个领域中都有广泛应用。

以下是几个典型的应用领域:1.通信设备:高频电源技术在通信设备中起到关键作用。

高频开关电源系统的主要技术参数

高频开关电源系统的主要技术参数

高频开关电源系统的主要技术参数
1.输入电压范围:高频开关电源系统通常需要输入直流电压或交流电压。

输入电压范围决定了电源系统的适用范围。

一般来说,输入电压范围是根据具体的应用需求来确定的,比如直流电压范围一般为12V、24V、48V等,交流电压范围一般为100V、220V、380V等。

2.输出电压范围:高频开关电源系统可以根据实际需求提供不同输出电压。

输出电压范围由电源系统的设计和组成元件决定。

一般来说,输出电压范围可以从几伏特到几千伏特不等。

3.输出功率:输出功率是指高频开关电源系统在工作状态下能够提供的最大功率。

输出功率的大小通常由应用需求来确定。

一般来说,输出功率可以从几瓦到几千瓦不等。

4.转换效率:转换效率是指高频开关电源系统将输入电能转换为输出电能的效率。

转换效率越高,系统的能量损耗就越少,效率也越高。

一般来说,高频开关电源系统的转换效率可以达到90%以上。

5.纹波和噪声:纹波和噪声是指高频开关电源系统输出电压中的波动和噪声。

纹波和噪声对于一些应用来说非常重要,比如在精密仪器和通信设备中,需要较低的纹波和噪声水平。

6.绝缘电阻:绝缘电阻是指高频开关电源系统的输入和输出之间的绝缘能力。

绝缘电阻决定了系统的安全性能。

一般来说,绝缘电阻应满足相关的国际和行业标准要求。

7.工作温度范围:工作温度范围是指高频开关电源系统能够正常工作的温度范围。

一般来说,高频开关电源系统的工作温度范围根据具体的应用需求来确定。

一款2KW高频开关电源电路的设计方案及实现

一款2KW高频开关电源电路的设计方案及实现

一款2KW高频开关电源电路的设计方案及实现
大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。

本文主要针对滤波电感、电容和变压器的体积和重量比较大,因此提出了一款2KW高频开关电源电路的设计方案,通过方案中的电源电路的设计方法,达到了以减少它们的体积来实现小型化、轻量化。

 引言
 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。

针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以方案中2KW的电源为例进行设计。

 设计内容和方法
 1、主电路型式的选择
 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。

在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。

半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。

 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开。

高频开关电源说明书

高频开关电源说明书
三、 技术参数
输入
三相 380V±10% 50HZ±5HZ
输出电流 输出电压 纹波系数
0-500A 0-35V 1%
调整精度 冷却方式
指导:上海瑞进电源 1%
风冷
四、 功能选配
项目
基本功能
启动/停止

稳压/稳流选择

电压表

异常报警

远程控制
软启动

PLC 控制
128-485
户所需功能置稳压或稳流档. 2. 合上空气开关,此时面板上数显表显示. 3. 将"待机"开关置"工作"状态,然后顺时针转动输出调节旋钮.电压和电流显示出相应的数字. 三.开关功能:
本机具有稳压和稳流功能.当用户置"稳压"档时,输出电压在机器额定电流范围内不会有变化, 电流会根据负载大小做相应的显示.当用户置"稳流"档时输出电流在机器额定电压范围内不会有任何 变化,电压表会根据负载大小做出相应显示。
五、 共同规格
控制方式
PWM 控制切换方式
输入端
电压 频率
38V 三相 50/60HZ
电压范围 ±10%
控制
稳压、稳注
输出端
可调范围 0-额定位(电流,电压)
精度
额定位±1%
误差
RMS1%
六、 机器型号
500
A
产品标号
选项配功能
高频电源 机器名称
输出电流表
产品系列
七、 安装与使用 ◆ 1、把整流器安放好,并保持其稳定,为保证整流器通风良好,其前后左右 0.5m 以内不要有任何物
四、注意事项:
1、保护指示灯亮时:
①、检查输入 380V 交流是否缺相,电压是否高于 440V 或低于 320V;

高频开关电源原理

高频开关电源原理

高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。

其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。

首先,接入整流电路将交流电转换为直流电。

整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。

2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。

输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。

3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。

此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。

4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。

这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。

5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。

输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。

6. 输出调节:高频开关电源需要对输出电压进行精确的调节。

通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。

总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。

它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。

(技术规范标准)高频开关电源技术规范书

(技术规范标准)高频开关电源技术规范书

2011年主网技改工程通讯系统电源(高频开关电源、免维护电池)技术规范书1、概述1.1本技术规范书仅适用于2011主网技改工程。

1.2本规范未对一切技术细节做出规定,也未充分引述有关标准和规范,卖方应提供符合本规范书和遵照国际电工委员会标准(IEC)、国际公制(SI)及国家标准的符合国家电力行业标准的优质产品。

技术指标应符合YD/T731《通讯用高频开关整流器》的规定。

1.3本规范未尽事宜,双方协商解决。

2、主要技术要求2.1 供货数量:高频开关电源:-48V/120A (4*30A) 4套蓄电池: -48V/300AH 4组(包括电池柜)每套两组每组24只,2V/只2.2设备电气性能3.单套高频开关电源配置:1)具备交流输入配电单元、整流单元、直流输出配电单元、监控单元,并为一体化机柜,应能至少接入2组蓄电池。

2)具备完善的故障告警、保护功能(交流输入故障、直流输出故障、整流单元故障、监控单元故障等自动保护功能),且部分状态具有自动恢复功能(交流过压、欠压、直流过流、过温)。

3)交流配电单元:输入2路,输入电压:三相五线制:380V±20%,50±10%HZ,2路交流输入电源能自动切换,且互为主备用。

输出:三相输出分路(2路):2路32A,2路25A单相输出分路(14路):2路20A,8路10A,4路6A。

4)直流配电单元:输入:整流4路:48V/4*30A,可调整为(10A-20A-30A-60A,最大能达到120A。

蓄电池: -48V≤300AH蓄电池保护值:43V±1%输出电压:-48V(-40V~-58V)输出总容量为120A。

输出电流规格:40A 6路、20A 40路、10A 14路直流输出采用端子接线。

5)整流模块单元:整流模块采用N+1方式工作由多个整流模块组成的整流单元,当其中一个(或几个)模块故障时,不得造成整个系统停止工作。

输入电压:304~456V(45~66HZ)输出电压:53.5V(可调范围40~60V)输出电流:25A效率:>90%纹波电压:<2MV稳压精度:≤±0.5%当输出电压在56.4V时,整流模块应能输出额定电流。

现代高频开关电源技术及应用

现代高频开关电源技术及应用

现代高频开关电源技术及应用提交方式:文本框粘贴1.简述开关电源的基本工作原理。

2.开关电源的重要元器件有那些?3.简述线性电源与开关电源的异同点。

4.简述电容器的工作原理。

5.简述场效应管的功能。

6.画出Boost变换器的结构图,并简述其功能。

7.名词解释:硬开关、软开关、脉宽调制、谐振、漂移参考答案1.答:输入的直流不稳定电压U i 经开关S加至输出端,S为受控开关,是一个受开关脉冲控制的开关调整管,若使开关S按要求改变导通或断开时间,就能把输入的直流电压U i 变成矩形脉冲电压,这个脉冲电压经整流和平滑滤波后,就可得到稳定的直流输出电压U o。

2.答:开关电源中的重要元器件主要有功率开关管、磁性元件、各种二极管、集成控制器、各种电容器,以及精密稳压源、光电耦合器、热敏电阻、压敏电阻等。

3.答:开关电源从整体结构上可分为主电路和控制电路两大部分,主电路由输入整流滤波电路、开关功率变换电路、输出整流滤波电路以及输入和输出的干扰抑制滤波电路组成。

控制电路由基准电压源、取样反馈电路、比较放大器、脉冲振荡器、脉冲调制电路、驱动电路以及各种保护电路等组成。

4.答:两个彼此绝缘、互相靠近的导体就构成了一个电容器,两个导体叫做电容器的两个电极,分别用导线引出。

当电源加在电容器两个电极两端,电路中有短暂电流移动,电容器开始充电过程。

当电极之间的电压与电池的电压相等时,电流移动停止。

假如电路中的开关打开,电容器所充的电能保留在电路上,若用导线短接两个电极,电容器所充的电能将经由导线释放。

电容器的电容量取决于电容器极板的相对面积和电容器极板之间的距离。

5.答:(1)、场效应管可应用于放大。

由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

(2)、场效应管很高的输入阻抗非常适合作阻抗变换。

常用于多级放大器的输入级作阻抗变换。

(3)、场效应管可以用作可变电阻。

(4)、场效应管可以方便地用作恒流源。

选用高频开关电源来实现的电路方案

选用高频开关电源来实现的电路方案

本文根据电镀电源的工作特点,提出了选用高频开关电源来实现的电路方案。

笔者根据近年的应用实践研究,对在实践中比较成功的ZVS PWM软开关方案,进行了较深入的工作分析,描述了其优缺点。

1 电镀行业对电镀电源的技术要求电镀行业的重大关键设备是电镀电源,其性能的优劣直接影响到电镀产品工艺质量的好坏;同时,电镀行业最主要的能量消耗是电源,因此高品质的电源是电镀业节能增效的决定性因素,对电网的绿色化也有重要影响。

在电气性能方面,电镀电源属于低压大电流设备,要求操作简便、能承受输入端的突变和输出端短路,以及操作过程过载的冲击。

还由于电源设备工作在酸碱、潮湿等恶劣环境下,对电镀电源的稳定性、可靠性、抗干扰性、耐腐蚀性等要求也显得更为重要。

这些,都是设计电镀电源必须考虑的重要因素。

高频开关电源与传统工频整流电源相比,具有高效节能约20%~30%、省材约80%~90%、功率密度大(输出1A电流传统电源需要制造材料0.5kg~1kg,而开关式电源只需要0.06kg~0.12kg),而且动态特性和控制调节特性好,制造过程占地少、加工量少等特点[1]。

电镀电源要求输出功率大(通常输出电流要2000A以上),电镀行业推广应用开关式电源对节能、节省资源都是有显着效果的措施。

2 电镀电源的主电路结构电镀电源在满足其电气技术要求的条件下,应该尽量采用结构简单、稳定可靠的技术方案。

而高频开关电源要获得大功率输出,也要从电路结构设计的各方面都要采取相应的措施,来保证大功率输出的要求。

因此,其工作电源直接选用380V的三相交流电源。

经过三相桥式整流,滤波,作为开关电源的输入电源。

由于要求输出大功率,主回路功率变换器要采用桥式电路才能实现。

因为桥式电路使得高频变压器只需要一个原边绕组,通过正向、反向的电压,得到正向、反向的磁通,变压器铁芯和绕组利用最佳,效率、功率密度都较高;另外,功率开关承受的最大反压可以不超过电源电压;利用四个反接在功率开关两端的体二极管,无须设置能量恢复绕组,变压器的反激能量就可以恢复利用[2]。

30kHz高频开关电源变压器的方案

30kHz高频开关电源变压器的方案

30kHz高频开关电源变压器的方案在传统的高频变压器方案中,由于磁心资料的束缚,其作业频率较低,通常在20kHz摆布。

跟着电源技能的不断翻开,电源体系的小型化,高频化和高功率比已成为一个永久的研讨方向和翻开趋势。

因此,研讨运用频率更高的电源变压器是下降电源体系体积,行进电源输出功率比的要害要素。

这篇文章依据超微晶合金的优良电磁功用,通过示例介绍30kHz超微晶高频开关电源变压器的方案。

1、变压器的功用方针电路办法:半桥式开关电源改换器原理见图1:作业频率f:30kHz改换器输入电压Ui:DC300V改换器输出电压U0:DC2十0V改换器输出电流Io:0.08A整流电路:桥式整流占空比D:1%~90%输出功率eta;:ge;80%耐压:DC12kV温升:+50℃作业环境条件:-55℃~+85℃2、变压器磁心的挑选与作业点断定从变压器的功用方针恳求可知,传统的薄带硅钢、铁氧体资料已很难满意变压器在频率、运用环境方面的方案恳求。

磁心的资料只需从坡莫合金、钴基非晶态合金和超微晶合金三种材猜中来思考,但坡莫合金、钴基非晶态报价高,约为超微晶合金的数倍,而饱满磁感应强度Bs却为超微晶合金2/3摆布,且加工技能杂乱。

因此,归纳三种资料的功用比照(表1),挑选饱满磁感应强度Bs 高,温度安稳性好,报价低廉,加工便利的超微晶合金有利于变压器技能方针的完结。

表1(1)钴基非晶态合金和超微晶合金的首要磁功用比照磁心作业点的挑选通常从磁心的资料,变压器的作业情况,作业频率,输出功率,绝缘耐压等要从来思考。

超微晶合金的饱满磁感应强度Bs较高约为1.2T,在双极性开关电源变压器的方案中,磁心的最大作业磁感应强度Bm通常可取到0.6~0.7T,经分外处理的磁心,Bm可抵达0.9T。

在本方案中,由于作业频率、绝缘耐压、运用环境的要素,把最大作业磁感应强度Bm定在0.6T,而磁心构造则定为不堵截的矩形磁心。

这种构造的磁心与环形磁心比照具有线圈绕制便利、散布参数影响小、磁心窗口运用率高、散热性好、体系绝缘牢靠、但电磁兼容性较差。

48V10A高频开关电源设计

48V10A高频开关电源设计

48V10A高频开关电源设计高频开关电源是一种常见的电源形式,它具有高效率、高功率密度和小尺寸等优点。

在设计48V10A高频开关电源时,需要考虑以下几个方面:输入电源、开关电源拓扑结构、控制电路、功率器件和保护电路。

首先,输入电源是指输入到开关电源的电源电压。

对于48V10A高频开关电源,一般可以采用220V交流电作为输入电源。

由于输入电压范围较大,需要加入输入滤波电路以减小电源干扰。

其次,选择合适的开关电源拓扑结构是关键。

常见的开关电源拓扑结构有Boost、Buck、Buck-Boost和Cuk等。

对于输出电压较高的48V10A高频开关电源,可以选择Boost拓扑结构。

Boost拓扑结构可以将输入电压放大到较高的输出电压,同时提供稳定的输出电流。

然后,控制电路是控制开关电源的关键部件。

常见的控制方式有固定频率PWM控制和变频PWM控制。

对于48V10A高频开关电源,可以选择固定频率PWM控制。

固定频率PWM控制可以保证开关电源的稳定性和可靠性。

接着,功率器件是开关电源设计中非常重要的组成部分。

在选择功率器件时,需要考虑其导通损耗和开关损耗。

一般可以选择MOSFET或IGBT作为功率器件。

MOSFET具有开关速度快、导通损耗小的优点,适合进行高频开关。

IGBT则适合用于高压和大电流的开关场合。

最后,保护电路是保护开关电源和负载的安全和稳定运行的重要部分。

常见的保护电路有过压保护、过流保护和短路保护等。

这些保护电路可以保证开关电源和负载在异常情况下的安全运行。

在设计48V10A高频开关电源时,需要综合考虑以上几个方面。

设计过程中,可以采用开关电源设计软件和仿真工具来辅助设计和优化。

设计完成后,还需要进行实际的测试和验证,确保开关电源的性能和可靠性。

总结起来,设计48V10A高频开关电源需要考虑输入电源、拓扑结构、控制电路、功率器件和保护电路等多个方面。

通过合理选择和设计,可以实现高效率、高功率密度和小尺寸的高频开关电源。

高频电源技术方案

高频电源技术方案

高频电源技术方案引言高频电源技术是电力系统中不可或缺的一项关键技术。

随着电子设备的不断普及和发展,对电源的要求也越来越高,尤其是在高频率下的稳定性和效率方面。

本文将介绍一些常见的高频电源技术方案,包括开关电源和谐振电源。

开关电源基本原理开关电源是一种将电能从输入端转换成高频交流信号,在输出端通过滤波电路转换为稳定直流电压的电源系统。

其基本原理是利用开关管(如MOSFET)对输入电压进行调制,产生高频脉冲信号,并通过变压器、整流电路和滤波电路等组成的后级电路将高频脉冲信号转换为稳定的直流电压。

特点与优势开关电源具有如下特点和优势:1.高效率:开关电源在高频率下工作,能够大幅提高电能的转换效率,从而减少能量的损耗。

2.小体积:由于开关电源采用高频工作,电流和电压的波动幅度较小,可以使用较小尺寸的电感器和电容器,从而实现小尺寸化设计。

3.调节性好:开关电源采用全电子开关控制,可以实现调节范围宽、动态性能好的输出特性。

4.可靠性高:开关电源采用电子元器件进行控制和转换,因此具有较高的可靠性,适用于长时间工作和高负载情况。

应用领域开关电源在各个领域都有广泛的应用,特别是在以下领域中具有重要地位:•通信设备:无线基站、交换机、路由器等设备都需要稳定的电源供给;•工控设备:工业自动化、机器人、传感器等设备对电源的稳定性要求较高;•IT设备:计算机、服务器、显示器等设备需要高效、可靠的电源供应;•照明领域:LED照明、室内照明等领域需要高效、小尺寸的电源。

谐振电源基本原理谐振电源是一种利用谐振元件(如电感和电容)在高频交流电路中产生谐振效应,从而实现能量的传递和转换的电源系统。

其基本原理是通过合理选择谐振元件以及驱动电路的设计,使谐振电路在谐振频率上发生共振,从而实现高效能量转换。

特点与优势谐振电源具有如下特点和优势:1.高效率:谐振电源通过共振效应,在谐振频率附近实现高效能量传递,从而提高电能的转换效率。

2.低电磁干扰:谐振电源在高频段工作,通过合理设计电路结构和隔离措施,可以降低电磁干扰的发生,减少对其他设备的干扰。

高频开关电源模块技术说明书

高频开关电源模块技术说明书
STD10A230N 型的内部运行设定值不可通过面板操作更改完成(与 X 型不同)。 3.电源模块通过模拟给定接口与 SPC/A、SPC/AE 智能电源监控系统相连 此时所有电源模块处于受控状态,其直流输出电压和直流输出电流受外部模拟给定控制。 当电源模块的电压给定值小于 0.5V 时模块自主运行(在 RS485 连接情况下,运行方式与 5.2 相 同);电压给定值在 0.5V~1.0V 时,模块备机运行(被关机,此段用于模拟监控开关机控制); 电压给定值大于 1.0V 时,电压正常控制输出(1~5V 线性对应 194~291V)。
NFEA
STD/A 系列电力智能高频开关电源模块技术说明书
STD/A 系列电力智能高频开关电源模块技术说明书
一、产品简介
STD/A 系列电力智能高频开关电源模块是我公司研制的新型电力系统专用充电模块。模块 内置监控,具有高度智能化,安装、维护、操作灵活方便,安全可靠等特点。模块即可与 SPC 系列智能集中监控系统组成全智能微机监控直流屏,构成“三级监控”结构,又可以单机或多 机并联自主运行;可通过操作面板设定运行及控制参数,真正做到了无需集中监控系统控制, 又完全具备集中监控所具有的各项充电、浮充电之功能。其充电、浮充电控制方式完全符合电 力系统直流屏智能控制的要求。灵活多样的组屏方式深受广大直流屏生产厂家的欢迎。
6.智能接口
电源监控系统可通过数字接口或模拟接口实现对电源模块直流输出电压和直流输出电流控
制。
(1) 数字接口
标准 RS485 接口,与集中监控系统连接实现“四遥”功能
.2.
广东南丰电气自动化有限公司
NFEA
STD/A 系列电力智能高频开关电源模块技术说明书
A、遥控功能 控制模块开机及关机(备机灯亮)。 B、遥信功能 直流输出过压告警、直流输出过流告警、模块过热告警、模块内部其他故障告警、模块地 址编号等。 C、遥测功能 直流输出电压及电流值、均充及浮充电压值。 (2) 模拟接口 A、物理参数及功能 标准 5V 电压型线性模拟接口,输入阻抗大于 50KΩ,开关量综合告警输出、控制模块开机 及关机(备机灯亮)、线性控制模块直流输出电压及电流、通过告警开关量输出接点检测模块 综合故障状态(失电、直流过压、输出过流、模块过热、内部其他线路故障等)。 B、标准电压和电流模拟给定范围 电压给定 1~5V 对应直流电压输出 194~291V(0~0.5V 为自主运行;0.5~1.0V 为关机); 电压给定 0~5V 对应直流电流输出 0~12A(STD10A230XA/B)。 注:10A 电源模块最大输出电流为 12A,但实际输出电流限流在 0.1A;因此,当模块电流 给定电压>4.17V 时被限流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频开关电源技术方案
1 客户需求
技术参数30929003.
pdf
技术参数30929003.pdf
2 技术方案
2.1 概述
现场的实际应用情况:12台15V/12000A的电源配1台90V/2000A的电源,每6台15V/12000A 的电源配一台6kV/380V/1MW的变压器,其中90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作。

电源关注核心指标是可靠性和系统效率。

电源可以考虑采用3种主回路方式,每种方式各有优缺点。

2.2主回路原理图方案1
2.2.1方案1
总体思想为输入36脉波移相变压器,6组功率模块并联的方式,具体电路如下:15V/12000A开关电源最大输出功率180kW,90V/2000A开关电源最大输出功率180kW,功率等级一样,考虑采用同样的主回路原理,如下:
整流器功率模块1
输入380V/50Hz
输出15V/12000A 或90V/2000A
36脉移相变压器
整流器
功率模块2
整流器功率模块3
整流器
功率模块4
整流器功率模块5
整流器
功率模块6
功率模块原理如下:
输入端配置36脉波移相变压器,可有效拟制输入电流谐波,基本能满足3%的要求; 每台开关电源采用6个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A 的开关电源每个模块的等级设计为15V/2200A ,90V/2000A 的开关电源每个模块的等级设计为90V/360A 。

逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右; 二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。

输出加LC 滤波,如不加LC 滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。

90V/2000A 电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加36脉波移相变压器,输出也不需要LC 滤波,直流输出高频方波电压。

2.2.2方案2
总体思想为输入PWM整流器,4组功率模块并联的方式,具体电路如下:
6脉波
整流器
功率模块1输入380V/50Hz 输出15V/12000A 或90V/2000A
PWM整流器
功率模块2
功率模块3
功率模块4
输入端配置PWM整流器,可有效拟制输入电流谐波,基本能满足3%的要求;PWM 整流器再备份一组6脉波整流器,只是在PWM整流器出故障时投入运行;
每台开关电源采用4个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A 的开关电源每个模块的等级设计为15V/3000A,90V/2000A的开关电源每个模块的等级设计为90V/500A。

逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右;
二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。

输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。

90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加PWM,输出也不需要LC滤波,直流输出高频方波电压。

2.2.3方案3
总体思想为综合6kV高压配电,系统设计,利用6kV高压变压器直接做成36脉波移相变压器,具体电路如下:
输入6kV/50Hz36脉波移
相变压器开关电源1
输出15V/12000A
或90V/2000A 开关电源6
输出15V/12000A
或90V/2000A
功率模块1
380V/50Hz
输出15V/12000A
或90V/2000A
6脉波
整流器
功率模块2
功率模块3
功率模块4
6kV变压器直接设计为36脉波移相变压器,高压侧几乎没有谐波,每一组输出接入一台开关电源。

开关电源就采用普通6脉波整流;
每台开关电源采用4个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A 的开关电源每个模块的等级设计为15V/3000A,90V/2000A的开关电源每个模块的等级设计为90V/500A。

逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右;
二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。

输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。

90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加PWM,输出也不需要LC滤波,直流输出高频方波电压。

2.2.4方案比较
从系统可靠性、系统效率这两个主要关心的方面进行比较。

本方案的逆变、二次整流、输出滤波采用的最先进的技术,在前面的方案叙述中已经提出,逆变采用全软开关技术,比硬开关的效率高出2%左右;二次整流采用同步整流技术,比普通二极管的效率高出5%~6%左右;输出经过LC后为平滑的直流,不会引起后级导电排高频发热;电源内部输出的直流汇流排全部采用铜排,比采用铝排的效率高出1%左右;
方案选择主要针对输入采用哪一种方式更合理进行比较分析。

可靠性分析:
36脉波移相变压器的可靠性远远高出PWM整流器,而且方案1采用6个模块并联,及时2个模块出现故障,也不会影响系统使用,方案1的可靠性远远高出方案2的可靠性;
方案3把高压变压器引入,作为电源设计的一部分,相当于减少了一个变压器的可靠性影响,因此方案3比方案1的可靠性更高。

系统效率分析:
方案1中变压器损耗约为1.5%,整流器约为0.5%,前级总和约为2%;方案2中PWM 整流器的损耗约为3%;方案1比方案2的效率略微高出一些;
方案3中比方案1只有一级变压器的损耗,效率自然多出1.5%左右。

综合比较:方案排序为方案3、方案1、方案2。

2.2控制系统
模拟控制板
功率模块1
控制方式:
双环控制:电压或电流外环,PI环;
每模块电流内环,比例环
2.3监控单元
采用8寸触摸屏;
功能:本地、远程操作切换;电源设置、启停操作;显示输出等参数,电源故障信息等;RS485上位机通讯等。

2.4结构外形
见附件。

相关文档
最新文档