两角和与差余弦

两角和与差余弦
两角和与差余弦

两角和与差的余弦

(第一课时)

一、教学目标:

(一)知识目标:

1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;

2、能用赋值法推导C(α-β)公式;

3、初步学会公式的简单应用和逆用公式等基本技能。

(二)能力目标:

1、通过公式的推导,提高学生恒等变形能力和逻辑推理能力;

2、通过公式的灵活运用,培养学生的方程思想和变换能力。

(三)德育目标:

1、公式的推导过程,体现了知识间的内在联系;

2、培养学生利用联系、变化的辨证唯物主义观点去分析问题;

3、通过教师启发引导、培养学生勇于探索的精神和解决问题的优化意识。

(四)美育目标:

公式,发现两角和差的三角函数与单角α、β之间的和通过鉴赏C(

α±β)

公谐、轮换结构,让学生感受数学公式的匀称美感。并引导学生领会C(

α±β)式的强大功能。

二、教学重难点

1.教学重点:两角和与差的余弦公式的推导与运用。培养学生掌握获取知识,运用知识的一系列的数学方法。

2.教学难点:余弦和角公式的推导以及运用公式进行化简、求值和证明,学会恰当赋值、逆用公式等技能。

三、教学过程:

(一)提出问题,产生对公式的需求。

首先让学生通过具体实例消除对“cos(α+β)=cosα+cosβ”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公

式结构的可能情况进行大胆猜想和尝试性探索。

(二)预备知识

1. 通过观看动画演示,形象直观地结合勾股定理简要介绍平面内两点间距

2. (结合以下问题,观看《几何画板》演示)

(1)分别指出点P 1、P 、P 2、P 3的坐标?

(2)弦P 1P 3的长如何表示?

(3)如何构造弦P 1P 3的等量关系?

[注]如何让推导公式的思路来得自然一些?课本出于叙述方便,隐去了证明的思路。教师的任务就是要给出一种合理的思路,比如我们要表示α+β的余弦,那么就得作出α、β、α+β的角,当发现|P 1P 3|可以用

cos(α+β)表示时,想到应该寻找与P 1P 3相等的弦,从而才想到作出角

(-β)。这种思路和课本的叙述是不同的,但从思维的角度来讲,也许更具有某种合理性,更能激发同学通过积极思维去探索、发现问题。

(三)公式推导

1.根据“同圆中相等的圆心角所对的弦相等”得到距离等式1324PP P P =

2.将1324PP P P =转化为三角恒等式,逐步变形整理成余弦的和角公式。

[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2 展开,整理得2-2cos(α+β)=2-2cos αcos β+2sin αsin β

所以cos(α+β)=cos αcos β-sin αsin β.

3.强调公式中α、β是任意角。用-β去代替β导出C (α-β),初步认识用赋

值法推导新公式。要求学生注意公式中:角、函数的排列顺序及式中各项符号,引导学生感受公式和谐、轮换的匀称美感,从鉴赏的角度记忆公式。

(四)公式应用

正因为α、β的任意性,所以赋予C (α+β)公式的强大生命力。

1.请用特殊角分别代替公式中α、β,你会求哪些非特殊角的值呢?

让学生动笔自由尝试、主动探索。有的同学说会求cos15°、cos75°、cos105°、cos(-15°)、cos165°……的值。甚至有的同学会说他验证了

cos30°=sin60°…….(让同学感受获得公式后的第一份喜悦)由于初学公式的应用,我选择其中之一作示范。

2.若β固定,分别用2

π,π代替α,你将发现什么结论呢? 让两名同学到黑板尝试,同时我走下讲台巡视,引导同学发现余弦

的诱导公式可用C (α±β)公式得到证明:

.βsin )β2

πcos(,βsin )β2πcos(,βcos )βπcos(=--=+-=±初步让学生发现C (α±β)公式是诱导公式的推广。(从而让同学感受获得公式后的第二份喜悦)

3.倘若让你对C (α±β)公式中的α、β自由赋值,你又将发现什么结论呢?

可能有的同学发现cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin

β……,甚至有的会发现cos2α=cos(α+α)=cos 2α-sin 2α,这是以后要学的二倍角公式。甚至有调皮的同学竟发现: cos0=cos(α-α)=cos 2α+sin 2α=1.在无意中证明了平方关系。(据此,让同学感受到C (α±β)公式的强大功能)。(必要时,教师可适当提示)。

[注]按课本编排未必能让同学注意公式中α,β的任意性,(而正是因α、β的任意性,所以才赋予C (α+β)公式的强大生命力)。于是我提出上述三

个问题,留时间先让同学用特殊角自由赋值。在此基础上,学会选择恰当的数或式进行赋值推导诱导公式等。逐渐摸索、尝试,不断总结、归纳。这样更能使同学亲自感受公式的强大功能,并掌握赋值法。

4. 练习:

(1) cos80°cos20°+sin80°sin20°,初步学会逆用公式。

(2) cos 215°-sin 215°,为二倍角公式埋下伏笔。

(3) c os80°cos35°+cos10°cos55°,逐步学会把不符合公式结构变

形使之符合。

(4) (2004全国高考题)设0,2πα??∈ ???

,若3cos 5α=,

则_____4πα??+= ??

?, 利用高考题的引用让学生串连三角函数的相关知识。

[注] 逆用公式是学生认识和掌握公式的重要标志。通过步步加深的练习,加强学生对公式的理解和应用,引导学生积极参与思维,培养学生观察,比较等思维能力。同时渗透了一种化归思想。

(五)总结

1、牢记公式的结构特点,学会逆用公式。不符合公式结构特点的,常通过诱导公式变形使之符合。

2、强调公式中α、β的任意性,是本节内容的主线,它赋予了公式的强大生命力。要深刻领会公式承上启下的核心作用。

3、恰当赋值是学好本节基础;逆用公式是本节基本技能。

[注]通过课堂小结,可以培养学生归纳总结的能力。

(六)作业:P 40-41 1,2(2)(4),3(3)(4)(6)(8)

[注]通过布置作业使学生进一步巩固本节的重点内容。

板书设计

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形 1.两角和与差的正弦、余弦、正切公式 (1)公式 ①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β 1+tan αtan β(T (α-β)) ⑥tan(α+β)=tan α+tan β 1-tan αtan β(T (α+β)) (2)公式变形 ①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式 ①sin 2α=2sin_αcos_α, ②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α= 2tan α 1-tan 2α . (2)公式变形 ①cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; ②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(π α±. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×) (4)公式tan(α+β)=tan α+tan β 1-tan αtan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意

(整理)《两角和与差的余弦公式》教学设计.

《两角和与差的余弦公式》教学设计 一、教材地位和作用分析: 两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。 二、教学目标: 1、知识目标: ①、使学生了解平面内两点间距离公式的推导并熟记公式; ②、使学生理解两角和与差的余弦公式和诱导公式的推导; ③、使学生能够从正反两个方向运用公式解决简单应用问题。 2、能力目标: ①、培养学生逆向思维的意识和习惯; ②、培养学生的代数意识,特殊值法的应用意识; ③、培养学生的观察能力,逻辑推理能力和合作学习能力。 3、情感目标: ①、通过观察、对比体会公式的线形美,对称美; ②、培养学生不怕困难,勇于探索的求知精神。 三、教学重点和难点: 教学重点:两角和与差的余弦公式的推导及运用。 教学难点:两角和与差的余弦公式的灵活运用。 四、教学方法: 创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。从而体现教师主导作用和学生主体作用的

和谐统一。 由此我决定采用以下的教学方法:创设情境----提出问题----探索尝试----启发引导----解决问题。 学法指导: 1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。(体现学习过程中循序渐进,温故知新的认知规律。) 2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。 五、教学过程

两角和与差的正弦、余弦函数(答案)

课时跟踪检测(二十四) 两角差的余弦函数两角和与差的正弦、 余弦函数 一、基本能力达标 1.已知α∈? ????0,π2,cos α=3 3,则cos ? ????α+π6=( ) A.12-66 B .1-66 C .-12+66 D .-1+6 6 解析:选A ∵α∈? ????0,π2,cos α=33,∴sin α=63, ∴cos ? ????α+π6=cos αcos π6-sin αsin π 6 =33×32-63×12=12-66 . 2.满足cos αcos β=3 2 -sin αsin β的一组α,β的值是 ( ) A .α=13π12,β=3π4 B .α=π2,β=π 3 C .α=π2,β=π6 D .α=π3,β=π 4 解析:选B ∵cos αcos β=3 2 -sin αsin β, ∴cos αcos β+sin αsin β=32,即cos(α-β)=3 2, 经验证可知选项B 正确. 3.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .三者都有可能 解析:选C ∵sin A sin B <cos A cos B , ∴cos A cos B -sin A sin B >0,∴cos(A +B )>0,

∴A +B <90°,∴C >90°,∴△ABC 是钝角三角形. 4.已知3cos x -sin x =-6 5,则sin ? ?? ??π3-x = ( ) A.45 B .-45 C.35 D .-3 5 解析:选D 3cos x -sin x =2? ?? ??sin π3cos x -cos π 3sin x =2sin ? ????π3-x =-65,故sin ? ?? ??π3-x =-3 5. 5.已知0<α<π2<β<π,又sin α=35,sin(α+β)=3 5,则sin β 等于( ) A .0 B .0或2425 C.2425 D .±24 25 解析:选C 由0<α<π2<β<π得,π2<α+β<3π 2 , 又sin α=35,sin(α+β)=35,∴cos α=45,cos(α+β)=-4 5, ∴sin β=sin[(α+β)-α] =sin(α+β)cos α-cos(α+β)sin α=35×45-? ????-45×35=24 25. 6.sin 15°+cos 165°的值是________. 解析:原式=sin(45°-30°)+cos(120°+45°) =sin 45°cos 30°-cos 45°sin 30°+cos 120°cos 45°-sin 120°sin 45° =22×32-22×12-12×22-32×22=-22.答案:-22 7.设a =2cos 66°,b =cos 5°-3sin 5°,c =2(sin 47°sin 66°

两角和与差的正弦、余弦公式及其应用

一、知识回顾 1、填表:(表一) 角α ?0 ?30 ?45 ?60 ?90 ?120 ?135 ?150 ?180 角α的弧度制 αsin αcos 2、两角和与差的正余弦公式 ( 1 ) 差 角 的 正 余 弦 : s i n ( = ;)cos(βα-= ; (2)和角的正余弦 :s in(( = ;cos ( = ; 3、牛刀小试(不查表求下列式子的值) (1)sin15; (2)cos 75; (3)sin 75 问题1:你能由两角差的余弦公式推出两角和的余弦公式吗? [] cos()cos ()cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ +=--=-+-=- cos()cos cos sin sin αβαβαβ∴+=- C αβ+ 问题2 :你能由两角和与差的余弦公式推出两角和与差的正弦公式吗? sin()cos ()cos ()22cos( )cos sin()sin 22sin cos cos sin ππαβαβαβππ αβαβ αβαβ ???? +=-+=-+???? ???? =-+-=+ sin()sin cos cos sin αβαβαβ∴+=+ S αβ+

[]sin()sin ()sin cos()cos sin()sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=- sin()sin cos cos sin αβαβαβ∴-=- S αβ- 二、知识应用 1. 已知3cos 5α=-,(,)2παπ∈,求cos()4 π α-的值。 2. 已知sin α=\f(2,3),α∈(错误!,π),cos β=-错误!,β∈(π,错误!).求si n(α-β),cos(α+β),t an(α+β). 3. 已知 4π<α<4π3,0<β<4π,cos(4π+α)=-53,s in (4π3+β)=13 5, 求si n(α+β)的值. 4. 已知2π<α<β<4π3,cos(α-β)=1312,si n(α+β)=-5 3,求sin2α的值.

两角和与差的正弦、余弦与正切公式

两角和与差的正弦、余弦与正切公式 1.sin 20cos 40cos 20sin 40+的值等于( ) A .14 B C .12 D 2.sin(15)-的值是( ) A .4- B .4 C 3.已知tan tan 2αβ+=,tan()4αβ+=,则tan tan αβ?等于( ) A .2 B .1 C .12 D .4 4.在△ABC 中,tan tan tan A B A B ++=,则C 等于( ) A .3π B .23π C .6π D .6 π 5.设2tan()5αβ+=,1tan 44πβ??-= ???,则tan 4πα??+ ?? ?的值是( ) A .318 B .322 C .1318 D .1322 6.函数y=sinx+cosx+2的最小值是 ( ) A .2 B . C .0 D .1 7.在△ABC 中,若0tan tan 1A B <<,则△ABC 是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 8. 在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于( ) A .30° B .150° C .30°或150° D .60°或120° 9.已知α、β均为锐角,且cos sin tan cos sin ααβαα-= +,则tan(α+β)=________. 10.若sin(4 π-x )=35,则sin cos x x 的值为 . 11.已知cos(α- 6π)+sin αsin(α+76π)的值为________. 12. 已知向量a =(sin(α+ 6π),1),b =(4,4cos α),若a ⊥b ,则sin(α+43π)等于 . 13.已知435sin(),sin()45413ππαβ-=-+=,且3,0444ππαπβ<<<<,求cos(),cos()4 πααβ+-的

两角和与差的正弦余弦公式

《两角和与差的正弦、余弦函数》教学设计 商州区中学秦明伟 一、学情分析 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。在学习本节课之前,学生已经学习了任意角三角函数的概念、平面向量的坐标表示以及向量数量积的坐标表示,这为他们探究两角和与差的正弦、余弦公式建立了良好的知识基础。 二、教学内容分析 本节内容是北师大版教材必修4第三章《三角恒等变换》第二节,推导得到两角差的余弦公式是本章所涉及的所有公式的源头。 由于向量工具的引入,教材选择了两角差的余弦公式作为基础,这样处理使得公式的得出成为一个纯粹的代数运算,大大地降低了思考的难度,也更易于学生接受。 从知识产生的角度来看,在学习了《三角函数》及《平面向量》后再学习由这些知识推导出的新知识也更符合知识产生的规律,符合人们认知的规律。从知识的应用价值来看,重视数学知识的应用,是新教材的显著特点,课本中丰富的生活实例为学生用数学的眼光看待生活、体验生活即数学理念,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。 基于上述分析,本节课的教学重点是引导学生通过合作、交流,探索两角差的余弦公式,进而推导得到其余的和差公式,为后续简单的恒等变换的学习打好基础。

三、教学三维目标 1、知识目标 通过两角差的余弦公式的探究,让学生探索、发现并推导其他和(差)角公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题。 2、能力目标 通过利用向量推导两角和与差的正弦、余弦公式及公式的具体运用,使学生深刻体会联系变化的观点,让学生自觉的利用联系的观点来分析问题,提高学生分析问题、解决问题的能力及学生逻辑推理能力和合作学习能力。 3、情感目标 使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。 四、教学重点、难点 重点:探索得到两角差的余弦公式,理解两角和与差的正弦、余弦公式的推导。 难点:探索过程的组织和适当引导,并能灵活运用公式。 五、教学过程 导入新课

两角和差正余弦公式的证明

两角和差正余弦公式的证明 两角和差的正余弦公式是三角学中很重要的一组公式。下面我们就它们的推导证明方法进行探讨。 由角, 的三角函数值表示的正弦或余弦值, 这正是两角和差的正余弦公式的功能。换言之, 要推导两角和差的正余弦公式, 就是希望能得到一个等式或方程, 将或与, 的三角函数联系起来。 根据诱导公式, 由角的三角函数可以得到的三角函数。因此, 由和角公式容易得到对应的差 角公式, 也可以由差角公式得到对应的和角公式。又因为 , 即原角的余弦等于其余角的正弦, 据此, 可以实现正弦公式和余弦公式的相互推导。因此, 只要解决这组公式中的一个, 其余的公式将很容易得到。 (一) 在单位圆的框架下推导和差角余弦公式 注意到单位圆比较容易表示, 和, 而且角的终边与单位圆的交点坐标可 与, 的三角以用三角函数值表示, 因此, 我们可以用单位圆来构造联系 函数值的等式。 1. 和角余弦公式 使, 和, 并作角, 中作单位圆在直角坐标系, 如图所示1) 方法( 于点A, 终边交于点B;角始边为, 终边交的始边为角, 交 于点。从而点始边为A, B, 终边交, C和于点C;角D的坐标分别为 ,。, , 由两点间距离公式得 ; 。 注意到, 因此。 注记:这是教材上给出的经典证法。它借助单位圆的框架, 利用平面内两点间距离公式表达两条相等线段, 从而得到我们所要的等式。注意, 公式中的和为任意角。 2. 差角余弦公式

仍然在单位圆的框架下, 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的三角等式。这就是 (方法2) 如图所示, 在坐标系中作单位圆, 并作角和, 使角和 终边交于点。, , , 的始边均为交于点C角终边交于点A角从而 。的坐标为B, A点,. 由两点间距离公式得 。 由余弦定理得 。 从而有。 注记:方法 2 中用到了余弦定理, 它依赖于是三角形的内角。因此, 还需 的情形。容易验证要补充讨论角和的终边共线, 以及大于, 公式在以上情形中依然成立。 在上边的证明中, 用余弦定理计算的过程也可以用勾股定理来进行。也可以用向量法来证明。

两角和与差的正弦、余弦和正切公式

《两角和与差的正弦、余弦和正切公式》复习学案 自主梳理1.(1)两角和与差的余弦 cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦 sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________. (3)两角和与差的正切(α,β,α+β,α-β均不等于kπ+π 2,k∈Z) tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________. 其变形为:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β).2.辅助角公式:a sin α+b cos α=a2+b2sin(α+φ),其中 ?? ? ??cos φ=, sin φ=, tan φ= b a, 角φ称为辅助角(考试只要求特殊角). 【基础自测】 1.计算sin 43°cos 13°-cos 43°sin 13°的结果等于() A. 1 2 B. 3 3 C. 2 2 D. 3 2 2.已知cos???? α- π 6+sin α= 43 5,则sin? ? ? ? α+ 7π 6的值是() A.- 23 5 B. 23 5C.- 4 5 D. 4 5 3.函数f(x)=sin 2x-cos 2x的最小正周期是() A. π 2B.πC.2πD.4π 4.设0≤α<2π,若sin α>3cos α,则α的取值范围是() A.???? π 3, π 2 B.? ? ? ? π 3,π C.???? π 3, 4π 3 D.? ? ? ? π 3, 3π 2 5.已知向量a r =(sin x,cos x),向量b r =(1,3),则|a r +b r |的最大值为() A.1 B. 3 C.3 D.9 【考点巩固】 探究点1给角求值问题(三角函数式的化简、求值) 例

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习 一、知识要点: 1.两角和与差的正弦、余弦、正切公式 (1)():sin()sin cos cos cos S αβαβαβαβ±±=±; (2)():cos()cos cos sin sin C αβαβαβαβ±±=; (3)()tan tan :tan()1tan tan T αβαβαβαβ ±±±=. 2.二倍角的正弦、余弦、正切公式 (1)(2):sin 22sin cos S αααα=α; (2)2222(2):cos2cos sin 2cos 112sin C αααααα=-=-=-; (3)(2)22tan :tan 21tan T αααα =-. 3.常用的公式变形 (1)tan tan tan()(1tan tan )αβαβαβ±=±; (2)221cos 21cos 2cos ,sin 22 αααα+-==; (3)221sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4π ααα±=±. 4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ?θ=+=-其中()?θ可由,a b 的值唯一确定. 两个技巧 (1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等. 【双基自测】

1.(人教A 版教材习题改编)下列各式的值为14 的是( ). A .22cos 112π- B .20 12sin 75- C.0 202tan 22.51tan 22.5- D .00sin15cos15 2.0000 sin 68sin 67sin 23cos68-=( ) A .2- B.2.1 3.(2011·福建)若tan 3,α=则2sin 2cos αα =( ). A .2 B .3 C .4 D .6 4.已知2sin ,3 α=则cos(2)πα-=( ). A ..19- C.195.(2011·辽宁)设1sin(),43 πθ+=则sin 2θ= ( ). A .79- B .19- C.19 D.79 6.0000tan 20tan 4020tan 40++=________. 7.若2tan(),45 πα+=则tan α=t________. 考向一 三角函数式的化简与求值 [例1] 求值:①00 00cos15sin15cos15sin15 -+;②00sin 50(1). [例2] 已知函数()2sin(),36 x f x x R π=-∈.

2.示范教案(3.1.2 两角和与差的正弦、余弦、正切公式)

3.1.2 两角和与差的正弦、余弦、正切公式 整体设计 教学分析 1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较si n(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等. 2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义. 3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 三维目标 1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力. 2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力. 3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质. 重点难点 教学重点:两角和与差的正弦、余弦、正切公式及其推导. 教学难点:灵活运用所学公式进行求值、化简、证明. 课时安排 2课时 教学过程 第1课时 导入新课 思路1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C(α+β)、S(α-β)、S(α+β).本节课我们共同研究公式的推导及其应用. 思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式教学目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、易错点) [基础·初探] 教材整理1两角和与差的余弦公式 阅读教材P128“思考”以下至“探究”以上内容,完成下列问题. cos 75°cos 15°-sin 75°sin 15°的值等于________. 【解析】逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)=cos 90°=0. 【答案】0

教材整理2两角和与差的正弦公式 阅读教材P128“探究”以下内容,完成下列问题. 1.公式 2.重要结论-辅助角公式 y=a sin x+b cos x x+θ)(a,b不同时为0),其中cos sin θ θ (1)两角和与差的正弦、余弦公式中的角α,β是任意的.() (2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.() (3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.() (4)sin 54°cos 24°-sin 36°sin 24°=sin 30°.() 解:(1)√.根据公式的推导过程可得. (2)√.当α=45°,β=0°时,sin(α-β)=sin α-sin β. (3)×.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立. (4)√.因为sin 54°cos 24°-sin 36°sin 24°

两角和与差的正弦、余弦和正切公式(教师版)

两角和与差的正弦、余弦和正切公式 【最新考纲】 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能利用两角和(差)、二倍角公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆). 1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β; (2)cos(α±β)=cos_αcos_β?sin_αsin_β; (3)tan(α±β)=tan α±tan β 1?tan αtan β . 2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3)tan 2α= 2tan α 1-tanα . 3.有关公式的变形和逆用(1)公式T(α+β)的变形:

①tan α+tan β=tan (α+β)(1-tan_αtan_β); ②tan α-tan β=tan (α-β)(1+tan_αtan_β). (2)公式C 2α的变形: ①sin 2 α=1 2 (1-cos_2α); ②cos 2α=1 2(1+cos_2α). (3)公式的逆用 ①1±sin 2α=(sin α±cos α)2; ②sin α±cos α=2sin ? ???? α±π4. 4.辅助角公式 ɑsin α+bcos α(α+φ)(其中tan φ=b a ). 1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin (α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin Asin B 和cos Acos B 大小不确定.( ) (3)公式tan (α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan (α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)公式ɑsin x +bcos x =ɑ2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) 答案:(1)√ (2)× (3)× (4)×

两角和与差的正弦、余弦和正切公式专题及解析

两角和与差的正弦、余弦和正切公式 教学目标 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α?β)=cos αcos β±sin αsin β. 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1?tan αtan β). (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ? ? ???α±π4.

4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α +φ)? ????其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)? ? ???其中tan φ=a b . 诊 断 自 测 1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示 (1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=tan α+tan β 1-tan αtan β可以变形为tan α+tan β =tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( ) 解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2 +k π,k ∈Z . 答案 (1)√ (2)√ (3)× (4)√ 2.(2016·全国Ⅲ卷)若tan θ=-1 3,则cos 2θ=( ) A.-45 B.-15 C.15 D.45 解析 cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2 θ=4 5 . 答案 D 3.(2015·重庆卷)若tan α=13,tan(α+β)=1 2 ,则tan β等于( )

两角和与差的三角函数与正余弦定理

两角和与差的三角函数 (一)知识梳理: 1、两角和与差的三角函数:①__________ __________)sin(=±βα ②____________________)cos(=±βα,③________________)tan(=±βα. 2、二倍角的三角函数:①________________2sin =θ ②_____________________________________________2cos ===θ 变式:2sin θ=______________,2 cos θ=_________________ ③_____________ 2tan =θ 3、合一变形公式: sin cos a x b x +=____________________ 如:3sin cos _______________x x +=,sinx+cosx=____________________ 正弦定理与余弦定理: 1、正弦定理及其变式 (1)正弦定理:___________________________ (2)变式:=C B A sin :sin :sin _____________________ 2、余弦定理及其推论: (1)余弦定理: C ab c b a cos 2222-+=;=2b ___________________;=2c ______________________ (2)推论:bc a c b A 2cos 2 22-+=;=B cos _____________;=C cos ____________________ 3、三角形的面积公式: ____________________sin 2 1=== C ab S 例1.若α、β为锐角,且sin α=13 12,sin β=54,则sin(α-β)的值为 ( ) (A)-65 33 (B) 6516 (C) 6556 (D) 6563 例2.===?C B A ABC cos ,1312 cos ,54 cos 则中,已知在 ( )

两角和与差正弦公式与余弦公式

【课题】 1.1两角和与差的正弦公式与余弦公式(一) 【教学目标】 知识目标: 理解两角和与差的正弦公式与余弦公式,能正确运用各个公式进行简单的三角函数式的计算和化简. 能力目标: 学生逆向思维能力及灵活选用公式解决问题的能力得到提高. 【教学重点】 本节课的教学重点是两角和与差的正弦公式与余弦公式. 【教学难点】 难点是公式的推导和运用. 【教学设计】 在介绍新知识之前,首先利用特殊角的三角函数值,让学生认识到 cos(6030)cos60cos30?-?≠?-?, 然后提出如何计算cos()αβ-的问题.利用矢量论证cos()αβ-的公式,使得公式推导过程简捷.教学重点放在对公式形式特点的认识和对公式正向与反向的应用上.例1和例2 都是两角和与差的余弦公式的应用,教学中要强调公式的特点.推广π sin()cos 2αα-=时, 用到了换元的思想,培养学生的整体观念和变换的思维.公式sin()αβ+的推导过程是,首 先反向应用例3中的结论π cos()sin 2αα-=,然后再利用公式cos()αβ-,最后整理得到公 式.教学关键是引导学生将()αβ+看做整体,这样才能应用公式π cos()2α-.逆向使用公式, 培养学生的逆向思维是数学课程教学的一项重要任务,在不同的例题和不同知识层面的教学上引起足够的重视.得到这些公式后,要强调公式cos()αβ-是最基本的公式,要求学生理解其他公式的推导过程,同时将公式sin()αβ±和公式cos()αβ±相对比进行记忆.要帮助学生总结公式中角α和角β以及函数名称排列的特点和符号的特点,教会学生利用这些特点记忆公式.抓住特点进行强化记忆的记忆能力培养是数学课程的一项重要任务.例4利用156045?=?-?求解,还可以利用154530?=?-?求解.例5通过逆向使用公式来巩固知识, 这种方法在三角式的变形中经常使用.例6是三角证明题.教材给出了两种证明方法,体现了正向与逆向使用公式的思路.教学中要强调这两种使用方法,通过具体例题的分析,使得学生明白正向和反向应用公式的原因,培养学生的数学思维能力. 【教学备品】 教学课件.两课时 【课时安排】

两角和与差的正弦、余弦和正切公式(含解析)

归纳与技巧:两角和与差的正弦、余弦和正切公式 基础知识归纳 1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β 1-tan αtan β; (6)T (α-β):tan(α-β)=tan α-tan β 1+tan αtan β. 2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α; (2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α 1-tan 2α. 3.常用的公式变形 (1)tan α±tan β=tan(α±β)(1?tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ????α±π 4. 基础题必做 1. 若tan α=3,则sin 2α cos 2α的值等于( ) A .2 B .3 C .4 D .6 解析:选D sin 2αcos 2α=2sin αcos α cos 2α =2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )

两角和差正余弦公式的证明..

两角和差正余弦公式的证明 北京四中数学组皇甫力超 论文摘要: 本文对两角和差的正余弦公式的推导进行了探讨。在单位圆的框架下 , 我们得到了和角余弦公式 ( 方法 1) 与差角余弦公式 ( 方法 2)。在三角形的框架下 , 我们得到了和角正弦公式 ( 方法 3 ~11 ) 与差角正弦公式 ( 方法 12,13)。 关键词: 两角和差的正余弦公式 正文: 两角和差的正余弦公式是三角学中很重要的一组公式。下面我们就它们的推导证明方法进行探讨。 由角, 的三角函数值表示的正弦或余弦值 , 这正是两角和差的正余弦公式的功能。换言之 , 要推导两角和差的正余弦公式 , 就是希望能得到一个等式或方程 , 将或与, 的三角函数联系起来。 根据诱导公式 , 由角的三角函数可以得到的三角函数。因此 , 由和角公式容 易得到对应的差角公式, 也可以由差角公式得到对应的和角公式。又因为 , 即原角的余弦等于其余角的正弦 , 据此 , 可以实现正弦公式和余弦公式的相互推导。因此 , 只要解决这组公式中的一个 , 其余的公式将很容易得到。 (一) 在单位圆的框架下推导和差角余弦公式 注意到单位圆比较容易表示, 和, 而且角的终边与单位圆的交点坐标可 以用三角函数值表示 , 因此 , 我们可以用单位圆来构造联系与, 的三角函数值的等式。 1. 和角余弦公式

(方法 1) 如图所示, 在直角坐标系中作单位圆, 并作角, 和, 使 角的始边为, 交于点A, 终边交于点B;角始边为, 终边交 于点C;角始边为, 终边交于点。从而点A, B, C和D的坐标分别为, ,,。 由两点间距离公式得 ; 。 注意到, 因此。 注记:这是教材上给出的经典证法。它借助单位圆的框架 , 利用平面内两点间距离公 式表达两条相等线段, 从而得到我们所要的等式。注意, 公式中的和为任意角。 2. 差角余弦公式 仍然在单位圆的框架下 , 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的三角等式。这就是

两角和与差的余弦、正弦、正切公式

两角和与差的正弦、余弦、正切公式 教学要求:理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 教学重点:两角和、差正弦和正切公式的推导过程及运用 教学难点:两角和与差正弦、余弦和正切公式的灵活运用 教学过程: 一、复习准备: 1. ()cos cos cos sin sin αβαβαβ-=+,讨论当β为β-时呢? ()()c o s c o s αβαβ?--?=+?? 再利用两角差的余弦公式得出 ()()()cos cos cos sin sin cos cos sin sin αβαβαβαβαβ+=-+-=- 二、讲授新课: 1. 新课教学: 思考两角和与差的正弦公式是怎样的呢?提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差的正弦、正切公式. ()sin αβ+=sin cos cos sin αβαβ=+. ()sin sin cos cos sin αβαβαβ-=-让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) ()() ()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ +++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢? ()tan tan tan 1tan tan αβαβαβ++=-,,()222 k k k k z πππαβπαπβπ+≠+≠+≠+∈ 以上我们得到两角和的正切公式,我们能否推导出两角差的正切公式呢? 2.例题教学: 例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα??????-+- ? ? ?????? ?的值. 例2、利用和(差)角公式计算下列各式的值: (1)sin 72cos 42cos72sin 42-;(2)cos 20cos70sin 20sin 70-;(3)1tan15 1tan15 +- 分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. 3. 小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用 三、巩固练习: 1.化简sin x x 2.已知()21tan ,tan ,544παββ??+=-= ???求tan 4πα??+ ?? ?的值.(322 ) 3.已知33350,cos ,sin 4445413ππππβααβ????<< <<-=+= ? ?????,求()sin αβ+的值.

听课笔记1 两角和与差的正弦、余弦公式

讲课教师 班级 讲课时间 讲课内容 两角和与差的正弦、余弦公式(二) (《几何画板》) (1)两角和与差的余弦公式的复习: 引导学生复习两角和与差的余弦公式,利用“哭哭笑笑”的口诀帮助记忆; 给出练习题进行复习巩固: cos123°cos63°+sin57°sin63°; sin(x+15°)cos(45°-x)+cos(x+15°)sin(45°-x) 在三角形ABC 中,已知sinA=4/5,cosB=-5/13,求cosC (判断cosA 值的正负,利用三角形只有一个钝角的性质,计算出答案) (2)两角和与差的正弦公式的引入 提问:利用上述公式你能导出两角和与差的正弦公式吗? (利用角的余弦值等于其补角的正弦值这一个性质进行推导) 提问:推导出两角差的正弦公式之后,现在怎么推出两角和的公式?除了用上述推导方法,还有其他的方法吗? (给学生一定的时间来记住刚学的知识点) (3)巩固与练习 例题1:求下列各式的值 sin72°cos42°-cos72°sin42°;(指出72°和42°分别相互对应,可以使用哪个公式) cos20°cos70°-sin20°sin70°; (cos34°-cos30°sin4°)/cos34°+sin30°sin4°; 例题2:化简下列各式 1 、Cos30°cosx-sin30°sinx; ) 21 6sin ,236cos 2 13cos ,233sin (sin 21cos 232====-ππππ或者利用、x x x x sin cos 33-、 教学模式 启发模式 通过启发,导入新课。 通过利用两角和与差的 余弦公式导出两角和与差的正弦公 式 巩固新课 通过练习,加强学生对新知识点的掌握 类比启发式 通过类比, 层层递进、深入,通过 正用逆用公 式,使学生正确掌握 教学方法 讲授法 通过回顾,对两角和与差的余弦公式进行复习 层层深入 启发法 利用两角和与差的余弦公式导出两角和与差的正弦公式 练习法 通过习题,使学生对公式进一步理解、巩固 启发法 多方法讲解 讲授法 通过学生黑板演练,对错误进行讲解

相关文档
最新文档