对偶理论和灵敏度分析(新)

合集下载

运筹学 对偶理论和灵敏度分析

运筹学  对偶理论和灵敏度分析
对偶理论和灵敏度分析
1.单纯形的矩阵描述
用矩阵语言描述单纯形法的关键是写出两个基本的 表达式,设线性规划的标准型为 maxz=CX AX=b X≥0
C=(CB,CN),X=(XB,XN)’,A=(B,N)
由约束条件AX=(B,N)(XB,XN)=BXB+NXN=b,可以得 到用非基变量表示基变量的表达式:
-2 -3 -1 -1 1/3 x3 -1/3 0 x1 4/3 1 x5 1/3 0 0
' ' - a 1k / alk ' ' - a 2k / alk ... ' 1 / alk ... ' ' - a mk / alk
3对偶理论
某厂生产甲乙两种产品,各自的零部件分别在A、B车间生产,最 后都需在C车间装配,相关数据如表所示: 问如何安排甲、乙两产品的产量,使利润为最大。 工时单耗 生产能力 产品 甲 乙 车间 A 1 0 8 B 0 2 12 C 3 4 36 单位产品获利 3 5 • maxZ= 3x1 +5 x2 x1 ≤8 2x2 ≤12 S.t. 3x1 +4 x2 ≤36 x1 ≥0, x2 ≥0
(4)影子价格在资源采购决策中的应用。
当资源的市场价格低于影子价格,企业买进该资源,扩 大生产,当资源的市场价格高于影子价格,企业应设法转让 该资源。
(5)利用影子价格分析工艺改变后对资源节约的收益。 例如设工厂现有钢材100吨,其影子价格为3/4,采用新 工艺后,钢材可以节约2%,则由此带来的经济收益为:
(3)影子价格在新产品开发决策中的应用。 产品 资源 A B 影子价格(万元)
钢材 煤 机时
单位利润(万元)

运筹学对偶理论与灵敏度分析

运筹学对偶理论与灵敏度分析
17
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1

3对偶理论与灵敏度分析解析

3对偶理论与灵敏度分析解析
X ≥0
对偶的定义 min W= Y b s.t. ATY ≥ C
Y≥0
min Z’= - CX
max W’ = -Yb
s.t. - AX ≥ - b
s.t. -ATY ≤ -C
X ≥0 对偶的定义
Y≥0
__
__
(2)弱对偶性:设 X和 分Y 别是问题(P)和(D)的
可行解,则必有
__ __
n
m
C X Y b, 即 c j x j yibi
i 1
m
aij yi
c j ( j 1,2,, n)
i1
yi无符号限制(无约束)(i 1,2,, m)
例: 原问题为
max Z 2 x1 3 x2 4 x3
2 x1 3 x2 5 x3 2
3
x1
x2
7 x3 3
x1 4 x2 6 x3 5
x1 , x2 , x3 0
对偶问题的无界性。
无界
关于无界性有如下结论:
minW 4 y1 2 y2
原问题 问题无界
对偶问题 无可 行解
(D)
y1 y1
y2 y2
2 1
y1
0,
y2
0
无可 行解
问题无界
无可 行解
推论3:在一对对偶问题(P)和(D)中,若一个可行 (如P),而另一个不可行,(如D),则该可行的问 题无界。
一、问题的提出
• 对偶是什么:对同一事物(或问题),从不同 的角度(或立场)提出对立的两种不同的表述。 • 在平面内,矩形的面积与其周长之间的关系, 有两种不同的表述方法。 (1)周长一定,面积最大的矩形是正方形。 (2)面积一定,周长最短的矩形是正方形。 • 这种表述有利于加深对事物的认识和理解。 • 线性规划问题也有对偶关系。

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

13
2
y3
2 3

y1符号不限, y 2 0, y3 0
非 对 偶 形 式 旳 原对 偶 问 题
例2-4 写出下列问题旳对偶问题
max z c1x1 c2 x2 c3x3
a11x a12 x a13x3 b1
s.t.
a21x1 a31x1
a22 x2 a32 x2
a23 x3 a33 x3
出让自己旳资源?
问 题 旳 导 出
例2-1
条件:出让代价应不低于用同等数量资源由自己组织生 产活动时获取旳获利。
y1,y2,y3分别代表单位时间(h)设备A、设备B和调试工 序旳出让代价。 y1,y2,y3旳取值应满足:
6y 2
y 3
2
5y 1
2y 2
y 3
1
美佳企业用6h设备B和1h调试可 生产一件家电I,获利2元
y1, y2 , y3 0
LP1和LP2两个线性规划问题,一般称LP1为原问题, LP2为前者旳对偶问题。
max Z c1x1 c2 x2 cn xn
对 偶 问 题
s.t.
a11 a21
am1
a12 a22
am2
a1n x1 b1
a2n
x2
b2
amn xn bm
规 划 问
minW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1
a12y1
a22 y2
am2
ym
(,
)c2
题 旳 对 偶 问
a1n y1 a2n y2 amn ym (, )cn

y j 0(符号不限,或 0)i 1 ~ m

灵敏度分析与对偶理论

灵敏度分析与对偶理论
min f 300 y 1 400 y 2 250 y 3 1 y 1 2 y 2 50 y 1 y 2 y 3 100 y1 , y 2 , y 2 0
原问题:求目标函数 值最大值问题
对偶问题:求目标函数 值最小值问题
互为对偶问题
m ax z C X
m in f b Y
min f 3 x 1 9 x 2 4 x 3 x 1 2 x 2 3 x 3 180 2 x 1 3 x 2 x 3 60 5 x 1 3 x 2 240 x 1 , x 2 0 , x 3 无约束变量
max z 180 y 1 60 y 2 240 y 3
'
xB
'
0
x Bi ' x Bi ' m a x ' d ik 0 b k m in ' d ik 0 d ik d ik
例:
X5
X1
X2
X3
X4
CB 50 0
XB X1 X4
b 50 50
50 1 0
资源限制
问题2(对偶问题) 现在假设工厂准备把设 备A,B,C用于出租,确定 合理的租金?
300 400 250
设y1, y2, y3 分别为三种 设备的租金。
max z 50 x 1 100 x 2 x 1 x 2 300 2 x 1 x 2 400 x 2 250 x1 , x 2 0
j
cj CBB
1
Pj c j C B Pj
'
c j ( C B 1 ,..., C BK C K ,..., C Bm ) P j

对偶问题与灵敏度分析

对偶问题与灵敏度分析
②告诉经营者以怎样的代价去取得紧缺资源。 ③提示设备出租或原材料转让的基价。 ④告诉经营者补给紧缺资源的数量,不要盲目大量补给。 ⑤借助影子价格进行内部核算。
第一讲 对偶理论
解释例1的对偶问题的数学模型
Max Z= 3x1 +5 x2
x1
≤8
S.t.
2x2 ≤12 3x1 +4 x2 ≤36
x1 , x2 ≥0
第一讲 对偶理论
一、对偶问题
• 对原企业而言,它用于出租或转让的资源收益不应 低于自行生产产品所获得的利润,才肯出租或转让。
• 在这个问题上厂长面临着两种选择:自行生产或出 租设备。首先要弄清两个问题:
①如何合理安排生产,取得最大利润? ②为保持利润水平不降低,资源转让的最低价格是多少?
• 问题 ①的最优解:x1=4,x2=6,Z*=42。
(3) 按照θ=Min{j /alj | alj<0 }= k /alk确定xk进基变量。 (4) 以alk为主元素,按单纯形法的方法进行迭代,得到新的表重复
(2).
第一讲 对偶理论
例题:使用对偶单纯形法
• Min W= 8y1+12y2+36y3
y1 + 0y2 + 3y3 ≥ 3 S.t. 0y1 + 2y2 + 4y3 ≥ 5
此时,同时达到最优解
j 1
i 1
Z bi
*

yi*
bi为第i种资源的拥有量
• 说明yi是右端项bi每增加一个单位的第i种资源对目标函数Z的贡献。 • 对偶变量 yi在经济上表示原问题第i种资源的边际价值。
• 对偶变量的值 yi*所表示的第i种资源的边际价值,称为影子价值。

对偶理论与灵敏度分析

对偶理论与灵敏度分析
对偶理论与灵敏度分析
第三章 对偶理论与灵敏度分析
第一节 对偶问题的提出
例:常山机械厂生产Ⅰ和Ⅱ两种产品。生产中需使用A、B、C三种设备进行加工,加工每件Ⅰ产品或Ⅱ产 品所需的设备机时数、利润值及每种设备可利用机时数列于下表,请问:充分利用设备机台时,工厂应生 产Ⅰ和Ⅱ产品各多少件才能获得最大利润?试列出相应的线性规划数学模型。
4x1 +2x2 - x3 20 y2 x1,x2 , x3 0 解:该问题的对偶问题: min w = 10 y1 + 20 y2 s.t. y1 + 4y2 10
y1 + 2y2 1 2 y1 - y2 2
y1,y2 0
第一节 对偶问题的提出
例:写出下列线性规划问题的对偶问题 min w = x1 + 2x2 + 3x3
解:化为对称形式。 令 x2 x2,x3 x3 x3 (x3 0, x3 0) max z c1x1 c2x2 c3x3 c3x3
s.t. a11x1 a12x2 a13x3 a13x3 b1
aaa222a111xxx2111x1 aaa222a222xx2x2222x2 aaa222a333xxx23333x3 aaa222a333xxx23333x3 bbb222b2 a3a13x11x1 a3a23x22x2 a3a33x33x3 a3a33x33x3 b3b3 x1, x2 , x3, x3 0
a21x1 + a22x2 + … + a2nxn ≤ b2 ……
am1x1 + am2x2 + … + amnxn ≤ bm xj ≥ 0 (j = 1,2,…,n)
则称下列 LP 问题
min w = b1 y1 + b2 y2 + … +bm ym s.t. a11y1 + a21 y2 + … + am1ym ≥ c1

第2章对偶理论与灵敏度分析

第2章对偶理论与灵敏度分析

五.互补松弛性(松紧定理)
在线性规划问题的最优解中,如果对应某一约束
条件的对偶变量值为非零,则该约束条件取严格等式;
反之如果约束条件取严格不等式,则其对应的对偶变
量一定为零。也即:
n
若yˆi 0, 则有 aij xˆ j bi ,即xˆsi 0
n
j 1
若 aij xˆ j bi ,即xˆsi 0, 则有yˆi 0
minW=bTy
bT (12 8 16 12 )
y1 y2 y3
4x1 16 4x2 12
x1 x2 0
minW=12y1+8y2 +16y3+12y4
y4
ATy CT
AT 2140
2204
y1
CT
y2 y3
2 3
y4
2y1 +y2 +4y3 2 2y1 +2y2 +y4 3 y1 … y4 0
x (0,5,0)
对于对偶问题的可行解y (5,0)
有 80.
由弱对偶性,最优目标函数值z* *有上.下界。 25 z* * 80
互补松弛定理: 在线性规划问 题的最优解中,
一 . 对称性 :
对偶问题的对偶是原问题
二. 弱对偶性:
若x′是原问题的可行解,y′是对偶问题的可行 解。则有 cx′≤y′b
弱对偶性的三个推论
推论(1): 原问题任一可行解的目A标≦函Z数=W值是≦其B对偶
问题目标函数值的下界,反之对偶问题任一可行解的 目标函数值是其原问题目标函数值的上界。
推论(2): 若原问题(对偶问题)为无界解,则其对 偶问题(原问题)无可行解。注 : 其逆不成立。
由此y1,y2,y3的取值应满足:

对偶问题与灵敏分析

对偶问题与灵敏分析

y1,y2,… ,ym ≥0
y1,y2,… ,ym ≥0
原问题为:
Max Z= c1x1+c2x2+…+cnxn Min (-Z)= -c1x1-c2x2-…-cnxn
a11x1 + a12x2+…+a1n xn ≤ b1 a21x1 + a22x2+…+a2n xn ≤ b2
MaxZ(X)= 2x2-5x3
y1 -x1
-x3 ≤- 2
y2 2x1 + x2+6x3 ≤ 6
y3/
x1 - x2+3x3 ≤ 0
y3// -x1 + x2-3x3 ≤ 0
x1,x2,x3≥0
其对偶问题为:
Min W(y)= -2y1+6y2
x1
-y1 +2y2 +y3/ -y3//
≥x02
y2 -y3/ +y3// ≥2
4
4 x4
6
x1 0, x2 , x3 0, x4无限制
s.t约无2变y束符1y量4方号y1≤1y≥程约01003≤束7,≥=2yyy13y22y22约40y束y3无,332变y方y符3y3量程号无31≥≥≤≤约=00限53束2制
2.1.4对偶问题的基本性质
以对称型为例
设原问题(P)为 其对偶问题(D)为
无符号约束
约束方程≥ ≤
=
原问题( P)为
对偶规划问题(D)为:
max z c1x1 c2 x2 c3 x3 c4 x4
s.t aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
a14 x4 a24 x4

运筹学-02对偶理论与灵敏度分析

运筹学-02对偶理论与灵敏度分析
page 9 Sep.2009
Yao Yuan School of Business Administration
Operations Research
原问题和对偶问题的对应关系
原问题(对偶问题) 对偶问题(原问题) 约束系数矩阵的转置 目标函数中的价值系数向量 约束系数矩阵 约束条件的右端向量
A b C
min W Y T b A Y C s.t. Y 0
T T
X n1,Ym1 C1n,Amn,bm1
对偶问题 约束系数矩阵的转置 目标函数中的价值系数向量 约束条件的右端向量 Min W=YTb ATY≥CT
Yao Yuan School of Business Administration
目标函数
目标函数中的价值系数向量
max Z c j x j
j 1 n
约束条件的右端向量
min W bi y i
有n个 ( j 1,..., n) m a y c 约 ij i j i 1 束 m aij y i c j 条 i 1 件 m a ij y i c j i 1
0 6 1 2
5 2 1 1
15 24 5
max Z 2 x1 x2 5 x2 15 6 x 2 x 24 1 2 s.t. x1 x2 5 x1 , x2 0
min W 15 y1 24 y 2 5 y 3 6 y 2 y3 2 s.t.5 y1 2 y 2 y 3 1 y ,y ,y 0 1 2 3
page 3 Sep.2009
min W 24 y1 26 y 2 2 y1 3 y 2 4 s.t.3 y1 2 y 2 3 y ,y 0 1 2

运筹学2对偶理论与灵敏度分析

运筹学2对偶理论与灵敏度分析

三、增加新变量的灵敏度分析
在管理中经常遇到的问题:已知一 种新产品的技术经济指标,在原有最优 生产计划的基础上,怎样最方便地决定 该产品是否值得投入生产,可在原线性 规划中引入新的变量 ; 无论增加什么样的新变量,新问题 的目标函数只能向好的方向变化。
例2.16 (续例2.14)
设企业研制了一种新产品,对三种资源的消耗系数 列向量以P6表示。试问它的价值系数c6符合什么条件, 才必须安排它的生产?设c6=3,新的最优生产计划是 什么?
1. 强制生产30件A x1 必须等于30 目 标值下降; 下降程度可用 x1 的检验数进行 计算:
cj CB 0 5 4 0 XB x3 x1 x2 x6 σ
j
5 b 25 35 10 150 x1 0 1 0 4 0
4 x2 0 0 1 2 0
0 x3 1 0 0 0 0
0 x4 2 1 -1 0 -1
0 x5 -5 -1 2 0 -3
0 x6 0 0 0 1 0
0 5 4 0
0 5 4 0
90 1 = 80 0 b 0 3
250 - 5b3 - 5 90 80 = 80 b 3 ≥0 1 1 80 2b b3 -1 2 3
2
解得40≤b3≤50,即当3∈[40,50]时,最优基B不变, 最优解为: * x3 250- 5b3 * x1 80 b 3 * = x2 80 2b 3
x4*=x5*=0, z*=5×(80-b3)+4×(-80+2b3)=80+3b3
例2.14 某企业利用三种资源生产两种产品 的最优计划问题归结为下列线性规划

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析线性规划是一种优化方法,广泛应用于各个领域的决策问题。

在线性规划中,对偶问题与灵敏度分析是两个重要的概念和工具,可以帮助我们更好地理解和解决实际问题。

1. 对偶问题在线性规划中,对偶问题是指与原始问题相对应的一个问题。

它通过转换原始问题并构造一个新的问题,以便从不同的角度来解释和解决原始问题。

对偶问题能够提供原始问题的一些有用信息,并且在某些情况下,对偶问题的解与原始问题的解是相等的。

对偶问题的构造可以通过拉格朗日对偶性理论来完成。

该理论通过构造一个拉格朗日函数,将原始问题中的约束条件转化为拉格朗日乘子,从而得到对偶问题。

对偶问题的目标函数是原始问题的约束条件的线性组合。

解决对偶问题可以通过求解拉格朗日函数的最优化问题来实现。

对于线性规划问题,对偶问题的解可以通过求解一组线性方程或线性不等式来获得。

对偶问题的解不仅可以提供原始问题的一些信息,还可以用于检验原始问题的解的可行性和最优性。

2. 灵敏度分析灵敏度分析是在线性规划中评估解决方案对问题参数变化的响应程度的方法。

它可以帮助我们了解如果问题的参数发生变化,对解决方案的影响有多大,并做出相应的调整和决策。

灵敏度分析可以通过改变单个参数或多个参数来进行。

其中,常见的灵敏度分析包括目标函数系数的变化、约束条件右侧常量的变化和新增或取消约束条件。

这些变化可以用来模拟实际情况中可能发生的条件变化,以及评估解决方案的稳定性和可行性。

在进行灵敏度分析时,我们可以通过计算变动参数对解决方案的影响程度来得到一些关键指标。

例如,参数的变化导致目标函数值的变化量称为“影子价格”,而约束条件右侧常量的变化导致解决方案中相应决策变量的变化量,则称为“机会成本”。

灵敏度分析的结果可以帮助我们确定参数的重要性,判断解决方案的可行性和稳定性,以及找到最佳的决策方案。

在实际应用中,灵敏度分析可以帮助我们应对不确定性和风险,做出更加准确和可靠的决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档