专题图形的平移翻折与旋转讲解

合集下载

专题28 轴对称、平移、旋转的核心知识点精讲(讲义)(全国通用)

专题28 轴对称、平移、旋转的核心知识点精讲(讲义)(全国通用)

专题28 轴对称、平移、旋转的核心知识点精讲1.理解轴对称图形与中心对称图形概念;2.掌握图形的平移的性质及有关计算;3.掌握图形的旋转性质并运用其性质进行有关的计算;4.掌握位似的性质。

考点1:轴对称图形与轴对称轴对称图形轴对称图 形定 义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性 质对应线段相等 AB =ACAB =A ′B ′,BC =B ′C ′,AC =A ′C ′对应角相等∠B =∠C∠A =∠A ′,∠B =∠B ′,∠C =∠C ′对应点所连的线段被对称轴垂直平分区 别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言; (2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系,必须涉及两个图形; (2)只有一条对称轴关 系(1)沿对称轴对折,两部分重合; (2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.考点2:图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.考点3:图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.考点4:中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.考点5:坐标变换的规律(1)P(a,b)关于x轴对称的点的坐标为(a,-b);(2)P(a,b)关于y轴对称的点的坐标为(-a,b);(3)P(a,b)关于原点对称的点的坐标为(-a,-b).【题型1:平移、旋转与轴对称的识别】【典例1】(2023•苏州)古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.【变式1-1】(2023•泰州)书法是我国特有的优秀传统文化,其中篆书具有象形特征,充满美感.下列“福”字的四种篆书图案中,可以看作轴对称图形的是()A.B.C.D.【变式1-2】(2023•广西)下列数学经典图形中,是中心对称图形的是()A.B.C.D.【变式1-3】(2023•宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是()A.B.C.D.【题型2:平移、旋转与轴对称性质的应用】【典例2】(2023•无锡)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【变式2-1】(2023•南充)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是()A.2B.2.5C.3D.5【变式2-2】(2023•牡丹江)在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图①的方法折出一个正方形ABEF,然后把纸片展平;第二步:将图①中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图②.根据以上的操作,若AB=8,AD=12,则线段BM的长是()A.3B.C.2D.1【变式2-3】(2023•宁夏)如图,在△ABC中,∠BAC=90°,AB=AC,BC=2.点D在BC上,且BD:CD=1:3.连接AD,线段AD绕点A顺时针旋转90°得到线段AE,连接BE,DE.则△BDE的面积是()A.B.C.D.【题型3:图形变化与点坐标变化】【典例3】(2023•海南)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.(3,3)B.(3,3)C.(6,3)D.(3,6)【变式3-1】(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是()A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【变式3-2】(2023•青岛)如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A的对应点A′的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)【变式3-3】(2023•聊城)如图,在直角坐标系中,△ABC各点坐标分别为A(﹣2,1),B(﹣1,3),C (﹣4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A2B2C2.若B2(2,1),则点A2坐标为()A.(1,5)B.(1,3)C.(5,3)D.(5,5)【变式3-4】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)【题型4:与平移、旋转与轴对称相关的网格作图】【典例4】(2023•达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.【变式4-1】(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.【变式4-2】(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).【变式4-3】(2023•黑龙江)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).一.选择题(共8小题)1.在学习图案与设计这一节课时,老师要求同学们利用图形变化设计图案,下列设计的图案中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.在《生活中的平移现象》的数学讨论课上,小明和小红先将一块三角板描边得到△ABC,后沿着直尺BC 方向平移3cm,再描边得到到△DEF,连接AD.如图,经测量发现△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.22cm C.20cm D.24cm3.如图,△ABC与△A'B'C'关于直线l对称,连接AA',BB',CC',其中BB′分别交AC,A′C于点D,D',下列结论:①AA'∥BB';②∠ADB=∠A′D′B′;③直线l垂直平分AA';④直线AB与A'B'的交点不一定在直线l上.其中正确的是()A.①②③B.②③④C.①②④D.①③④4.如图,在长方形ABCD中,AB=5,BC=3,将长方形沿BE折叠,使得点A落在CD边上F处,则AE 的长是()A.B.C.D.25.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,若∠C′=45°,且AB′⊥BC于点E,则∠BAC的度数为()A.60°B.75°C.45°D.50°6.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为36,DE=2,则AF的长为()A.6B.C.8D.7.如图,Rt△ABC中,∠ACB=90°,BC=4,AC=3,将△ABC绕点B逆时针旋转得△A'BC',若点C'在AB上,则AA'的长为()A.B.4C.D.58.如图,在等腰△AOB中,OA=AB,∠OAB=120°,OA边在x轴上,将△AOB绕原点O逆时针旋转120°,得到△A'OB',若,则点A的对应点A'的坐标为()A.(﹣1,﹣1)B.(﹣1,)C.(﹣1,2)D.(﹣1,)二.填空题(共7小题)9.若点A(2,﹣3)关于坐标原点的对称点是B,则点B的坐标为.10.如图,已知四边形ABCD是长方形,点E、F分别在线段AB、CD上,将四边形AEFD沿EF翻折得到四边形A'EFD',若∠CFD'=36°,则∠DFE=.11.如图,将长为6,宽为4的长方形ABCD先向右平移2,再向下平移1,得到长方形A'B'CD',则阴影部分的面积为.12.线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.13.如图,有一块长方形区域,AD=2AB,现在其中修建两条长方形小路,每条小路的宽度均为1米,设AB边的长为x米,则图中空白区域的面积为.14.如图,在Rt△ABC中,∠BAC=30°,BC=3,将△ABC绕点A顺时针旋转90°得到△AB′C′,则BB′=.15.如图,在平面直角坐标系中,将点P(2,3)绕原点O旋转90°得到点P′,则点P′的坐标为.三.解答题(共3小题)16.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出A1的坐标;(2)求(1)中C点旋转到C1点所经过的路径长(结果保留π).17.如图所示,点O是等边△ABC内的任一点,连接OA,OB,OC,∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.(1)求∠DAO的度数;(2)用等式表示线段OA,OB,OC之间的数量关系,并证明.18.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当∠BDE=25°时,求∠BEF的度数.一.选择题(共7小题)1.如图,将长方形ABCO放置于平面直角坐标系中,点O与原点重合,点A,C分别在y轴和x轴上,点B(8,4),连接BO,并将△ABO沿BO翻折至长方形ABCO所在平面,点A的对称点为点E,则点E 的坐标为()A.B.C.D.2.如图,将周长为8的△ABC沿BC方向向右平移2个单位长度得到△DEF,则四边形ABFD的周长为()A.10B.12C.14D.163.如图,正方形ABCD,边长AB=2,对角线AC、BD相交于点O,将直角三角板的直角顶点放在点O处,三角板两边足够长,与BC、CD交于E、F两点,当三角板绕点O旋转时,线段EF的最小值为()A.1B.2C.D.24.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.B.C.D.5.如图,菱形ABCD,点A,B,C,D均在坐标轴上,∠ADC=120°,点A的坐标为(﹣4,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.4B.C.D.6.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF 为交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE∽△QFG;②S△CEG=S+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是()△CBEA.①②③B.①③④C.①②④D.②③④7.如图,在矩形ABCD中,AB=8,BC=10,点E、F分别是边AB、BC上一动点,将△BEF沿EF折叠,若点B恰好落在AD边上的点G处,设EF=x,则x的取值范围为()A.B.C.D.二.填空题(共6小题)8.如图,在Rt△ABC中,∠ABC=90°,∠C=65°,将△ABC绕点B逆时针旋转至△EBD,使点C落在边AC上的D处,则∠EBA=.9.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.10.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使CD∥AB,则∠BAE的度数为.11.如图,在等边△ABC中,AB=6,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是.12.如图,正方形ABCD中,AB=4,点P为射线AD上一个动点.连接BP,把△ABP沿BP折叠,当点A 的对应点A'刚好落在线段BC的垂直平分线上时,AP的长为.13.如图,已知四边形ABCD是边长为4的正方形,点E是BC边的中点,连接DE,将△DCE沿DE翻折得到△DC'E,连接AC′,则AC′的长为.三.解答题(共2小题)14.如图,在△ABC中,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,连接AE.求证:AB=AE.15.[教材呈现]下面是华师版九年级上册数学教材第76页的部分内容.如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1,证明△AFD∽△DCE,并计算点A到直线DE的距离(结果保留根号).结合图①,完成解答过程.[拓展](1)在图①的基础上,延长线段AF交边CD于点G,如图②,则FG的长为;(2)如图③,E、F是矩形ABCD的边AB、CD上的点,连结EF,将矩形ABCD沿EF翻折,使点D 的对称点D'与点B重合,点A的对称点为点A'.若AB=4,AD=3,则EF的长为.1.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)2.(2023•自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(2023•天津)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD4.(2023•通辽)如图,将△ABC绕点A逆时针旋转到△ADE,旋转角为α(0°<α<180°),点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=24°,则旋转角α的度数为()A.24°B.28°C.48°D.66°5.(2023•黄石)如图,已知点A(1,0),B(4,m),若将线段AB平移至CD,其中点C(﹣2,1),D(a,n),则m﹣n的值为()A.﹣3B.﹣1C.1D.36.(2023•绍兴)在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.1608.(2022•张家界)如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).。

平移旋转翻折

平移旋转翻折

平移旋转翻折在数学几何中,平移、旋转和翻折是常见且重要的变换方式。

它们不仅被广泛应用于各个领域,如计算机图形学、工程建模以及几何推理,还在日常生活中起到一定的作用。

本文将重点介绍平移、旋转和翻折的概念、特点以及应用。

一、平移平移是指在平面上将一个图形沿着一定方向不改变形状和大小地移动。

在数学中,平移可以用向量来表示。

假设平移向量为[dx, dy],那么图形上任意一点(x, y)经过平移后的坐标为(x+dx, y+dy)。

可以看出,平移只改变了图形的位置,而不会改变图形本身的性质。

平移在几何中有广泛的应用。

比如在地图制图中,将地图上的城市标记进行平移,便可以得到不同的地理分布方案。

此外,在工程制图中,平移也是非常常见的操作,可以通过平移来移动图形的位置,以获得更合理和更美观的设计。

二、旋转旋转是指将一个图形以某个点为中心按一定角度旋转,保持形状和大小不变。

数学中,我们可以使用旋转矩阵来描述一个图形的旋转变换。

设旋转角度为θ,旋转中心为(x0, y0),图形上任意一点(x, y)经过旋转后的坐标计算公式如下:x' = (x - x0) * cosθ - (y - y0) * si nθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0可以看出,旋转的本质是改变了图形的方向和位置,但不改变图形本身的性质。

旋转在许多领域都有重要的应用。

例如,在航空航天领域中,飞行器的姿态控制需要进行旋转变换来实现平衡和机动性能。

此外,在艺术设计中,通过旋转变换可以创造出丰富多样的视觉效果。

三、翻折翻折是指将一个图形沿着某条直线对称地翻转,即将图形中的点关于对称轴做镜像对称。

在数学中,翻折也可以通过矩阵变换来表示。

设对称轴为直线y=kx+b,图形上任意一点(x, y)经过翻折后的坐标计算公式如下:x' = x - 2 * (k * x + b) / (k^2 + 1)y' = y - 2 * (k * x + b) * k / (k^2 + 1) - 2 * b / (k^2 + 1)翻折改变了图形的方向和位置,同时也改变了图形的性质。

平移旋转与翻折的性质

平移旋转与翻折的性质

平移旋转与翻折的性质平移旋转和翻折是几何学中常用的变换方式,它们具有一些特定的性质和规律。

在本文中,我们将探讨平移旋转与翻折的性质,并举例说明它们在几何学中的应用。

1. 平移的性质平移是指在平面上将一个图形按照指定方向和距离进行整体移动,而不改变其形状和大小。

平移的性质如下:(1) 平移不改变图形的大小和形状。

无论是几何图形还是图像,经过平移后,其大小和形状都保持不变。

(2) 平移保持图形内部的相对位置关系。

对于一个多边形或复杂图形而言,其中的点之间的相对距离和角度关系在平移前后保持一致。

(3) 平移可以叠加。

如果对同一个图形进行多次平移,结果将等同于进行一次相应方向和距离的平移。

这是平移的可加性质。

例如,将一个三角形ABC向右平移3个单位距离,得到三角形A'B'C'。

经过平移后,A'B'C'的形状和大小与ABC完全相同,只是位置改变了。

2. 旋转的性质旋转是指以一个固定点(旋转中心)为中心,按照一定的角度将图形或物体绕旋转中心旋转。

旋转的性质如下:(1) 旋转不改变图形的大小。

无论是几何图形还是图像,经过旋转后,其大小保持不变。

(2) 旋转保持图形内部的相对位置关系。

对于一个多边形或复杂图形而言,其中的点之间的相对距离和角度关系在旋转前后保持一致。

(3) 旋转可以叠加。

如果对同一个图形进行多次旋转,结果将等同于进行一次相应角度的旋转。

这是旋转的可加性质。

举例来说,将一个矩形顺时针旋转90度,其形状和大小保持不变,只是方向改变了。

3. 翻折的性质翻折是指将图形或物体按照某条直线将其两侧对称折叠在一起,使得折叠前后的形状完全一致。

翻折的性质如下:(1) 翻折不改变图形的大小。

翻折前后,图形的大小保持不变。

(2) 翻折使得图形对称。

图形中的每个点关于翻折轴对称,翻折后的形状与原始形状重合。

(3) 翻折可以叠加。

如果对同一个图形进行多次翻折,结果将等同于只进行一次翻折。

图形的旋转、平移与翻折

图形的旋转、平移与翻折

图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。

这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。

本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。

一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。

旋转可以使图形发生变化,同时保持图形的大小和形状不变。

旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。

图形的旋转可以通过旋转矩阵来描述。

设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。

图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。

在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。

二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。

平移操作只改变图形的位置而不改变图形的形状和方向。

图形的平移可以通过平移向量来表示。

设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。

图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。

在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。

三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。

翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。

图形的翻折可以通过翻折矩阵来表示。

设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。

平移旋转与翻折的变换

平移旋转与翻折的变换

平移旋转与翻折的变换平移、旋转和翻折是几种常见的图形变换方式,它们在几何学和计算机图形学中有着广泛的应用。

通过这些变换,我们可以改变图形的位置、方向和形状,从而得到全新的图形。

一、平移变换平移变换是指将图形沿着指定的方向平行地移动一定的距离。

在平移变换中,图形的形状、大小和方向都保持不变,只是位置发生了改变。

平移变换可以用矢量表示,假设有一个图形上的点A(x,y),要将该点沿着向量(vx,vy)平移,则新的坐标点B的坐标为B(x+vx, y+vy)。

通常,平移变换可以通过将图形上的每个点都同时加上平移矢量的方式来实现。

平移变换的应用非常广泛,例如在计算机图形学中,可以通过平移变换来实现图像的拖拽效果,或者对物体进行移动操作。

二、旋转变换旋转变换是指将图形围绕一个中心点按照一定的角度进行旋转。

在旋转变换中,图形的形状和大小保持不变,只是方向发生改变。

旋转变换可以通过旋转矩阵来表示,假设有一个图形上的点A(x,y),要将该点绕某个中心点O逆时针旋转θ角度,则新的坐标点B的计算公式如下:B(x', y') = (cosθ, -sinθ;sinθ, cosθ) * (x-xo, y-yo) + (xo, yo)其中(xo, yo)为旋转中心的坐标。

通过这个公式,可以计算出旋转变换后的新坐标点。

旋转变换的应用非常广泛,例如在计算机动画中,可以通过旋转变换来实现物体的旋转效果,或者在地图导航中,可以通过旋转地图来改变视角。

三、翻折变换翻折变换是指将图形按照某个轴进行对称翻转。

在翻折变换中,图形的形状、大小和方向都保持不变,只是镜像对称的。

翻折变换可以通过坐标轴的变换来实现,假设有一个图形上的点A(x, y),要将该点按照某个轴进行对称翻转,则新的坐标点B的计算公式如下:B(x', y') = (x, -y) 或者 (x', y') = (-x, y)通过这个公式,可以计算出翻折变换后的新坐标点。

旋转平移翻折的几何变换与性质

旋转平移翻折的几何变换与性质

旋转平移翻折的几何变换与性质旋转、平移和翻折是几何中常见的基本变换方式,它们在空间和平面几何中发挥着重要的作用。

本文将介绍旋转平移翻折的几何变换及其性质,推导其数学表达式,并通过具体的实例来说明其应用。

一、旋转变换旋转是指将平面或空间中的图形按照一定角度绕着旋转中心进行旋转的操作。

对于平面上的点(x, y),其绕原点逆时针旋转θ度后的新坐标可以由以下公式计算得出:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,x'和y'分别表示旋转后点的坐标,θ为旋转角度。

二、平移变换平移是指将平面或空间中的图形沿着指定的方向和距离进行移动的操作。

平移变换可以用一个向量来表示。

对于平面上的点(x, y),其平移(dx, dy)后的新坐标可以由以下公式计算得出:x' = x + dxy' = y + dy其中,(dx, dy)为平移向量,x'和y'分别表示平移后点的坐标。

三、翻折变换翻折是指将平面或空间中的图形沿着指定的轴进行对称的操作。

对于平面上的点(x, y),其关于直线y=k翻折后的新坐标可以由以下公式计算得出:x' = xy' = 2k - y其中,(x', y')为翻折后点的坐标,k为翻折轴的位置。

以上是旋转、平移和翻折的几何变换的数学表达式。

下面将通过实例说明它们在几何问题中的应用。

实例一:旋转变换假设有一张平面上的三角形ABC,顶点分别为A(1, 2),B(3, 4)和C(5, 6)。

现在需要将该三角形绕原点顺时针旋转60度,求旋转后各顶点的坐标。

根据旋转变换的公式,旋转角度θ=60°,原点为旋转中心,可以计算得出旋转后的各顶点坐标为:A'(1*cos60° - 2*sin60°, 1*sin60° + 2*cos60°) = (0.5, 2.598)B'(3*cos60° - 4*sin60°, 3*sin60° + 4*cos60°) = (-1.133, 4.330)C'(5*cos60° - 6*sin60°, 5*sin60° + 6*cos60°) = (1.333, 7.464)实例二:平移变换假设有一条直线L,其方程为y = 2x - 1。

三年级数学认识平移旋转与翻折

三年级数学认识平移旋转与翻折

三年级数学认识平移旋转与翻折数学是一门既有趣又充满挑战的学科,而对于三年级的学生来说,他们正处于接触和学习基本几何概念的阶段。

其中,平移、旋转与翻折是他们学习的重点之一。

本文将详细介绍这三个概念以及它们在三年级数学中的应用。

平移是指将一个图形沿着平面内的某条线段按照指定的方向和距离移动的操作。

在平移中,图形的大小和形状保持不变,只是位置发生改变。

例如,将一个正方形沿着x轴向右平移3个单位长度,那么正方形的每个边上的点都将向右移动3个单位长度。

平移可以让学生直观地感受到图形之间的位置关系。

旋转是指将一个图形沿着围绕某个点旋转一定角度的操作。

在旋转中,图形的大小和形状保持不变,只是方向发生改变。

例如,将一个矩形绕着它的中心点逆时针旋转90度,那么矩形的每个边将沿逆时针方向转动90度。

旋转可以让学生更好地理解图形之间的方向关系。

翻折是指将一个图形沿着一条线折叠成新的图形的操作。

在翻折中,图形的大小和形状保持不变,只是位置发生改变。

例如,将一个长方形沿着竖直中线对折,那么对折后的图形与原图形完全重合。

翻折可以帮助学生了解图形之间的对称性。

在三年级数学中,平移、旋转与翻折并不只是简单的操作,还需要学生能够通过抽象思维来分析和解决问题。

通过这些概念的学习,学生可以培养几何思维、观察比较和逻辑推理的能力。

其中,平移的重要性在于让学生认识到物体的位置会因平移而发生变化,进而理解平面上点的坐标和方向的概念。

通过平移,学生可以观察和描述移动后图形的位置,并学习如何使用坐标表示它们。

旋转的重要性在于让学生感受到物体旋转后形状和方向的变化。

通过旋转,学生可以观察和描述旋转后图形的特征,并学习如何使用角度来表示旋转。

翻折的重要性在于让学生理解图形的对称性。

通过翻折,学生可以观察和描述改变后图形的对称特征,并学习如何使用折线来表示对称轴。

在三年级数学的学习中,平移、旋转与翻折不仅仅是为了解决具体问题,更是为了培养学生的思维能力和几何思维。

探索平移旋转和翻折的变化规律

探索平移旋转和翻折的变化规律

探索平移旋转和翻折的变化规律平移、旋转和翻折是数学中的基本操作,它们在几何学和图形变换中起着重要的作用。

通过对图形应用这些操作,我们可以探索它们的变化规律,并且更好地理解平移、旋转和翻折的特性。

本文将介绍这三种操作,并通过具体的示例来探索它们的变化规律。

一、平移平移是指将图形在平面上保持大小和形状不变的情况下,沿着指定的方向和距离移动。

平移操作可以用矢量表示,其中矢量的大小和方向确定了平移的路径和距离。

对于平移操作来说,图形上的所有点都按照相同的距离和方向进行移动,因此图形的大小和形状不会改变。

以正方形ABC...为例,我们将这个正方形向右平移2个单位,可以得到新的正方形A'B'C'...。

这说明,经过平移操作后,图形上的每个对应点都按照相同的距离和方向进行移动,保持了原有的形状和大小。

通过对不同的图形进行平移操作,我们可以观察到它们的位置关系具有对称性,即对于任何一点P,将其平移后的位置P'与原来的位置之间的距离和方向是相同的。

二、旋转旋转是指将图形绕着一个中心点旋转一定角度,使得图形产生位置上的变化。

旋转操作可以用角度和方向表示,其中角度决定了旋转的大小,而方向则决定了旋转的方向。

对于旋转操作来说,图形上的所有点都沿着以中心点为轴进行旋转,因此图形的大小和形状不会改变。

以正三角形ABC...为例,我们以顶点A为中心点,将这个正三角形逆时针旋转60度,可以得到新的正三角形A'B'C'...。

这说明经过旋转操作后,图形上的每个对应点都绕着中心点旋转,保持了原有的形状和大小。

通过对不同的图形进行旋转操作,我们可以观察到它们的位置关系具有对称性,即对于任何一点P,将其旋转后的位置P'与原来的位置之间的角度和方向是相同的。

三、翻折翻折是指将图形沿着一条线进行折叠,使得图形的一部分覆盖在另一部分上,产生位置和形状上的变化。

翻折操作可以用折叠线表示,折叠线决定了图形的翻折路径和方式。

上海中考18题 图形的平移、翻折、旋转及点的运动(解析版)

上海中考18题   图形的平移、翻折、旋转及点的运动(解析版)

专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。

图形的平移、翻折与旋转

图形的平移、翻折与旋转

图形的平移、翻折与旋转引言在几何学中,图形的变换是一个重要的概念。

变换可以改变图形的位置、形状或者方向。

其中,平移、翻折和旋转是最基本和常见的图形变换操作。

这些变换不仅在数学中有重要意义,而且在日常生活和工程应用中也得到广泛应用。

本篇文章将详细介绍图形的平移、翻折和旋转,包括定义、特征和实际应用。

1. 图形的平移图形的平移是指将图形沿着一定的方向和距离移动。

平移后的图形与原图形形状相同,只是位置发生了改变。

平移可以通过向量进行描述,即将图形上的所有点都沿着相同的平移向量移动。

1.1 平移的定义设P为平面上的一个点,平移向量为v,则P经过平移变换后的新位置记为P’,满足以下关系:P’ = P + v1.2 平移的特征•平移保持图形的形状不变,只改变位置。

•所有图形上的点,都具有相同的平移向量。

•平移变换是可逆的,即可通过反向平移将图形还原。

1.3 平移的应用平移在日常生活和工程应用中得到广泛应用。

以下是几个常见的应用场景:•地图上的标记:在地图中,经纬度坐标可以通过平移变换来实现标记点的移动。

•机器人运动:机器人在空间中的移动可以通过平移来描述。

•平面设计:平移是平面设计中常用的变换方式,可以用来设计标志、海报等。

2. 图形的翻折图形的翻折是指将图形沿着某条直线镜像对称,使得图形的镜像与原图形保持相等但位置相反。

翻折操作可以通过将图形上的点关于翻折轴进行对称得到。

2.1 翻折的定义设P为平面上的一个点,翻折轴为l,则P经过翻折变换后的新位置记为P’,满足以下关系:P’ = P关于l的对称点2.2 翻折的特征•翻折保持图形的形状不变,只改变位置。

•所有图形上的点,都关于翻折轴对称。

•翻折变换是可逆的,即可通过再次翻折将图形还原。

2.3 翻折的应用翻折在生活和工程中也有广泛应用。

以下是几个常见的应用场景:•双面印刷:在双面印刷中,通过翻折可以在一张纸上印刷两个不同的图案。

•镜子反射:镜子中的物体是通过翻折得到的反射图像。

平移旋转和翻折

平移旋转和翻折

平移、旋转和翻折平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,近几年中考加大了这方面的考察力度,这一部分的分值比前两年大幅度提高。

为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。

平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。

平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角翻折:翻折是指把一个图形按某一直线翻折180o后所形成的新的图形的变化。

翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。

解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。

翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。

图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的的知识就能较快得到计算结果。

由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。

平移旋转和翻折的坐标变换

平移旋转和翻折的坐标变换

平移旋转和翻折的坐标变换平移、旋转和翻折是数学中常用的坐标变换方法,可以通过这些变换将图形在平面上进行移动、旋转和翻折。

本文将深入探讨平移、旋转和翻折的坐标变换,介绍其原理和应用。

一、平移的坐标变换平移是一种简单的坐标变换方法,它可以将图形在平面上进行平移,即保持图形的形状和大小不变,在平面上沿着指定的方向移动。

平移操作的坐标变换公式为:(x', y') = (x + a, y + b)其中,(x, y)为原图形的坐标,(x', y')为平移后图形的坐标,a和b分别为图形在x轴和y轴方向上的平移距离。

以一个简单的例子来说明平移的坐标变换。

假设有一个正方形,其顶点坐标为A(0, 0)、B(0, 3)、C(3, 3)、D(3, 0),现在需要将该正方形在x轴方向上平移4个单位,y轴方向上平移2个单位。

根据平移的坐标变换公式,可以计算出平移后的坐标:A'(0+4, 0+2) = A'(4, 2)B'(0+4, 3+2) = B'(4, 5)C'(3+4, 3+2) = C'(7, 5)D'(3+4, 0+2) = D'(7, 2)通过计算可得到平移后的新坐标。

二、旋转的坐标变换旋转是一种常用的坐标变换方法,它可以将图形在平面上绕着指定点旋转一定角度。

顺时针旋转的角度用负值表示,逆时针旋转的角度用正值表示。

旋转操作的坐标变换公式为:(x', y') = (xcosθ - ysinθ, xsinθ + ycosθ)其中,(x, y)为原图形的坐标,(x', y')为旋转后图形的坐标,θ为旋转的角度,(xc, yc)为指定的旋转中心点的坐标。

以一个简单的例子来说明旋转的坐标变换。

假设有一个三角形,其顶点坐标为A(0, 0)、B(3, 0)、C(0, 2),现在需要将该三角形绕原点顺时针旋转90度。

五年级数学技巧之平移旋转与翻折

五年级数学技巧之平移旋转与翻折

五年级数学技巧之平移旋转与翻折数学是一门需要技巧和创造力的学科,它帮助我们理解世界,解决问题。

在五年级的数学学习过程中,我们将学习许多重要的数学技巧。

本文将介绍三个重要的数学技巧:平移、旋转和翻折。

一、平移平移是指将一个图形在平面上沿着一条直线进行移动,移动的方向和距离保持不变。

平移是一种保持图形形状和大小不变的变化方式。

我们使用平移来解决一些空间关系和几何问题。

在平移中,我们需要知道两个重要的要素:平移向量和平移后的图形。

平移向量是指平移的方向和距离。

平移后的图形是指原图形通过平移后得到的新图形。

例如,给定一个平面上的三角形ABC,如果我们平移这个三角形,使得A点移动到A’点,B点移动到B’点,C点移动到C’点。

那么我们可以将平移向量表示为向量△A’B’C’。

二、旋转旋转是指将一个图形绕着一个固定的点进行旋转,旋转的角度可以是顺时针或逆时针方向。

旋转是一种改变图形位置和朝向的变化方式。

旋转也是常用的数学技巧之一。

在旋转中,我们需要知道两个重要的要素:旋转中心和旋转角度。

旋转中心是指图形绕着的固定点,旋转角度是指图形旋转的角度。

举个例子,给定一个平面上的四边形ABCD,如果我们围绕着点O进行逆时针旋转θ度。

那么我们可以将旋转表示为R(θ, O)。

三、翻折翻折是指通过将一个图形沿着一条直线对称地折叠,得到与原图形对称的图形。

翻折也是一种常见的变换方式,可以帮助我们研究图形的对称性。

在翻折中,我们需要知道两个重要的要素:翻折线和翻折后的图形。

翻折线是指图形折叠的直线,翻折后的图形是指通过折叠得到的新图形。

以例子来说明,给定一个平面上的矩形ABCD,如果我们将这个矩形沿着中心点O所在的直线对称折叠。

那么我们可以将翻折表示为F(O)。

总结:在五年级数学学习中,我们学习了许多数学技巧,其中包括平移、旋转和翻折。

这些数学技巧可以帮助我们思考和解决各种几何和空间问题。

通过平移,我们可以改变图形的位置;通过旋转,我们可以改变图形的朝向;通过翻折,我们可以研究图形的对称性。

小学四年级数学重点知识总结形的旋转翻折和平移

小学四年级数学重点知识总结形的旋转翻折和平移

小学四年级数学重点知识总结形的旋转翻折和平移四年级数学重点知识总结: 形的旋转、翻折和平移在小学四年级的数学学习中,形的旋转、翻折和平移是重要的概念。

它们帮助我们理解和掌握图形的变化与移动。

本文将详细介绍形的旋转、翻折和平移的概念、性质及其在解题中的应用。

一、形的旋转形的旋转是指将一个图形围绕某一点或某一直线进行旋转,使得图形保持形状不变,只在位置上发生变化。

1. 旋转角度和方向图形的旋转角度可以是正数、负数或零,正数表示顺时针旋转,负数表示逆时针旋转,而零表示不旋转。

2. 旋转中心点旋转中心点是指图形旋转时所围绕的固定点。

根据旋转中心点的位置不同,旋转可以分为内旋和外旋。

当旋转中心点在图形内部时,为内旋;而当旋转中心点在图形外部时,为外旋。

3. 旋转后的图形在旋转后的图形中,各点到旋转中心的距离保持不变,图形的大小和形状也保持不变。

只有位置发生了改变,可以是平移、翻转等。

形的旋转在解决问题中起到了重要的作用,例如在几何题中,我们可以通过旋转寻找隐藏的对称关系,进而解题。

二、形的翻折形的翻折是指将一个图形沿着某一直线对折,使得折叠后的两部分重合,两部分之间存在对称关系。

1. 翻折直线翻折直线是指图形翻折时所选择的折叠直线。

可以是水平直线、垂直直线或斜直线,只要翻折后两部分完全重合即可。

2. 对称性形的翻折利用了图形的对称性质。

对称性是指图形中存在一条直线,将图形分成两部分,使得两部分关于这条直线完全相同。

3. 翻折后的图形翻折后的图形与折叠前的图形通过折叠直线所形成的对称关系有关。

对称的部分将重合,而非对称的部分将互相翻折。

形的翻折在解决问题中也发挥了重要作用。

例如在做几何题时,经常用到形的翻折来寻找对称关系,简化解题过程。

三、形的平移形的平移是指将一个图形沿着平行的方向移动,使得图形保持形状不变,只在位置上发生相同的移动。

1. 平移向量平移向量是指平移的位移量,即图形在横向和纵向上的移动距离。

平移旋转翻折图形讲解教案

平移旋转翻折图形讲解教案

平移旋转翻折图形讲解教案教案名称,以平移旋转翻折图形讲解。

一、教学目标。

1. 知识目标,学生能够理解平移、旋转、翻折这三种图形变换的概念,并能够运用这些变换来进行图形的操作。

2. 能力目标,学生能够熟练地进行图形的平移、旋转、翻折操作,并能够应用这些操作解决实际问题。

3. 情感目标,培养学生对数学的兴趣,增强学生对数学的自信心。

二、教学重点和难点。

1. 教学重点,平移、旋转、翻折这三种图形变换的概念及操作方法。

2. 教学难点,学生能够理解和掌握平移、旋转、翻折这三种图形变换的操作方法,并能够运用这些方法解决实际问题。

三、教学准备。

1. 教师准备,准备好教学课件、教学实例、教学工具等。

2. 学生准备,学生需要准备好纸和笔,以便跟随教学进行练习。

四、教学过程。

1. 导入新知识。

教师通过展示一些图形的平移、旋转、翻折操作,引出平移、旋转、翻折这三种图形变换的概念,并与学生一起讨论这些变换对图形的影响。

2. 讲解平移、旋转、翻折的概念。

教师通过具体的图形实例,向学生介绍平移、旋转、翻折这三种图形变换的概念,帮助学生理解这些概念。

3. 操作平移、旋转、翻折。

教师向学生演示如何进行图形的平移、旋转、翻折操作,并让学生跟随教师的指导进行练习。

4. 综合练习。

教师设计一些综合练习题,让学生运用所学的知识进行练习,巩固对平移、旋转、翻折的理解和掌握。

5. 拓展应用。

教师设计一些拓展应用题,让学生运用平移、旋转、翻折的方法解决实际问题,培养学生的综合运用能力。

6. 总结归纳。

教师对本节课的知识点进行总结归纳,帮助学生理清所学知识,巩固学习成果。

五、课堂小结。

通过本节课的学习,学生应该对平移、旋转、翻折这三种图形变换的概念有了更深入的理解,并能够熟练地进行图形的平移、旋转、翻折操作。

同时,学生也应该能够应用这些操作解决实际问题。

在接下来的学习中,学生需要不断进行练习,巩固所学知识,并能够灵活运用到实际生活中。

六、作业布置。

平移旋转和翻折的变换规律

平移旋转和翻折的变换规律

平移旋转和翻折的变换规律平移、旋转和翻折是几种常见的几何变换规律,它们在数学、物理、工程和计算机图形等领域中都有广泛的应用。

通过对物体进行平移、旋转或翻折,可以改变其位置、形状和方向,从而实现对几何结构的转换和处理。

本文将深入探讨平移、旋转和翻折的变换规律,帮助读者更好地理解和运用这些重要的几何概念。

一、平移变换平移变换是指将一个几何图形沿着某个方向移动一定的距离,而不改变其形状和方向。

平移变换可以通过向量表示,假设有一个向量(a, b),表示平面上的平移向量,那么对于平面上的点P(x, y),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b)。

具体来说,对于二维平面上的图形,其每个点的坐标都分别增加平移向量的分量,从而实现整体平移的效果。

在三维空间中,平移变换同样可以通过向量表示,假设有一个向量(a, b, c),表示三维空间中的平移向量,那么对于空间中的点P(x, y, z),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b, c)。

与二维平移类似,三维空间中的图形的每个点的坐标都分别增加平移向量的分量,实现整体平移的效果。

二、旋转变换旋转变换是指将一个几何图形绕着某个点或轴心旋转一定的角度,而不改变其位置和形状。

旋转变换可以通过矩阵表示,假设有一个旋转矩阵R,对于二维平面上的点P(x, y),经过旋转变换后的点P'的坐标可以表示为P' = R * P。

具体来说,旋转矩阵可以根据旋转角度和旋转中心点的位置进行计算,从而实现对二维平面上的图形进行旋转变换。

在三维空间中,旋转变换同样可以通过矩阵表示,假设有一个旋转矩阵R,对于空间中的点P(x, y, z),经过旋转变换后的点P'的坐标可以表示为P' = R * P。

与二维旋转类似,三维空间中的旋转矩阵可以根据旋转角度和旋转轴心的位置进行计算,实现对空间中的图形进行旋转变换。

初中数学知识归纳平移旋转和翻折

初中数学知识归纳平移旋转和翻折

初中数学知识归纳平移旋转和翻折初中数学知识归纳:平移、旋转和翻折在初中数学学习过程中,平移、旋转和翻折是我们经常接触到的几个概念。

它们是几何变换中的重要内容,不仅能帮助我们更深入地理解空间和图形,还可以应用于解决实际问题。

本文将对平移、旋转和翻折进行归纳总结,以便更好地掌握这些知识。

一、平移平移是将一个图形沿着某个方向移动一段距离,而形状、大小和方向保持不变。

常见的平移有水平平移和垂直平移两种。

水平平移是指固定图形的上下位置,只使图形在水平方向上移动。

具体操作方法是,对于平面坐标系中的点(x, y),进行水平平移时,只需将点的横坐标x加上一个固定的值h,y坐标保持不变。

公式表示为:(x+h, y)。

垂直平移则是将图形固定在水平位置上,只使图形在垂直方向上移动。

对于给定的点(x, y),只需将点的纵坐标y加上一个固定的值k,x坐标保持不变。

公式表示为:(x, y+k)。

在实际应用中,平移可以帮助我们解决很多问题,比如:将某物体从一个位置平移至另一个位置,或者确定两个几何图形是否有平移对称性等等。

二、旋转旋转是指围绕一个中心点将图形按照一定角度旋转。

旋转主要有顺时针旋转和逆时针旋转两种。

顺时针旋转是指图形按照顺时针方向旋转一定角度。

对于给定的点(x, y),按照顺时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ - y*sinθ, y' = x*sinθ + y*cosθ)。

逆时针旋转则是指图形按照逆时针方向旋转一定角度。

对于给定的点(x, y),按照逆时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ + y*sinθ, y' = -x*sinθ + y*cosθ)。

旋转是一个很有趣的几何变换,我们可以通过旋转来判断图形的相似性、寻找对称性等等。

三、翻折翻折是指将图形绕一条直线折叠,使得折叠前的一部分与折叠后的另一部分完全重合。

小学数学点知识归纳平移旋转与翻折

小学数学点知识归纳平移旋转与翻折

小学数学点知识归纳平移旋转与翻折小学数学点知识归纳:平移、旋转与翻折数学作为一门基础学科,既要注重学生对基本概念的掌握,又要培养学生的思维能力和解决问题的能力。

在小学数学中,平移、旋转和翻折是重要的几何变换概念,本文将对这些知识进行归纳总结,并探讨其在小学数学中的教学。

一、平移平移是指在平面上保持形状和大小不变的情况下,将图形沿着一定方向进行移动的几何变换。

在平移中,图形的每一个点都按照相同的方向和距离进行移动。

平移有以下几个重要的特点:1. 平移后的图形与原图形全等。

平移不改变图形的形状和大小,因此平移后的图形与原图形全等。

这也是平移与其他几何变换(如旋转和翻折)的区别之一。

2. 平移是由向量描述的。

平移是由一个向量来描述的,这个向量既包括平移的方向,也包括平移的距离。

在平移时,我们可以选取任意一点作为起点,通过向量来确定平移的方向和距离。

3. 平移的性质:保持向量平行关系、保持直线平行关系、保持角度大小关系等。

平移不仅可以保持向量平行关系,还可以保持直线平行关系以及角度大小关系。

这些性质使得平移在解决实际问题中有着广泛的应用。

二、旋转旋转是指在平面上围绕某一点或某一直线进行旋转的几何变换。

旋转有以下几个重要的特点:1. 旋转后的图形与原图形形状相同,大小可以相同也可以不同。

旋转过程中,图形的形状保持相同,但其大小可以相同也可以不同。

这取决于旋转的角度。

2. 旋转是由旋转中心和旋转角度来描述的。

旋转的中心可以是图形上的一个点,也可以是平面上的某一直线。

旋转角度可以为正也可以为负,表示顺时针或逆时针旋转。

3. 旋转的性质:保持向量的大小和相对位置不变、保持角度大小不变等。

旋转可以保持向量的大小和相对位置不变,还可以保持角度大小不变。

这些性质使得旋转在解决几何问题和构造图形等方面有着重要的应用。

三、翻折翻折是指在平面上绕一条直线将图形进行镜像的几何变换。

翻折有以下几个重要的特点:1. 翻折后的图形与原图形形状完全相同,只是位置关系发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题图形的平移翻折与旋转4.1图形的平移例1 2015年泰安市中考第15题如图1,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,23)B.(3,33)C.(4,33)D.(3,23)图1 图2动感体验请打开几何画板文件名“15泰安15”,拖动点A'运动的过程中,可以体验到,△A′OC 保持等边三角形的形状.答案A.思路如下:如图2,当点B的坐标为(2, 0),点A的横坐标为1.当点A'的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=23.此时B′(4,23).例2 2014年江西省中考第11题如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后,得到△A′B′C′,联结A′C,则△A′B′C的周长为_______.动感体验请打开几何画板文件名“14江西11”,拖动点B′运动,可以体验到,△A′B′C′向右移动2个单位后,△A′B′C是等边三角形.答案12.4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题如图1,在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.图1动感体验请打开几何画板文件名“15宝山嘉定18”,拖动点E在DC上运动,可以体验到,△ADE与△AFE保持全等,△AMF与△FNE保持相似(如图2所示).答案35.思路如下:如图2,过点F作AD的平行线交AB于M,交DC于N.因为AD=15,当AD=3GD时,MF=AG=10,FN=GD=5.在Rt△AMF中,AF=AD=15,MF=10,所以AM=55.设DE=m,那么NE=55m-.由△AMF∽△FNE,得AM FNMF NE=,即5555m=-.解得m=35.图2例2 2014年上海市中考第18题如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).图1动感体验请打开几何画板文件名“14福州10”,拖动点F在AD上运动,可以体验到,当点C′、D′、B在同一条直线上时,直角三角形BCE的斜边BE等于直角边C′E的2倍,△BCE是30°角的直角三角形,此时△EFG是等边三角形(如图2).答案23t.思路如下:如图2,等边三角形EFG的高=AB=t,计算得边长为23t.图24.3图形的旋转例1 2015年扬州市中考第17题如图1,已知Rt△ABC中,∠ABC=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF= .图1 图2动感体验请打开几何画板文件名“15扬州17”,拖动点D绕着点C旋转,可以体验到,当旋转角为90°时,FH是△ECD的中位线,AF是直角三角形AHF的斜边.答案5.思路如下:如图2,作FH⊥AC于H.由于F是ED的中点,所以HF是△ECD的中位线,所以HF=3.由于AE=AC-EC=6-4=2,EH=2,所以AH=4.所以AF=5.例2 2014年上海市黄浦区中考模拟第18题如图1,在△ABC中,AB=AC=5,BC=4,D为边AC上一点,且AD=3,如果△ABD 绕点A逆时针旋转,使点B与点C重合,点D旋转至D',那么线段DD'的长为.图1动感体验请打开几何画板文件名“14黄浦18”,拖动点B'绕点A逆时针旋转,可以体验到,两个等腰三角形ABB'与等腰三角形ADD'保持相似(如图2).答案12.思路如下:如图3,由△ABC∽△ADD',可得.5∶4=3∶DD'.5图2 图34.4三角形例1 2015年上海市长宁区中考模拟第18题如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC 固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE 始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.图1动感体验请打开几何画板文件名“15长宁18”,拖动点E在BC上运动,可以体验到,△AEM 有三个时刻成为等腰三角形,其中一个时刻点E与点B重合.答案116或1.思路如下:设BE=x.由△ABE∽△ECM,得AB EAEC ME=,即56EAx ME=-.等腰三角形AEM分三种情况讨论:①如图2,如果AE=AM,那么△AEM∽△ABC.所以5566EAME x==-.解得x=0,此时E、B重合,舍去.②如图3,当EA=EM时,516EAx ME==-.解得x=1.③如图4,当MA=ME时,△MEA∽△ABC.所以6556EAME x==-.解得x=116.图2 图3 图4例2 2014年泰州市中考第16题如图1,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP的长等于__________cm.图1动感体验请打开几何画板文件名“14泰州16”,拖动点P在AD上运动,观察度量值,可以体验到,存在两个时刻PQ=AE.答案1或2.思路如下:如图2,当PQ=AE时,可证PQ与AE互相垂直.在Rt△ADE中,由∠DAE=30°,AD=3,可得AE=23.在Rt△APM中,由∠P AM=30°,AM=3,可得AP=2.在图3中,∠ADF=30°,当PQ=DF时,DP=2,所以AP=1.图2 图34.5四边形例1 2015年安徽省中考第9题如图1,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.25B.35C.5 D.6图1动感体验请打开几何画板文件名“15安徽09”,拖动点E在AB上运动,可以体验到,当EF与AC垂直时,四边形EGFH是菱形(如图2).答案C.思路如下:如图3,在Rt△ABC中,AB=8,BC=4,所以AC=45.由cos∠BAC=AB AOAC AE=,得2545=.所以AE=5.图2 图3例2 2014年广州市中考第8题将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图1,测得AC=2.当∠B=60°时,如图2,AC等于().(A)2;(B)2;(C) 6;(D) 22.图1 图2动感体验请打开几何画板文件名“14广州08”,拖动点A绕着点B旋转,可以体验到,当∠B=90°时,△ABC是等腰直角三角形;当∠B=60°时,△ABC是等边三角形(如图3).答案(A).思路如下:4.6圆例1 2015年兰州市中考第15题如图1,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为__________.A.4π B. 2π C. 6π D. 3π图1动感体验请打开几何画板文件名“15兰州15”,拖动点P 在圆周上运动一周,可以体验到,当点P 沿着圆周转过45°时,点Q 走过的路径是圆心角为45°半径为1的一段弧.答案 A .思路如下:如图2,四边形PMON 是矩形,对角线MN 与OP 互相平分且相等,因此点Q 是OP 的中点.如图3,当∠DOP =45°时,'D Q 的长为121=84ππ⨯⨯.图2 图3例2 2014年温州市中考第16题如图1,在矩形ABCD中,AD=8,E是AB边上一点,且AE=14AB,⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG∶EF=5∶2.当边AD或BC所在的直线与⊙O相切时,AB的长是________.图1动感体验请打开几何画板文件名“14温州16”,拖动点B运动,可以体验到,⊙O的大小是确定的,⊙O既可以与BC相切(如图3),也可以与AD相切(如图4).答案12或4.思路如下:如图2,在Rt△GEH中,由GH=8,EG∶EF=5∶2,可以得到EH=4.在Rt△OEH中,设⊙O的半径为r,由勾股定理,得r2=42+(8-r)2.解得r=5.设AE=x,那么AB=4x.如图3,当⊙O与BC相切时,HB=r=5.由AB=AE+EH+HB,得4x=x+4+5.解得x=3.此时AB=12.如图4,当⊙O与AD相切时,HA=r=5.由AE=AH-EH,得x=5-4=1.此时AB=4.图2 图3 图44.7函数图像的性质例1 2015年青岛市中考第8题如图1,正比例函数11y k x =的图像与反比例函数22k y x=的图像相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ).A .x <-2或x >2B . x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2图1动感体验请打开几何画板文件名“15青岛08”,拖动点D 在x 轴上运动,观察线段EF 的两个端点E 、F 的位置关系,可以体验到,当-2<x <0或x >2时,点E 在点F 的上方.答案 D .如图2所示.图2例2 2014年苏州市中考第18题如图1,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,联结P A .设P A =x ,PB =y ,则(x -y )的最大值是_____.图1动感体验请打开几何画板文件名“14苏州18”,拖动点P 在圆上运动一周,可以体验到,AF 的长可以表示x -y ,点F 的轨迹象两叶新树丫,当AF 最大时,OF 与AF 垂直(如图2).答案 2.思路如下:如图3,AC 为⊙O 的直径,联结PC .由△ACP ∽△P AB ,得AC PA AP PB =,即8x x y =.所以218y x =. 因此2211(4)288x y x x x -=-=--+.所以当x =4时,x -y 最大,最大值为2.图2 图3。

相关文档
最新文档