第八讲全等三角形基本图形

合集下载

全等三角形ppt课件

全等三角形ppt课件

三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”


三角形全等
“边角边”

的判定
“角边角”“角角边”

“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形

全等三角形的基本模型复习(正式经典)PPT课件

全等三角形的基本模型复习(正式经典)PPT课件

2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

全等三角形课件ppt

全等三角形课件ppt

与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等

04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。

全等三角形ppt课件

全等三角形ppt课件

斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

初二数学《全等三角形》PPT课件

初二数学《全等三角形》PPT课件

02
全等三角形判定方法
SSS判定法
定义
三边对应相等的两个三角 形全等。
符号语言
在△ABC和△A'B'C'中, AB=A'B',AC=A'C', BC=B'C' ⟹ △ABC≌△A'B'C' (SSS)
注意事项
在应用SSS判定法时,需 要确保三个边分别对应相 等,不能只满足其中两个 边相等。
SAS判定法
注意事项
在应用AAS判定法时,需要确保两个角和其中一个角的对边分别对应相等。同时,需要注意 的是,AAS判定法和ASA判定法的区别在于,AAS判定法中的两个角不是夹边所对的角,而 是任意两个角。
03
全等三角形证明技巧
已知条件梳理与分析
已知条件分类
01
边、角、高、中线、角平分线等。
已知条件之间的关系
能够灵活运用这些判定方法解决相关问题。
关键知识点回顾与总结
全等三角形的应用 了解全等三角形在几何证明和实际问题中的应用。
能够运用全等三角形的知识解决一些实际问题。
拓展延伸:相似三角形简介
相似三角形的定义与性质 了解相似三角形的定义,即两个三角形对应角相等、对应边成比例。
掌握相似三角形的性质,如相似比、面积比等。
符号语言
在△ABC和△A'B'C'中,∠A=∠A', AB=A'B',∠B=∠B' ⟹ △ABC≌△A'B'C'(ASA)
注意事项
在应用ASA判定法时,需要确保 两个角和它们之间的夹边分别对
应相等。
AAS判定法
定义

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

全等三角形的概念与性质PPT课件

全等三角形的概念与性质PPT课件

结合2,3两题,说说你是怎样寻找这些对应元素的。 ⑴写出图中相等的线段,相等的角;
相等
全等三角形的对应角有什么关系? 记作: ∆ABC≌∆A1B1C1
相等
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE(已知) ∴ AB=DF, BC=FE, AC=DE ( 全等三角形的对应边相等 ) ∴ ∠ A= ∠ D, ∠ B= ∠ F , ∠ C= ∠ E
(1) △ ABE ≌ △ ACF
(2)△ BCE ≌ △ CBF (3)△ BOF ≌ △ COE
5. △ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗? 请与同伴交流并写出来.
A
D
B
C E
F
感谢观看
O B
③ D
结合2,3两题,说说你是怎样寻找这些对 应元素的。 (1)对应角所对的边是对应边;对应边 所对的角是对应角。
(2)有公共边的,公共边是对应边;有 公共角的,公共角是对应角。
(3)相等的边是
1、如图△ ABD ≌ △CDB,若AB=4,AD=5,BD=6,则BC=
全等三角形的对应边有什么关系? 图对指结即 A●(∴写对CA中应出合∠重出应=BAB三 角 下 2合 全 角=,EA3D角所列的等所D两F形对全顶三对=,题B∠的的等点角的C,C位边三叫形边=说AF置是角对的是EE说),是对形应符对A你怎应的顶号应C是=样边对点表边D怎变应示..E样化边,并寻的和指找?对出这应它些角们对的应对元应素顶的点。、对应边、对应角。
其它的对应边有:______ A
E
对应角有:__________
∠BAD=∠CAE吗?为什么?

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

《全等三角形的判定》全等三角形PPT课件

《全等三角形的判定》全等三角形PPT课件
A
用符号语言表达为: 在△ABC与 △DEF中
∠A=∠D AC=DF
AB=DE
B
C
D
E
F
∴△ABC≌△DEF(SAS)
例2、如图,有一池塘,要测池塘两端A、B
的距离,可先在平地上取一个可以直接到达 A和B的点C,连接AC并延长到D,使CD=CA.连 接BC并延长到E,使CE=CB.连接DE,那么量 出DE的长就是A、B的距离.为什么?
D
BCBiblioteka 课堂小结:1. 三角形全等的条件,两边和它们的夹角对应相等 的两个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形
布置作业:
课本104页3、4题 同步练习
• • • • • • • • • • • • • • • • • •
1 少壮不努力,老大徒悲伤。—— 汉乐府古辞《长歌行》 2 业精于勤,荒于嬉。—— 韩 愈《进学解》 3 一寸光阴一寸金,寸金难买寸光阴。——《增广贤文》 4 天行健,君子以自强不息。——《周易· 乾· 象》 5 志不强者智不达。——《墨子· 修身》 6 青,取之于蓝而青于蓝;冰,水为之而寒于水。 ——《荀子· 劝学》 7 志当存高远。—— 诸葛亮《诫外生书》 8 丈夫志四海,万里犹比邻。—— 曹 植《赠白马王彪》 9 有志者事竟成。 ——《后汉书· 耿 列传》 11 会当凌绝顶,一览众山小。 —— 杜 甫《望岳》 12 岁寒,然后知松柏之后凋也。——《论语· 子罕》 13 天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为。——《孟子· 告子下》 14 锲而舍之,朽木不折;锲而不舍,金石可镂。——《荀子· 劝学》 15 石可破也,而不可夺坚;丹可磨也,而不可夺赤。——《吕氏春秋· 诚廉》 16 精诚所至,金石为开。——《后汉书· 光武十王列传》 17 忧劳可以兴国,逸豫可以亡身。——《新五代史· 伶官传序》 19 路曼曼其修远兮,吾将上下而求索。—— 屈 原《离骚》 20 位卑未敢忘忧国,事定犹须待盖棺。—— 陆 游《病起》

全等三角形的判定 课件

全等三角形的判定 课件

全等三角形的判定课件同学们,今天我们来一起学习全等三角形的判定。

全等三角形是初中几何中非常重要的一个概念,而判定两个三角形全等则是解决很多几何问题的关键。

首先,我们来明确一下什么是全等三角形。

两个三角形能够完全重合,就说这两个三角形全等。

全等三角形的对应边相等,对应角也相等。

那怎么判定两个三角形全等呢?接下来我们重点介绍几种常见的判定方法。

第一种判定方法是“边边边”(SSS)。

如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

比如说,有三角形 ABC 和三角形 DEF,AB 等于 DE,AC 等于 DF,BC 等于 EF,那么就可以判定三角形 ABC 全等于三角形 DEF。

为什么“边边边”能够判定三角形全等呢?我们可以通过平移、旋转、翻转等操作,把一个三角形与另一个三角形完全重合,从而证明它们全等。

第二种判定方法是“边角边”(SAS)。

如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如三角形 ABC 和三角形 DEF 中,AB 等于 DE,∠A 等于∠D,AC 等于 DF,那么这两个三角形就是全等的。

这里要特别注意,是夹角相等哦,如果不是夹角相等,就不能用“边角边”来判定。

第三种判定方法是“角边角”(ASA)。

如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

例如在三角形 ABC 和三角形 DEF 中,∠A 等于∠D,AB 等于 DE,∠B 等于∠E,那么三角形 ABC 就全等于三角形 DEF。

还有一种判定方法是“角角边”(AAS)。

如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

我们通过一些具体的例子来加深对这些判定方法的理解。

例 1:已知三角形 ABC 中,AB = 5cm,BC = 7cm,AC = 9cm;三角形 DEF 中,DE = 5cm,EF = 7cm,DF = 9cm。

证明三角形ABC 全等于三角形 DEF。

全等三角形及性质PPT课件

全等三角形及性质PPT课件

角角边定理
两角和一边对应相等的两个三角 形全等,简称AAS。
若两个三角形有两个角相等,且 其中一个角的对边也相等,则这
两个三角形全等。
举例:若△ABC和△DEF中, ∠A=∠D,∠B=∠E,BC=EF,则
△ABC≌△DEF。
04
全等三角形与相似三角形关系
相似三角形定义及性质
定义:两个三角形如果它们 的对应角相等,则称这两个
行推导。
全等三角形在几何证明中作用
01
02
03
04
证明线段相等
通过全等三角形的对应边相等 来证明两条线段相等。
证明角相等
通过全等三角形的对应角相等 来证明两个角相等。
证明垂直关系
通过全等三角形的性质来证明 两条直线垂直。
证明平行关系
通过全等三角形的性质来证明 两条直线平行。
典型例题解析
例题1
已知△ABC和△DEF全等,且AB=DE,BC=EF,∠B=∠E。 求证:AC=DF。
HL全等(直角三角形)
在直角三角形中,斜边和一条直 角边分别相等的两个三角形全等 。
典型例题解析
解析
根据SAS全等的判定方法,已知两边和夹角分别相等,因 此可以判定△ABC和△DEF全等。
例2
已知△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB = 6cm,求△DEB的周长。
边角边判定
如果两个多边形的一组对 应边和它们之间的对应角 都相等,则它们是全等的 。
角边角判定
如果两个多边形的一组对 应角和它们之间的夹边都 相等,则它们是全等的。
典型例题解析
1. 例题一
已知两个四边形ABCD和EFGH,其中AB=EF, BC=FG, CD=GH, DA=HE,且∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H。求证:四边形ABCD与四边形EFGH全等。

全等三角形ppt课件

全等三角形ppt课件
解: △ABD≌△ACD,BD=CD,∠B=∠C,理由如下: 由AD平分∠BAC,知∠1=∠2. 因此,将图1沿AD对折时,射线AC与射线AB重合. ∵AB=AC, ∴点C与点B重合,也就是△ACD与△ABD重合(图2)
∴ △ABD≌△ACD(全__等__三__角__形__的__定__义__)_________
解:∵∠A=50°,∠B=48°, ∴∠C=180°-50°-48°=82°. 又∵△ABC≌△DEF, ∴∠C=∠F,∴∠F=82°. ∵DE的对应边为AB,所以DE=AB, ∴AB=10 cm.
【点悟】利用全等三角形的对应角相等、对应边相等解决问 题时,应注意不要将对应边(对应角)弄错,也就是要求在表 示两个三角形全等时书写规范.
寻找对应边、角的规律:
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,最小的边是对应边; (5)两个全等三角形最大的角是对应角,最小的角是对应角;
例2 如图,AD平分∠BAC,AB=AC.△ABD与△ACD全等吗?
起可以重合
能够完全重合的 两个图形叫做全
等图形
A
B′
A′
B
C
C′
1.它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A′、B和 B′、C和C′; 2.互相重合的边叫做全等三角形的对应边:如AB和A′B′、BC和B′C′、CA和C′A′; 3.互相重合的角叫做全等三角形的对应角:如∠A和∠A′、 ∠B和∠B′、 ∠C和 ∠C′.
怎样判断两个图形是不是全等图形?
确定两个图形全等要符合两个条件: ①形状相同,②大小相同; 是否是全等图形与位置无关. 判断两个图形是否全等还可以通过平移、旋转、翻折等方法把两 个图形叠合在一起,看它们能否完全重合,即用叠合法判断.

第八讲 全等三角形基本图形之欧阳术创编

第八讲 全等三角形基本图形之欧阳术创编

欧阳术创编 2021.02.02 欧阳美创编 2021.02.02A BEDCF AB CD1234ABCDEF O ODCB A AB C DF第八讲 全等三角形基本图形(2)一、知识点1、熟悉一些全等中的基本图形;2、熟练运用全等三角形的判定方法和性质。

二、典型例题和练习例1、已知:如图,AD ∥BC ,AD =BC .求证:AB ∥CD .例2、已知:如图,AD ∥BC ,AD =BC ,AE=CF .求证:BE =DF . 例3、已知:如图,点E ,F 在BC 上,且BE =CF ,AB =CD ,∠B =∠C .求证:AF =DE .例4、已知:如图,∠1=∠2,∠3=∠4.求证:AC =AD .例5、已知:如图,AB =CD ,BC =AD ,E 、F 是AC 上的两点,且AE =CF 求证:BF =DE .例6、已知:如图,AB ,CD 相交于点O ,AC ∥DB ,OC=OD ,E 、F 为AB 上的两点,且AE=BF . 求证:CE =DF .例7、已知:如图,AB ∥CD ,OA =OC .求证:△AOB ≌△COD .练习:1、已知:如图,AB =AC ,DB =CD ,F 是AD 的延长线上的一点.求证:BF =CF .2、如图:AD =BC ,AC ⊥BC ,BD ⊥AD .求证:∠CAO =∠DBO.欧阳术创编 2021.02.02欧阳美创编 2021.02.02ODCB AA BCDEMN12EDCBA B DABD CEF4321EDC BA3、已知:如图,AB =DC ,AC =BD .求证:∠A =∠D .4、已知:如图,AB =AC ,AD =AE ,∠DAB =∠EAC AB 、DC 相交于点M ,AC 、BE 相交于点N ,.求证:AM =AN .5、如图,AB =AD ,BC =DE ,∠1=∠2.求证:(1)AC =AE ;(2)∠CAE =∠CDE .6、已知:AD ∥BC ,∠1=∠2,∠3=∠4,直线DC 过点E 交AD 于D ,交BC 于C . 求证:AD +BC =AB .7、已知:如图,AD ∥BC ,AE ,BE 分别平分∠A ,∠B ,点E 在CD 上.求证:(1)E 为CD 的中点;(2)BC +AD =例8、已知:如图,在正方形ABCD 中AB =D =90°.(1)如果BE +DF =EF .求证:①∠EAF =45°.②FA 平分∠DFE .(2)如果∠EAF =45°.求证:BE +DF =EF .(3)如果点F 在DC 的延长线上,点E 在CB 的延长线上,满足(1)的条件,则(1)中结论是否仍然成立?例9、如图,△ABE 和△ACF 分别是以△ABC 的AB 、AC 为一边在形外所作的等边三角形,CE 、BF 相交于O ,求∠EOB 的度数. 三、巩固提高1.如图,已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△FEDCBADEF,(1)若以“ASA”为依据,还缺条件 .(2)若以“AAS”为依据,还缺条件 .(3)若以“SAS”为依据,还缺条件 .2. AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC 的取值范围是____;中线AD的取值范围是____.3. 已知EF是AB上的两点,AC∥DB,DE∥CF,且AE=BF,求证:CF=DE.4. 已知:如图,AO平分∠EAD和∠EOD求证:①△AOE≌△AOD ②EB=DC5.如图,点以为线段AB上一点,△ACM和△CBN是等边三角形,直线AN交MC于E,BF交NC于F.(1)求证:AN=BM(2)求证:CE=EF=CF(3)将△ACM绕点C逆时针方向旋转900,其他条件不变,在图中补出符合要求的图形,并判断第(1)、(2)两题的结论是否仍然成立(不要求证明). 。

《全等三角形》PPT课件

《全等三角形》PPT课件
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角
D
△AOD≌△COD
A O
C
B
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE
B D
E C
找出下列全等三角形的对应边、对应角
△ADE≌△CBF
A
E
B
D
F
C
找出下列全等三角形的对应边、对应角 A △△AABBNM≌≌△△AACCMN
• 形状、大小相同的图形放在一起 能够完全重合。
• 能够完全重合的两个图形叫做全 等形
• 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
CE
F
2、把对对两应应个角边三是是角∠A形AB和重和∠合DD到E,,一起.
重∠A合BC和的和∠顶DE点F,∠,叫CB和做C∠对和F应EF顶; 点,
对重应合顶的点边是叫点做A对和应点边D,,
点重B合和的点角E叫,做点对C和应点角F。;
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记读有对作作的应::△△对角AA应 ?BBCC顶≌全点△等D于、E△F对D应EF边和
∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?

全等三角形ppt课件

全等三角形ppt课件

其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
D
A
B
E
D
C
F
A
B
D
E
F
A
B
C
D
12
34
A
B
C
D
E
F
第八讲 全等三角形基本图形(2)
一、知识点
1、熟悉一些全等中的基本图形;
2、熟练运用全等三角形的判定方法和性质。

二、典型例题和练习
例1、已知:如图,AD ∥BC ,AD =BC .求证:AB ∥CD .
例2、已知:如图,AD ∥BC ,AD =BC ,AE =CF .求证:BE =DF .
例3、已知:如图,点E ,F 在BC 上,且BE =CF ,AB =CD ,∠B =∠C .求证:AF =DE .
例4、已知:如图,∠1=∠2,∠3=∠4.求证:AC =AD .
例5、已知:如图,AB =CD ,BC =AD ,E 、F 是AC 上的两点,且AE =CF 求证:BF =DE .
A
B C
D
E
F
O
O
D
C
B
A
A
B
C
D
F
O
D
C
B
A
O
D C
B
A
例6、已知:如图,AB ,CD 相交于点O ,AC ∥DB ,OC=OD ,E 、F 为AB 上的两点,且AE=BF . 求证:CE =DF .
例7、已知:如图,AB ∥CD ,OA =OC .求证:△AOB ≌△COD . 练习:
1、已知:如图,AB =AC ,DB =CD ,F 是AD 的延长线上的一点.求证:BF =CF .
2、如图:AD =BC ,AC ⊥BC ,BD ⊥AD .求证:∠CAO =∠DBO .
3、已知:如图,AB =DC ,AC =BD .求证:∠A =∠D .
A
B C
D E
M
N 12
E
D
C
B A 432
1E
D
C
B
A
4、已知:如图,AB =AC ,AD =AE ,∠DAB =∠EAC AB 、DC 相交于点M ,AC 、BE 相交于点N ,.
求证:AM =AN .
5、如图,AB =AD ,BC =DE ,∠1=∠2.求证:(1)AC =AE ;(2)∠CAE =∠CDE .
6、已知:AD ∥BC ,∠1=∠2,∠3=∠4,直线DC 过点E 交AD 于D ,交BC 于C .
求证:AD +BC =AB .
7、已知:如图,AD ∥BC ,AE ,BE 分别平分∠A ,∠B ,点E 在CD 上.
B
D
A
B
D C
E
F
求证:(1)E 为CD 的中点;(2)BC +AD =AB .
例8、已知:如图,在正方形ABCD 中AB =AD ,∠B =∠D =90°.
(1)如果BE +DF =EF .求证:①∠EAF =45°.②FA 平分∠DFE .
(2)如果∠EAF =45°.求证:BE +DF =EF .
(3)如果点F 在DC 的延长线上,点E 在CB 的延长线上,满足(1)的条件,则(1)中结论是否仍然成立
F
E
O
C
B
A
例9、如图,△ABE和△ACF分别是以△ABC的AB、AC为一边在形外所作的等边三角形,CE、BF相交于O,求∠EOB的度数.
三、巩固提高
1.如图,已知如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,
(1)若以“ASA”为依据,还缺条件 .
(2)若以“AAS”为依据,还缺条件 .
(3)若以“SAS”为依据,还缺条件 .
2. AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是____;中线AD的取值范围是____.
3. 已知EF是AB上的两点, AC∥DB, DE∥CF,且AE=BF,求证:CF=DE.
4. 已知:如图, AO平分∠EAD和∠EOD求证:①△A OE≌△A OD ②EB=DC
F
E
D
C
B

5.如图,点以为线段AB上一点,△ACM和△CBN是等边三角形,直线AN交MC于E,BF交NC于F.
(1)求证:AN=BM
(2)求证:CE=EF=CF
(3)将△ACM绕点C逆时针方向旋转900,其他条件不变,
在图中补出符合要求的图形,并判断第(1)、(2)两题的结
论是否仍然成立(不要求证明). 。

相关文档
最新文档