《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)

合集下载

(典型题)初中数学九年级数学上册第二单元《一元二次方程》测试题(含答案解析)

(典型题)初中数学九年级数学上册第二单元《一元二次方程》测试题(含答案解析)

一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14 D .k >-14且k ≠0 2.已知方程240x x n ++=可以配方成()23x m +=,则()2015m n -=( ) A .1 B .-1 C .0 D .43.一次围棋比赛,参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( )A .12x (x ﹣1)=45B .12x (x+1)=45 C .x (x ﹣1)=45D .x (x+1)=45 4.已知关于x 的一元二次方程240x x k +-=,当40k -<<时,该方程解的情况是( )A .有两个不相等的实数根B .没实数根C .有两个相等的实数根D .不能确定 5.下列方程中,是一元二次方程的是( )A .12x +=B .21x y +=C .243x x -=D .35-=xy 6.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+= 7.若关于x 的一元二次方程2(2)20a x x --+=有实数根,则整数a 的最大值为( ) A .−2B .−1C .1D .2 8.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 9.用配方法解方程28110x x -+=的过程中,配方正确的是( )A .228(4)5x x -+-=B .228(4)31x x -+-=C .2(4)5x +=D .2(4)11x -=- 10.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=11.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定12.一元二次方程2x =﹣3x 的根是( ) A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3 二、填空题13.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.14.设12,x x 是一元二次方程2750x x --=的两个实数根,则实数1211+x x 的值为____. 15.如图,四边形ACDE 是证明勾股定理时用到的一个图形,a ,b ,c 是Rt ABC 和Rt BED 边长,易知2=AE c ,这时我们把关于x 的形如220++=ax cx b 的一元二次方程称为“勾系一元二次方程”.若1x =-是“勾系一元二次方程”220++=ax cx b 的一个根,且2ABC S =,则四边形ACDE 的周长是_________.16.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.17.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 18.已知:(x 2+y 2)(x 2+y 2﹣1)=20,那么x 2+y 2=_____.19.定义新运算“⊕”如下:当a b ≥时,a b ab b ⊕=+;当a b <时,a b ab a ⊕=-.若(21)(2)0x x -⊕+=,则x =______________.20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.阅读下面材料,并完成问题.任意给定一个矩形A ,若存在另一个矩形B ,使它的周长和面积分别是矩形A 的一半,则称矩形,A B 是“兄弟矩形”.探究:当矩形A 的边长分别为7和1时,是否存在A 的“兄弟矩形”B ?小亮同学是这样探究的:设所求矩形的两边分别是x 和y ,由题意,得472x y xy +=⎧⎪⎨=⎪⎩①② 由①,得4y x =-,③把③代入②,得7(4)2x x -=, 整理,得22870-+=x x .24645680b ac -=-=>,A ∴的“兄弟矩形”B 存在.(1)若已知矩形A 的边长分别为3和2,请你根据小亮的探究方法,说明A 的“兄弟矩形”B 是否存在?(2)若矩形A 的边长为m 和n ,当A 的“兄弟矩形”B 存在时,求,m n 应满足的条件. 22.解方程:2(2)3(2)x x +=+23.解方程(1)2523x x += (2)22(21)(34)x x -=-24.已知:关于x 的方程x 2+kx -6=0,(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是3,求另一个根及k 值.25.阅读下列材料:已知实数x ,y 满足()()22221163x y x y +++-=,试求22x y +的值. 解:设22x y a +=,则原方程变为(1)(1)63a a +-=,整理得2163a -=,264a =,根据平方根意义可得8a =±,由于220x y +,所以可以求得228x y +=.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x ,y 满足(223)(223)27x y x y +++-=,求x y +的值. (2)已知a ,b 满足方程组22223212472836a ab b a ab b ⎧-+=⎨++=⎩;求112a b +的值; (3)填空:已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,则关于x ,y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解是_______. 26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k2≠0,且△=b2-4ac≥0,建立关于k的不等式组,求出k的取值范围.【详解】解:由题意知,k2≠0,且△=b2-4ac=(2k+1)2-4k2=4k+1≥0.解得k≥-14且k≠0.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.A解析:A【分析】将配方后的方程转化成一般方程即可求出m、n的值,由此可求得答案.【详解】解:由(x+m)2=3,得:x2+2mx+m2﹣3=0,∴2m=4,m2﹣3=n,∴m=2,n=1,∴(m﹣n)2015=1,故选:A.【点睛】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键. 3.A解析:A【分析】关系式为:棋手总数×每个棋手需赛的场数÷2=45,把相关数值代入即可.【详解】解:本次比赛共有x 个参赛棋手, 所以可列方程为:12x (x -1)=45. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2. 4.A解析:A【分析】计算根的判别式,根据k 的范围,判断判别式的属性,根据性质求解即可.【详解】解:∵一元二次方程240x x k +-=,∴△= 22444b ac k -=+=16+4k ,∵40k -<<,∴1640k -<<,∴16+4k >0,∴△>0,∴原方程有两个不相等的实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,熟记公式,并根据字母范围确定判别式的属性是解题的关键.5.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.6.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x 2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x -+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x -=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题意;D.23420x x -+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C .【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.C解析:C【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出a 的范围,确定出所求即可.【详解】解:∵关于x 的一元二次方程2(2)20a x x --+=有实数根,∴△=1−8(a−2)≥0,且a−2≠0,解得:a≤178且a≠2, 则整数a 的最大值为1.故选C .【点睛】此题考查了一元二次方程根的判别式,以及一元二次方程的定义,掌握一元二次方程根与判别式的关系是解本题的关键.8.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x 2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 9.A解析:A【分析】用配方法解方程即可.【详解】解:28110x x -+=,移项得,2811-=-x x ,配方得,228(4)1116x x -+-=-+,即228(4)5x x -+-=,故选:A .【点睛】本题考查了配方法解一元二次方程,能够熟练按照配方法的步骤进行解题是关键. 10.D解析:D【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题. 12.C解析:C【分析】移项,利用因式分解求解即可.【详解】解:∵2x =﹣3x ,移项,得2x +3x =0,分解因式,得x (x+3)=0,∴x =0,或x+3=0,解得1x =0,2x =﹣3,故选:C .【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn 分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根,∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-.故答案为:-11.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.14.【分析】根据根的判别式变形计算即可;【详解】∵是一元二次方程的两个实数根∴∴;故答案是:【点睛】本题主要考查了一元二次方程根与系数的关系准确计算是解题的关键 解析:75- 【分析】根据根的判别式变形计算即可;【详解】∵12,x x 是一元二次方程2750x x --=的两个实数根, ∴127b x x a+=-=,125c x x a ==-, ∴2112121175x x x x x x ++==-; 故答案是:75-. 【点睛】本题主要考查了一元二次方程根与系数的关系,准确计算是解题的关键. 15.12【分析】根据题意可以求得a+b 的值再根据勾股定理可以求得c 的值从而可以求得四边形ACDE 的周长【详解】解:∵x=-1是勾系一元二次方程的一个根∴∴∵S △ABC=2a2+b2=c2∴=2得ab=4解析:12【分析】根据题意可以求得a +b 的值,再根据勾股定理可以求得c 的值,从而可以求得四边形ACDE 的周长.【详解】解:∵x =-1是“勾系一元二次方程”20++=ax b 的一个根,∴0a b -+=,∴a b +=,∵S △ABC =2,a 2+b 2=c 2,∴2ab =2,得ab =4, ∴(a +b )2=a 2+2ab +b 2=c 2+2ab =c 2+8, (a +b )2=()2222c c =,∴c 2+8=2c 2,解得,c =22或22-(舍去),∵四边形ACDE 的周长是:a +b +a +b +2c =22c +2c =32c =12,故答案为:12.【点睛】本题考查一元二次方程的解、三角形的面积、勾股定理的证明,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x 2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.17.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3【分析】 先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可.【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2∴x 1+x 2=4,x 1⋅x 2=1∴x 1+x 2-x 1⋅x 2=4-1=3.故答案为3.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 18.5【分析】应用换元法得到一元二次方程解方程问题可解【详解】解:设t =x2+y2(t≥0)则t (t ﹣1)=20整理得(t ﹣5)(t+4)=0解得t =5或t =﹣4(舍去)所以x2+y2=5故答案是:5【解析:5【分析】应用换元法,得到一元二次方程,解方程问题可解.【详解】解:设t =x 2+y 2(t ≥0),则t (t ﹣1)=20.整理,得(t ﹣5)(t +4)=0.解得t =5或t =﹣4(舍去).所以x 2+y 2=5.故答案是:5.【点睛】本题考查了换元法和解一元二次方程的知识,解答关键是根据题意选择合适未知量使用换元法法解题.19.或【分析】分类讨论当和当两种情况时根据所给的新运算法则列出二元一次方程求解即可注意所求的解要符合题意【详解】分类讨论①当时即此时解得:由于所以两个根都舍去②当时即此时解得:由于所以两个根都符合题意故 解析:12或1-. 【分析】分类讨论当212x x -≥+和当212x x -<+两种情况时,根据所给的新运算法则列出二元一次方程求解即可.注意所求的解要符合题意.【详解】分类讨论①当212x x -≥+时,即3x ≥.此时2212(21)(2)(2)240x x x x x x x -⊕+=-+++=+=,解得:1202x x ==-,.由于3x ≥,所以两个根都舍去.②当212x x -<+时,即3x <.此时2212(21)(2)(21)210x x x x x x x -⊕+=-+--=+-=,解得:34112x x ==-,. 由于3x <,所以两个根都符合题意. 故答案为:12或1-. 【点睛】本题考查新定义下的实数运算和解一元二次方程.利用分类讨论的思想是解答本题的关键.20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)不存在;(2)2260m mn n -+【分析】(1)按照小亮的方法,进行计算即可;(2)先根据小亮的方法列出方程组,转化为一元二次方程,利用根的判别式列不等式即可.【详解】解:(1)设所求矩形的两边分别是x 和y ,由题意,得5,23.x y xy ⎧+=⎪⎨⎪=⎩①②由①,得52y x =-,③ 把③代入②,得532x x ⎛⎫-=⎪⎝⎭,整理,得22560x x -+=,242548230b ac -=-=-<,A ∴的“兄弟矩形”B 不存在.(2)设所求矩形的两边分别是x 和y , 由题意,得,2.2m n x y mn xy +⎧+=⎪⎪⎨⎪=⎪⎩①② 由①,得2m n y x +=-,③ 把③代入②,得22m n mn x x +⎛⎫-=⎪⎝⎭, 整理,得22()0x m n x mn -++=,22224()86b ac m n mn m mn n -=+-=-+,又,x y 都是正数,∴当2260m mn n -+时,A 的“兄弟矩形”B 存在.【点睛】本题考查了一元二次方程的应用以及根的判别式,解题的关键是熟练运用一元二次方程根的判别式.22.122,1x x =-=.【分析】利用因式分解法求解即可.【详解】∵2(2)3(2)x x +=+,∴()()22320x x +-+= ∴()()2230x x ++=⎡⎤⎣⎦-∴()()210x x +-=解得:122,1x x =-=.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解法的实质,灵活准确求解是解题的关键.23.(1)12x =,213x =-;(2)13x =,21x = 【分析】(1)将方程化为一般式,利用公式法求解即可.(2)直接运用开平方法求解方程即可.【详解】(1)23520x x --=3a =,5b =-,2c =-224(5)43(2)490b ac -=--⨯⨯-=>557236x ±±∴==⨯ 12x ∴=,213x =- (2)()()222134x x -=-方程两边直接开平方得,()2134x x -=±- ∴2134x x -=-,2134x x -=-+解得:13x =,21x =【点睛】本题考查了解一元二次方程,熟练掌握直接开平方法和公式法是解答此题的关键. 24.(1)见解析;(2)k=-1,另一根为-2【分析】(1)由于方程有两个不相等的实数根,则△>0,据此列出关于k 的方程,解答即可; (2)将x =3代入方程x 2+kx -6=0,求出k 的值,根据求出的k 的值,得到一元二次方程,从而求出方程的根.【详解】解:(1)证明:2240k =+>∴方程x 2+kx -6=0有两个不相等的实数根;(2)把x =3代入方程x 2+kx ﹣6=0,得:9+3k-6=0,解得k=-1,将k=-1代入原方程得x 2-x -6=0,解得123,2x x ==-∴k=-1,另一根为x =-2.【点睛】本题考查了根的判别式和一元二次方程的解法,解题的关键是熟练掌握根的判别式和一元二次方程的解法.25.(1)±3;(2)54±;(3)45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩【分析】(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,解之求得a 的值,继而可得x y +的值;(2)设a ²+4b ²=x ,ab=y ,可将原方程组变形为二元一次方程组,解出x 、y 的值再代入即可.(3)将原方程组变为21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩,由题意得出2(1)95x y ⎧-=⎨=⎩,即可得出答案. 【详解】解:(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,整理,得:2927a -=,即236a =,解得:6a =±,则226x y +=±,3x y ∴+=±;(2)令224a b x +=,ab y =,则原方程变为:3247236x y x y -=⎧⎨+=⎩,解之得:172x y =⎧⎨=⎩, ∴22417a b +=,2ab =,∴()22224417825a b a ab b +=++=+=, ∴25a b +=±, ∴1125224b a a b ab ++==±; (3)由方程组21111122222222a x a x b yc a a x a x b y c a ⎧-+=-⎨-+=-⎩,得21111122222222a x a x a b y c a x a x a b y c ⎧-++=⎨-++=⎩, 整理,得:21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩, ∴方程组21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩的解是:2(1)95x y ⎧-=⎨=⎩, 13x ∴-=±,且5y =,解得:45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩. 【点睛】本题主要考查换元法解方程、方程组及因式分解,根据方程和代数式的特点设出合适的新元是解题的关键.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S △ABC ,根据S =625S △ABC ,可求△PCQ 的面积,再分两种情况:P 在线段AB 上;P 在线段AB 的延长线上;进行讨论即可求得P 运动的时间.【详解】解:∵S△ABC=12AB•BC=50cm2,625S△PCQ=12cm2,设当点P运动x秒时,S=625S△ABC,当P在线段AB上,此时CQ=x,PB=10-x,S△PCQ=12x(10-x)=12,化简得 x2-10 x+24=0,解得x=6或4,P在线段AB的延长线上,此时CQ=x,PB=x-10,S△PCQ=12x(x-10)=12,化简得 x2-10 x+24=0,x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时,S=625S△ABC.【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)人教版初三上学期数学一元二次方程及解法练习题(附答案)(1);(2);(3);(4)。

4、一元二次方程根的判别式与其根的关系:综合练习: 1.观察下列方程: ①x2=1 ②3x2=1-x ③x(x-1)= x -1 ④ +2x-5=0 ⑤x2-y-1=0 ⑥x2-(x-3)2=9 其中是一元二次方程的是 . 2.把方程(x-2)(x+3)=5化为一元二次方程一般形式为 .其中二次项系数为 . 一次项系数为 . 常数项为 . 3.关于x的方程(m+2)xn-1-(2m-1)x-3=0,当时,它是一元二次方程,当时,它是一元一次方程. 1、用直接开平方法解方程:⑴x2=9 ⑵3x2=12 ⑶ 1/3 x2-3=0 ⑷ (3x+1)2=1 ⑸(2x-1)2 -9=0 ⑹x2+4x+4=1(7).x2=16 (8) . 2x2 -6 =0 (9) (x+1)2=4(10) (3x+2)2=4 (11)3(x-1)2=15 (12)x2+6x+9=25能力提升: 1.关于x的方程(n-1)xn2+1-(2n+1)x-3=0,当n= 时,它是一元二次方程 2.解一元二次方程:(1) x2+2x+1=4 (2)x2+2x-3=0一元二次方程及解法(2)配方法步骤:举例说明题组训练: 1、把下列方程化为(x+ m)2=n(m,n是常数,n≥0)的形式(1)x2+2x=48;(2)x2-4x=12;(3)x2-6x+6=0;(4) 2、完成下列填空:x2+4x+4=(__+__)2 x2-8x+___=(__―__)2 4x2+__x+25=(___+__)2 16 x2+__x+1=(__+__)2 x2+10x+___=(__+__)2 x2-5x+___=(__―__)29x2-__x+25=(___+__)2 9 x2-¬__x+1=(__-__)2 3、用配方法解方程(1)x2-10x-11=0 (2)x2-6x+4= 0 (3)x2+4x-16= 0(4)x2-4x=12;(5)x2-6x=7 (6)x2+8x+2=0(7)x2-4x-5=0 (8) x2+5x+2=0 (9)3x2+2x-5=0(10)2y2+y-6=0 (11)3x2+8x-3=0 (12)-2x2=5x-3一元一次方程及解法(3)求根公式推导过程:(和应用求根公式的步骤)根的判别式与根的关系:跟踪训练:先用根的判别式判断根的情况再求解:(1)x -x-1=0;(2)5x +2=3x2;(3)y -6=5y(4)3t -2t-1=0 (5)4x(x-1)=x -1 (6)x2-6x+4= 0(7)3x +1=2 x (8)2y2+y-5= 0 (9)x2-4x=12;(10)3x2+6x=1 (11)2t2-7t-4=0; (12)x2-x-1=0(13)y2-6=5y (14)3t2-2t-1=0 (15)4x(x-1)=x2-1一元一次方程及解法(4)因式分解法解一元二次方程的原理: 1、填空(1)方程x2=x的解是。

【考点训练】换元法解一元二次方程-1

【考点训练】换元法解一元二次方程-1

【考点训练】换元法解一元二次方程-1一、选择题(共5小题)1.(2016•罗平县校级模拟)方程x2+8x+9=0配方后,下列正确的是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=72.(2014•始兴县校级模拟)已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A.2 B.3 C.﹣2 D.3或﹣23.(2015秋•卢龙县期中)已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或24.(2014秋•沈丘县校级期末)若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A.2 B.3 C.﹣2或3 D.2或﹣35.(2014秋•邓州市校级期末)如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或3二、填空题(共5小题)(除非特别说明,请填准确值)6.(2016春•萧山区期中)若(x2+y2)(x2+y2﹣1)=12,则x2+y2=.7.(2016•磴口县校级二模)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.8.(2013秋•苏州期末)已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为.9.(2014春•鹤岗校级期末)若(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2=.10.(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.三、解答题(共16小题)(选答题,不自动判卷)11.(2011秋•西吉县校级期中)阅读材料:为了解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,(x2﹣1)2=y2,则原方程可化为y2﹣5y+4=0①解得y1=1,y2=4.当y=1时,x2﹣1=1,x2=2,∴x=±当y=4时,x2﹣1=4,x2=5,∴x=±∴原方程的解为:x1=解答问题:仿造上题解方程:x4﹣6x2+8=0.12.(2013秋•诏安县期中)解下列方程①x2﹣8x+9=0②(5x﹣1)2﹣3(5x﹣1)=0.13.(2012秋•新都区期末)阅读材料:x4﹣6x2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:设x2=y,那么x4=y2,于是方程变为y2﹣6y+5=0①,解这个方程,得y1=1,y2=5,当y1=1时,x2=1,x=±1,当y=5时,x2=5,x=±,所以原方程有四个根x1=1,x2=﹣1,x3=,x4=(1)在由原方程得到方程①的过程中,利用法达到降次的目的,体现了的教学思想.(2)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0.14.(2011秋•安宁市校级期中)解方程:(x+2)2﹣3(x+2)+2=0.15.(2015秋•咸阳校级月考)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.16.(2015秋•微山县校级期中)为解方程x4﹣5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则x4=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2=1.∴x=±1当y=4时,x2=4,∴x=±2.∴原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2解答问题:(1)填空:在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程:(x2﹣2x)2+x2﹣2x﹣6=0.17.(2008秋•郑州校级期末)阅读下面的解题过程:解方程:(4x﹣1)2﹣10(4x﹣1)+24=0 解:把4x﹣1视为一个整体,设4x﹣1=y则原方程可化为:y2﹣10y+24=0解之得:y1=6,y2=4,∴4x﹣1=6或4x﹣1=4∴x1=,x2=这种解方程的方法叫换元法.请仿照上例,用换元法解方程:(x﹣2)2﹣3(x﹣2)﹣10=018.(2012春•颍上县校级期中)(y﹣3)2+3(y﹣3)+2=019.(2011秋•荣昌县期中)(换元法)解方程:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,根据以上材料,请解方程:(2x2﹣3x)2+5(2x2﹣3x)+4=0.20.(2013•长汀县一模)阅读下面材料:解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=﹣,x3=,x4=﹣.上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.21.(2009•中山)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程检验求原方程的解2﹣3=0 令=t,则2t﹣3=0 t=t=>0 =,所以x=x﹣2+1=0x+2+=022.(2015•遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.23.(2012秋•太原期中)请同学们认真阅读下面材料,然后解答问题.解方程(x2﹣1)2﹣5(x2﹣1)+4=0解:设y=x2﹣1则原方程化为:y2﹣5y+4=0 ①∴y1=1 y2=4当y=1时,有x2﹣1=1,即x2=2∴x=±当y=4时,有x2﹣1=4,即x2=5∴x=±∴原方程的解为:x1=﹣x2=x3=﹣x4=解答问题:(1)填空:在由原方程得到①的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程(x2﹣3)2﹣3(x2﹣3)=0.24.(2012秋•南雄市期中)阅读下面的例题,解方程(x﹣1)2﹣5|x﹣1|﹣6=0,解方程x2﹣|x|﹣2=0;解:原方程化为|x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2y2=﹣1当|x|=2,x=±2;当|x|=﹣1时(不合题意,舍去)∴原方程的解是x1=2,x2=﹣2.25.(2013秋•源城区校级期末)用适当的方法解:(1)(x+4)2=5(x+4)(2)2x2﹣10x=3.26.(2015秋•太仓市期中)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【考点训练】换元法解一元二次方程-1参考答案与试题解析一、选择题(共5小题)1.(2016•罗平县校级模拟)方程x2+8x+9=0配方后,下列正确的是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=7【解答】解:x2+8x+9=0,x2+8x=﹣9,x2+8x+42=﹣9+42,(x+4)2=7,故选:A.2.(2014•始兴县校级模拟)已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A.2 B.3 C.﹣2 D.3或﹣2【解答】解:设a2+b2=x,原方程变形为,x2﹣x﹣6=0,解得x=3或﹣2,∵a2+b2≥0,∴a2+b2=3,故选B.3.(2015秋•卢龙县期中)已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或2【解答】解:设a2+b2=x,原方程变为:x2﹣2x=8,x2﹣2x﹣8=0,(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2,因为平方和是非负数,所以a2+b2的值为4;故选B.4.(2014秋•沈丘县校级期末)若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A.2 B.3 C.﹣2或3 D.2或﹣3【解答】解:设t=x+y,则原方程可化为:t(1﹣t)+6=0即﹣t2+t+6=0t2﹣t﹣6=0∴t=﹣2或3,即x+y=﹣2或3故选C5.(2014秋•邓州市校级期末)如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或3【解答】解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.二、填空题(共5小题)(除非特别说明,请填准确值)6.(2016春•萧山区期中)若(x2+y2)(x2+y2﹣1)=12,则x2+y2=4.【解答】解:设t=x2+y2(t≥0),则原方程可化为:t(t﹣1)﹣12=0,即t2﹣t﹣12=0,∴(t﹣4)(t+3)=0,∴t=4,或t=﹣3(不合题意,舍去),∴x2+y2=4.故答案是:4.7.(2016•磴口县校级二模)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=6.【解答】解:设x2+y2=t(t≥0).则t2﹣5t﹣6=0,即(t﹣6)(t+1)=0,解得,t=6或t=﹣1(不合题意,舍去);故x2+y2=6.故答案是:6.8.(2013秋•苏州期末)已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为1.【解答】解:令x2+y2=t,将原方程化为(t+1)(t+2)=6,即(t﹣1)(t+4)=0,解得t1=1,t2=﹣4,∵t≥0,∴t=1,∴x2+y2=1,故答案为1.9.(2014春•鹤岗校级期末)若(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2=5.【解答】解:设x2+y2=t,则原式变形为:t2﹣4t﹣5=0,∴(t﹣2)2﹣9=0,∴(t﹣2)2=9,∴t=5或﹣1.∵x2+y2≥0,∴x2+y2=5.10.(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.三、解答题(共16小题)(选答题,不自动判卷)11.(2011秋•西吉县校级期中)阅读材料:为了解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,(x2﹣1)2=y2,则原方程可化为y2﹣5y+4=0①解得y1=1,y2=4.当y=1时,x2﹣1=1,x2=2,∴x=±当y=4时,x2﹣1=4,x2=5,∴x=±∴原方程的解为:x1=解答问题:仿造上题解方程:x4﹣6x2+8=0.【解答】解:设x2=y,x4=y2,则原方程可化为y2﹣6y+8=0,解得y1=2,y2=4.当y=2时,,当y=4时,x2=4,x=±2.∴原方程的解为:.12.(2013秋•诏安县期中)解下列方程①x2﹣8x+9=0②(5x﹣1)2﹣3(5x﹣1)=0.【解答】解:(1)移项为:x2﹣8x=﹣9,配方为:∴x2﹣8x+16=7∴(x﹣4)2=7,开平方为:x﹣4=±,∴x1=+4,x2=﹣+4;(2)设5x﹣1=a,则原方程变形为:a2﹣3a=0,a(a﹣3)=0,∴a1=0,a2=3.当5x﹣1=0,时,x1=,当5x﹣1=3时,x2=,∴x1=,x2=.13.(2012秋•新都区期末)阅读材料:x4﹣6x2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:设x2=y,那么x4=y2,于是方程变为y2﹣6y+5=0①,解这个方程,得y1=1,y2=5,当y1=1时,x2=1,x=±1,当y=5时,x2=5,x=±,所以原方程有四个根x1=1,x2=﹣1,x3=,x4=(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了转化的教学思想.(2)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0.【解答】解:(1)换元,转化(2)解:设x2﹣x=a,原方程可化为a2﹣4a﹣12=0,解得a=﹣2或6,当a=﹣2时,x2﹣x+2=0△=(﹣1)2﹣8=﹣7<0,此方程无实数根,当a=6时,即x2﹣x﹣6=0,(x﹣3)(x+2)=0,∴x1=3,x2=﹣2∴原方程有两个根x1=3,x2=﹣2.14.(2011秋•安宁市校级期中)解方程:(x+2)2﹣3(x+2)+2=0.【解答】解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0.15.(2015秋•咸阳校级月考)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.【解答】解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3.16.(2015秋•微山县校级期中)为解方程x4﹣5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则x4=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2=1.∴x=±1当y=4时,x2=4,∴x=±2.∴原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2解答问题:(1)填空:在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.(2)解方程:(x2﹣2x)2+x2﹣2x﹣6=0.【解答】解:(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.故答案为换元,转化;(2)设x2﹣2x=t,原方程化为t2+t﹣6=0,解得t1=﹣3,t2=2,当t=﹣3时,x2﹣2x=﹣3,即x2﹣2x+3=0,此方程无实数解;当t=2时,x2﹣2x=2,解得x1=1+,x2=1﹣,所以原方程的解为x1=1+,x2=1﹣.17.(2008秋•郑州校级期末)阅读下面的解题过程:解方程:(4x﹣1)2﹣10(4x﹣1)+24=0 解:把4x﹣1视为一个整体,设4x﹣1=y则原方程可化为:y2﹣10y+24=0解之得:y1=6,y2=4,∴4x﹣1=6或4x﹣1=4∴x1=,x2=这种解方程的方法叫换元法.请仿照上例,用换元法解方程:(x﹣2)2﹣3(x﹣2)﹣10=0【解答】解:设x﹣2=y,则原方程可化为:y2﹣3y﹣10=0,解之得:y1=5,y2=﹣2,∴x﹣2=5或x﹣2=﹣2∴x1=7,x2=0.18.(2012春•颍上县校级期中)(y﹣3)2+3(y﹣3)+2=0【解答】解:设y﹣3=t,则原方程即t2+3t+2=0解得t=﹣1或﹣2所以y﹣2=0或y﹣1=0,解得,y=2或y=1.19.(2011秋•荣昌县期中)(换元法)解方程:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,根据以上材料,请解方程:(2x2﹣3x)2+5(2x2﹣3x)+4=0.【解答】解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1.(6分)20.(2013•长汀县一模)阅读下面材料:解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=﹣,x3=,x4=﹣.上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.【解答】解:设x2﹣x=y,那么原方程可化为y2﹣4y﹣12=0解得y1=6,y2=﹣2当y=6时,x2﹣x=6即x2﹣x﹣6=0∴x1=3,x2=﹣2当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0∵△=(﹣1)2﹣4×1×2<0∴方程无实数解∴原方程的解为:x1=3,x2=﹣2.21.(2009•中山)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程检验求原方程的解2﹣3=0 令=t,则2t﹣3=0 t=t=>0 =,所以x=x﹣2+1=0令=t,则t2﹣2t+1=0t1=t2=1t1=t2=1>0=1,所以x=1x+2+=0令=t,则t2+t=0t1=0,t2=﹣1t1=0≥0,t2=1<0=0,所以x=﹣2,【解答】解:填表如下:方程换元法得新方程解新方程检验求原方程的解x﹣2+1=0 令=t,则t2﹣2t+1=0t1=t2=1 t1=t2=1>0 =1,所以x=1.x+2+=0 令=t,则t2+t=0t1=0,t2=﹣1t1=0≥0,t2=﹣1<0=0,所以x=﹣2.22.(2015•遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.【解答】解:(1)设++…+=t,则原式=(1﹣t)×(t+)﹣(1﹣t﹣)×t=t+﹣t2﹣t﹣t+t2+t=;(2)设x2+5x+1=t,则原方程化为:t(t+6)=7,t2+6t﹣7=0,解得:t=﹣7或1,当t=1时,x2+5x+1=1,x2+5x=0,x(x+5)=0,x=0,x+5=0,x1=0,x2=﹣5;当t=﹣7时,x2+5x+1=﹣7,x2+5x+8=0,b2﹣4ac=52﹣4×1×8<0,此时方程无解;即原方程的解为:x1=0,x2=﹣5.23.(2012秋•太原期中)请同学们认真阅读下面材料,然后解答问题.解方程(x2﹣1)2﹣5(x2﹣1)+4=0解:设y=x2﹣1则原方程化为:y2﹣5y+4=0 ①∴y1=1 y2=4当y=1时,有x2﹣1=1,即x2=2∴x=±当y=4时,有x2﹣1=4,即x2=5∴x=±∴原方程的解为:x1=﹣x2=x3=﹣x4=解答问题:(1)填空:在由原方程得到①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.(2)解方程(x2﹣3)2﹣3(x2﹣3)=0.【解答】解:(1)答案分别是:换元,转化.(2)设y=x2﹣3,则原方程化为:y2﹣3y=0y(y﹣3)=0∴y1=0,y2=3.当y1=0时,x2﹣3=0,∴x1=,x2=﹣.当y2=3时,x2﹣3=3,x2=6,∴x3=,x4=﹣.因此原方程的根为:x1=,x2=﹣,x3=,x4=﹣.24.(2012秋•南雄市期中)阅读下面的例题,解方程(x﹣1)2﹣5|x﹣1|﹣6=0,解方程x2﹣|x|﹣2=0;解:原方程化为|x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2y2=﹣1当|x|=2,x=±2;当|x|=﹣1时(不合题意,舍去)∴原方程的解是x1=2,x2=﹣2.【解答】解:原方程化为|x﹣1|2﹣5|x﹣1|﹣6=0,令y=|x﹣1|,原方程化成y2﹣5y﹣6=0,解得:y1=6,y2=﹣1,当|x﹣1|=6,x﹣1=±6,解得x1=7,x2=﹣5;当|x﹣1|=﹣1时(舍去).则原方程的解是x1=7,x2=﹣5.25.(2013秋•源城区校级期末)用适当的方法解:(1)(x+4)2=5(x+4)(2)2x2﹣10x=3.【解答】解:(1)设y=x+4则原方程可化为y2=5y,即y2﹣5y=0,解得y1=5,y2=0,当y1=5时x1+4=5解得x1=1,当y2=0时x+4=0,解得x2=﹣4,∴x1=﹣4,x2=1;(2)2x2﹣10x=3,∵a=2,b=﹣10,c=﹣3,∴△=(﹣10)2﹣4×2×(﹣3)=124>0,∴,∴.26.(2015秋•太仓市期中)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+22.下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x2-4x-4=0B.x2-5=.5x2-2x+1=0 D.5x2-4x+6=04.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2=.x=6 D.x=05.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )A. ;B.;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+=0;C.D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=;(3)(x-a)2=1+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n 的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.(1)3,;(2);(3)1,-118.m=-6,n=819.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根.(2)四、20.20%21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

(755)换元法解一元二次方程专项练习35题(有答案)8页 ok

(755)换元法解一元二次方程专项练习35题(有答案)8页  ok

换元法解一元二次方程专项练习35题(有答案)(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(3)已知:(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.(5)(x2﹣2x)2+(x2﹣2x)﹣2=0 (6)2(﹣x)2﹣(x ﹣)﹣1=0.(7)(x﹣1)2+5(1﹣x)﹣6=0 (8)(x+3)2﹣5(x+3)﹣6=0.(9)2(x﹣1)2+5(x﹣l)+2=0.(10)(x+2)2﹣3(x+2)+2=0.(11)(2x﹣3)2﹣5(2x﹣3)=﹣6(12)(2x﹣x2)2﹣2(x2﹣2x)+1=0.(13)(x2﹣1)2﹣5(x2﹣1)+4=0.(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.(16)(x2﹣x)2﹣5(x2﹣x)+6=0,(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.(18)(2x+1)2﹣6(2x+1)+5=0(19)(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2.(20)已知(x2+y2)2﹣3(x2+y2)﹣40=0,求x2+y2.(21)(x2+x)(x2+x﹣3)﹣3(x2+x)+8=0.(22)(x+2)2+6(x+2)﹣91=O;(23)(3x﹣2)2+(2﹣3x)=20.(24)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0.(25)(x2﹣2)2﹣7(x2﹣2)=0.(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.(28)(x2﹣1)2﹣5(x2﹣1)+4=0,(29)(x2﹣x)2﹣8(x2﹣x)+12=0.(30)(x2+x)2﹣8(x2+x)+12=0. (31)(x2﹣1)2﹣5(x2﹣1)+4=0,(32)(x2﹣2x)2﹣2(x2﹣2x)﹣3=0(33)(x2﹣1)2﹣5(x2﹣1)+4=0,(34)x(x+3)(x2+3x+2)=24.(35)已知:(x2+y2)2﹣(x2+y2)﹣12=0,求x2+y2的值.换元法解一元二次方程35题参考答案:(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1(3)(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4 整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6(5)(x2﹣2x)2+(x2﹣2x)﹣2=0解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣(6)2(﹣x)2﹣(x ﹣)﹣1=0.解:2(﹣x)2﹣(x ﹣)﹣1=0,变形得:2(x ﹣)2﹣(x ﹣)﹣1=0,设y=x ﹣,则原方程可化为2y2﹣y﹣1=0,…(2分)因式分解得:(2y+1)(y﹣1)=0,解得:y=﹣或y=1,…(5分)当y=﹣时,x ﹣=﹣,解得:x=0;当y=1时,x ﹣=1,解得:x=,∴x1=,x2=0(7)(x﹣1)2+5(1﹣x)﹣6=0解:设x﹣1=y,则原方程可化为:y2﹣5y﹣6=0,∴y1=﹣1,y2=6,∴x﹣1=﹣1,x﹣1=6∴x1=0,x2=7(8)(x+3)2﹣5(x+3)﹣6=0.解:设y=x+3,则原方程可化为y2﹣5y﹣6=0.解得:y1=6,y2=﹣1.当y1=6时,x+3=6,x1=3;当y2=﹣1时,x+3=﹣1,x2=﹣4.∴x1=3,x2=﹣4(8)2(x﹣1)2+5(x﹣l)+2=0.解:设x﹣l=y,则由原方程,得2y2+5y+2=0,即(y+2)(2y+1)=0,∴y+2=0,或2y+1=0,解得,y=﹣2,或y=﹣;①当y=﹣2时,x﹣1=﹣2,解得,x=﹣1;②当y=﹣时,x﹣1=﹣,解得,x=;综上所述,原方程的解是x1=﹣1,x2=(9)(x+2)2﹣3(x+2)+2=0.解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0(10)(2x﹣3)2﹣5(2x﹣3)=﹣6解:(1)∵3x2﹣5x﹣2=0∴(3x+1)(x﹣2)=0即3x+1=0或x﹣2=0解得x1=2;x2=.(11)设t=2x﹣3,则原方程可化为:t2﹣5t+6=0∴(t﹣2)(t﹣3)=0∴t=2或3,即2x﹣3=2或3解得x1=;x2=3(12)根据题意,令y=x2﹣2x,原方程可化为:y2﹣2y+1=0,解得y=1,即x2﹣2x=1,可用公式法求解,其中a=1,b=﹣2,c=﹣1,∴△=8>0,∴方程的解为x==,即x1=1﹣,x2=1+(13)(x2﹣1)2﹣5(x2﹣1)+4=0.解:设x2﹣1=t.则由原方程,得t2﹣5t+4=0,即(t﹣1)(t﹣4)=0,解得,t=1或t=4;①当t=1时,x2﹣1=1,∴x2=2,∴x=±;②当t=4时,x2﹣1=4,∴x2=5,∴x=±.综合①②,原方程的解是:x1=,x2=﹣,x3=,x4=﹣(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0解:设x2﹣x=y,所以原方程变化为:y2﹣2y﹣3=0,解得y=﹣1或3,当y=﹣1时,x2﹣x=﹣1,无解;当y=3时,x2﹣x=3,解得,x1=,x2=,∴原方程的解为x1=,x2=(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.解:根据题意,设a+2b=x,代入原方程得:x2﹣2x+1=0,即(x﹣1)2=0∴x=1,即a+2b=1,所以(a+2b)2010=1(16)(x2﹣x)2﹣5(x2﹣x)+6=0解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=0,解得y=2或3,当y=2时,x2﹣x=2,解得:x1=2,x2=﹣1;当y=3时,x2﹣x=3,解得,x3=,x4=,∴原方程的解为x1=2,x2=﹣1,x3=,x4=.(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3(18)(2x+1)2﹣6(2x+1)+5=0解:设2x+1=a,原方程可化为a2﹣6a+5=0,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;∴原方程的解为x1=0,x2=2(19).解:设u=x2+3x﹣4,v=2x2﹣7x+6,则u+v=3x2﹣4x+2.则原方程变为u2+v2=(u+v)2,即u2+v2=u2+2uv+v2,∴uv=0,∴u=0或v=0,即x2+3x﹣4=0或2x2﹣7x+6=0.解得(20)解:设x2+y2=t(t≥0),则t2﹣3t﹣40=0,所以(t﹣8)(t+5)=0,解得,t=8或t=﹣5(不合题意,舍去),故x2+y2=8(21)解:设x2+x=y,原方程可变形为:y(y﹣3)﹣3y+8=0,y2﹣6y+8=0,(y﹣4)(y﹣2)=0,解得:y1=4,y2=2,当y1=4时,x2+x=4,解得:x1=,x2=.当y2=2时,x2+x=2,解得:x3=1,x4=﹣2(22)(x+2)2+6(x+2)﹣91=O;设x+2=y,则原方程可变形为:y2+6y﹣91=0,解得:y1=7,y2=﹣13,当y1=7时,x+2=7,x1=5,当y2=﹣13时,x+2=﹣13,x2=﹣15;(23)设3x﹣2=t,则t2﹣t﹣20=0,∴(t+4)(t﹣5)=0,∴t+4=0或t﹣5=0,解得 t=﹣4或t=5.当t=﹣4时,3x﹣2=﹣4,解得 x=﹣;当t=5时,3x﹣2=5,解得 x=,综上所述,原方程的解为:x=﹣或 x=.(24)解:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0,分解因式得:(x2﹣3x﹣4)(x2﹣3x+2)=0,即(x﹣4)(x+1)(x﹣1)(x﹣2)=0,可得x﹣4=0或x+1=0或x﹣1=0或x﹣2=0,解得:x1=4,x2=﹣1,x3=1,x4=2(25)解:根据题意,把y=x2﹣2代入方程(x2﹣2)2﹣7(x2﹣2)=0得:y2﹣7y=0,解得y1=0,y2=7,当y1=0时,即x2﹣2=0,解得:x1=﹣,x2=,当y2=7时,即x2﹣2=7,解得:x3=﹣3,x4=3,∴原方程的解为:x1=﹣,x2=,x3=﹣3,x4=3(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.解:设x2+y2=t,则原方程变形为t(t+2)﹣8=0,整理得t2+2t﹣8=0,∴(t+4)(t﹣2)=0,∴t1=﹣4,t2=2,当t=﹣4时,则x2+y2=﹣4,无意义舍去,当t=2时,则x2+y2=2.所以x2+y2的值为2(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,∴(x2+y2)2﹣(x2+y2)﹣12=0,即(x2+y2+3)(x2+y2﹣4)=0,∴x2+y2=﹣3,或x2+y2=4,∵x2+y2≥0,∴x2+y2=4(28)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,设x2﹣1=y原方程可化为y2﹣5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2﹣1=1,∴x=±;当y=4时,x2﹣1=4,∴x=±,∴原方程的解为x1=,x2=﹣,x3=,x4=﹣.(29)解方程:(x2﹣x)2﹣8(x2﹣x)+12=0.设x2﹣x=A,由题意,得A2﹣8A+12=0,解得:A1=6,A2=2.当A=6时,x2﹣x=6,解得:x1=3,x2=﹣2;当A=2时,x2﹣x=2,解得:x3=2,x4=﹣1.∴原方程的解为:x1=6,x2=﹣2,x3=2,x4=﹣1 (30)解方程:(x2+x)2﹣8(x2+x)+12=0.解:设y=x2+x,方程化为y2﹣8y+12=0,即(y﹣2)(y ﹣6)=0,解得y=2或y=6,即x2+x=2或x2+x=6,分解因式得:(x+2)(x﹣1)=0或(x﹣2)(x+3)=0,解得:x1=﹣2,x2=1,x3=2,x4=﹣3(31)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解;设x2﹣1=y,即(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,又化为(y﹣1)(y﹣4)=0解得y1=1,y2=4.当y=1即x2﹣1=1时,x2=2,x=±;x1=,x2=﹣当y=4即x2﹣1=4时,x2=5,x=±;x3=,x4=﹣(32)解方程(x2﹣2x)2﹣2(x2﹣2x)﹣3=0解:设x2﹣2x=y,即(x2﹣2x)2=y2,原方程可化为y2﹣2y﹣3=0,解得y1=3,y2=﹣1,当y1=3时,x2﹣2x=3,解得x1=3,x2=﹣1;当y2=﹣1时,x2﹣2x=﹣1,解得x3=x4=1;∴原方程的解为x1=3,x2=﹣1;x3=x4=1(33)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y1=1时,x2﹣1=1,∴;当y2=4时,x2﹣1=4,∴.因此原方程的解为:.(34)设x2+3x=y.∵x(x+3)(x2+3x+2)=24,∴(x2+3x)(x2+3x+2)=24,∴y(y+2)=24,即(y﹣4)(y+6)=0,解得,y=4或y=﹣6;①当y=4时,x2+3x=4,即(x﹣1)(x+4)=0,解得,x1=﹣4,x2=1;②当y=﹣6时,x2+3x=﹣6,即x2+3x+6=0,∵△=9﹣24=﹣15<0,∴该方程无解;综上所述,原方程的根是:x1=﹣4,x2=1 (35)解:(x2+y2)2﹣(x2+y2)﹣12=0,设x2+y2=a,则有a2﹣a﹣12=0,因式分解得:(a﹣4)(a+3)=0,解得:a1=4,a2=﹣3,∵x2+y2>0,即a>0,∴a=﹣3不合题意,舍去,则x2+y2=a=4。

一元二次方程强化习题(2)——因式分解法和换元法(含解析)

一元二次方程强化习题(2)——因式分解法和换元法(含解析)

一元二次方程强化习题(2)——因式分解法和换元法(含解析)一元二次方程强化习题—因式分解法和换元法一.选择题(共19小题)1.一元二次方程230x x -=的两个根是( ) A .0和3-B .0和3C .1和3D .1和3-2.下列实数中,方程20x x -=的根是( ) A .2-B .1-C .1D .23.方程(3)x x x +=的解是( ) A .123x x ==-B .11x =,23x =C .10x =,23x =-D .10x =.22x =-4.一个三角形的三边长都是方程27100x x -+=的根,则这个三角形的周长不可能是( )A .6B .9C .12D .155.方程250x x +=的解为( ) A .5x =B .5x =-C .10x =,25x =D .10x =,25x =-6.若一个三角形的两边长分别是2和6,第三边的边长是方程210210x x -+=的一个根,则这个三角形的周长为( ) A .7B .3或7C .15D .11或157.下列实数中,方程220x x -=的根是( ) A .0B .2C .0或1D .0或28.三角形两边的长是6和8,第三边满足方程2241400x x -+=,则三角形周长为( ) A .24B .28C .24或28D .以上都不对9.方程(5)5x x x -=-的根是( ) A .5x =B .0x =C .15x =,20x =D .15x =,21x =10.一元二次方程2(21)(21)(1)x x x +=+-的解为( ) A .1x =B .112x =-,21x =C .112x =-,22x =-D .112x =-,22x =11.一元二次方程2520x x -=的解是( )A .10x =,225x =B .10x =,225x =-C .10x =,252x =D .10x =,252x =-12.已知实数x 满足222(21)2(21)30x x x x -++-+-=,那么221x x -+的值为( ) A .1-或3B .3-或1C .3D .113.若22222()2()30a b a b +-+-=,则代数式22a b +的值( )A .1-或3B .1或3-C .1-D .314.2222()(2)80m n m n ----=,则22m n -的值是( ) A .4B .2-C .4或2-D .4-或215.已知a 、b 为实数,且满足222()90a b +-=,则22a b +的值为( ) A .3±B .3C .9±D .916.实数x ,y 满足2222()(1)2x y x y +++=,则22x y +的值为( ) A .1B .2C .2-或1D .2或1-17.设a ,b 满足等式2222()(221)3a b a b ++-=,则22331ab +-的值是( ) A .72B .52 C .72-D .52-18.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么231x x +-的值为( ) A .2±B .0或4-C .0D .219.已知实数x 满足222()4()120x x x x ----=,则代数式21x x -+的值是( ) A .7B .1-C .7或1-D .5-或3二.填空题(共5小题)20.已知:2222()(1)20x y x y ++-=,那么22x y += .21.已知x 为实数,且满足222(23)2(23)150x x +++-=,则223x +的值为. 22.已知()(4)4a b a b ++-=-,那么()a b += .23.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么23x x += . 24.已知方程22222()2()30x y x y +-+-=,则22x y +的值为.三.解答题(共1小题) 25.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式22(41)(42)12x x x x -+-+-.解:设24x y y -= 原式(1)(2)12y y =++- 2310y y =+-(5)(2)y y =+-22(45)(42)x x x x =-+--(1)请你用换元法对多项式22(32)(35)8x x x x -+---进行因式分解;(2)凭你的数感,大胆尝试解方程:22(21)(23)0x x x x -+--=.一元二次方程强化习题(2)——因式分解法和换元法参考答案与试题解析一.选择题(共19小题)1.一元二次方程230x x-=的两个根是()A.0和3-B.0和3C.1和3D.1和3-解:230x x-=,(3)0x x∴-=,则0x=或30x-=,解得0x=或3x=,故选:B.2.下列实数中,方程20x x-=的根是()A.2-B.1-C.1D.2解:20-=,(1)0x x∴-=,则0x=或10x-=,解得10x=,21x=,故选:C.3.方程(3) x x x+=的解是() A.123x x==-B.11x=,23x=C.10x=,23x=-D.1022x=-解:方程变形得:(3)0x x x+-=,分解因式得:(31)0x x+-=,可得0x=或20x+=,解得:10x=,22x=-.故选:D.4.一个三角形的三边长都是方程27100 x x-+=的根,则这个三角形的周长不可能是( ) A.6B.9C.12D.15解:(2)(5)0x x--=,20x-=或50x-=,所以12x=,25x=,当三角形三边分别为2、2、2时,三角形的周长为6;当三角形三边分别为5、5、2时,三角形的周长为12;当三角形三边分别为5、5、5时,三角形的周长为15.故选:B.5.方程250x x+=的解为()A.5x=B.5x=-C.10x=,25x=D.10x=,25x=-解:250x x+=,(5)0x x∴+=,x∴=或5x=-,故选:D.6.若一个三角形的两边长分别是2和6,第三边的边长是方程210210x x-+=的一个根,则这个三角形的周长为()A.7B.3或7C.15D.11或15解:210210x x-+=,(3)(7)0x x∴--=,3x∴=或7x=,当3x=时,236+<,2∴、3、6不能组成三角形,当7x=时,267+>,2∴、6、7能够组成三角形,∴这个三角形的周长为26715++=,故选:C.7.下列实数中,方程220x x -=的根是( ) A .0 B .2 C .0或1 D .0或2解:220x x -=,(2)0x x ∴-=,则0x =或20x -=,解得0x =或2x =,故选:D .8.三角形两边的长是6和8,第三边满足方程2241400x x -+=,则三角形周长为( ) A .24B .28C .24或28D .以上都不对解:解方程2241400x x -+=得:110x =,214x =,当三边为6、8、10时,符合三角形三边关系定理,能组成三角形,此时三角形的周长为681024++=,当三边为6、8、14时,6814+=,不符合三角形三边关系定理,不能组成三角形,即三角形的周长是24,故选:A .9.方程(5)5x x x -=-的根是( ) A .5x = B .0x =C .15x =,20x =D .15x =,21x =解:(5)(5)0x x x ---=,(5)(1)0x x ∴--=,则50x -=或10x -=,解得5x =或1x =,故选:D .10.一元二次方程2(21)(21)(1)x x x +=+-的解为( ) A .1x =B .112x =-,21x =C .112x =-,22x =-D .112x =-,22x =解:2(21)(21)(1)x x x +=+-,2(21)(21)(1)0x x x ∴+-+-=,(21)(211)0x x x ∴++-+=,12x ∴=-或2x =-,故选:C .11.一元二次方程2520x x -=的解是( ) A .10x =,225x = B .10x =,225x =- C .10x =,252x =D .10x =,252x =-解:(52)0x x -=, 0x =或520x -=,所以10x =或225x =.故选:A .12.已知实数x 满足222(21)2(21)30x x x x -++-+-=,那么221x x -+的值为( ) A .1-或3 B .3-或1C .3D .1解:设221x x a -+=,222(21)2(21)30x x x x -++-+-=,2230a a ∴+-=,解得:3a =-或1,当3a =-时,2213x x -+=-,即2(1)3x -=-,此方程无解;当1a =时,2211x x -+=,此时方程有解,故选:D .13.若22222()2()30a b a b +-+-=,则代数式22a b +的值( ) A .1-或3 B .1或3- C .1- D .3解:令22x a b =+,则原方程可变形为2230x x --=, (3)(1)0x x -+=,30x ∴-=或10x +=,解得13x =,21x =-,又220x a b =+,223a b ∴+=,故选:D .14.2222()(2)80m n m n ----=,则22m n -的值是( ) A .4B .2-C .4或2-D .4-或2解:设22x m n =-,则原方程可化为:(2)80x x --=即2280x x --= 解得:4x =或2-.故选:C .15.已知a 、b 为实数,且满足222()90a b +-=,则22a b +的值为( ) A .3±B .3C .9±D .9解:设22(0)t a b t =+.由原方程得到290t -=.所以29t =.所以3t =或3t =-(舍去)即22a b +的值为3.故选:B .16.实数x ,y 满足2222()(1)2x y x y +++=,则22x y +的值为( ) A .1B .2C .2-或1D .2或1-解:2222()(1)2x y x y +++=,设22x y a +=,则原方程化为:(1)2a a +=,即220a a +-=,解得:2a =-或1,不论xy 为何值,22x y +不能为负数,所以22x y +只能等于1,故选:A .17.设a ,b 满足等式2222()(221)3a b a b ++-=,则22331a b +-的值是( )A .72B .52 C .72-D .52-解:令22a b t +=,0t (21)3t t ∴-=,1t ∴=-(舍去)或32t =,原式97122=-=;故选:A .18.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么231x x +-的值为( ) A .2±B .0或4-C .0D .2解:由23y x x =+,则222(3)2(3)30x x x x +++-=,可化为:2230y y +-=,分解因式,得,(3)(1)0y y +-=,解得,13y =-,21y =,当233x x +=-时,经△233430=-?=-<检验,可知x 不是实数当231x x +=时,经检验,符合题意.2310x x ∴+-=故选:C .19.已知实数x 满足222()4()120x x x x ----=,则代数式21x x -+的值是( ) A .7B .1-C .7或1-D .5-或3解:222()4()120x x x x ----=,22(2)(6)0x x x x ∴-+--=,220x x ∴-+=或260x x --=,22x x ∴-=-或26x x -=.当22x x -=-时,220x x -+=, 24141270b ac -=-??=-<,∴此方程无实数解.当26x x -=时,217x x -+=故选:A .二.填空题(共5小题)20.已知:2222()(1)20x y x y ++-=,那么22x y += 5 .解:设22(0)t x y t =+,则(1)20t t -=.整理,得(5)(4)0t t -+=.解得5t =或4t =-(舍去).所以225x y +=.故答案是:5.21.已知x 为实数,且满足222(23)2(23)150x x +++-=,则223x +的值为 3 .解:设223x t +=,且3t ,∴原方程化为:22150t t +-=,3t ∴=或5t =-(舍去),2233x ∴+=,故答案为:322.已知()(4)4a b a b ++-=-,那么()a b += 2 .解:设a b t +=,原方程化为:(4)4t t -=-,解得:2t =,即2a b +=,故答案为:223.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么23x x += 1 .解:设23x x y +=,方程变形得:2230y y +-=,即(1)(3)0y y -+=,解得:1y =或3y =-,即231x x +=或233x x +=-(无解),故答案为:1.24.已知方程22222()2()30x y x y +-+-=,则22x y +的值为 3 .解:22a x y =+,则原方程变为2230a a --=,解得:11a =-,23a =,220x y +,223x y ∴+=.故答案为: 3 .三.解答题(共1小题) 25.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式22(41)(42)12x x x x -+-+-.解:设24x y y -= 原式(1)(2)12y y =++- 2310y y =+-(5)(2)y y =+-22(45)(42)x x x x =-+--(1)请你用换元法对多项式22(32)(35)8x x x x -+---进行因式分解;(2)凭你的数感,大胆尝试解方程:22(21)(23)0x x x x -+--=.解:(1)设23x x y -=,原式(2)(5)8y y =+--2318y y =--(6)(3)y y =-+22(36)(33)x x x x =---+;(2)设22t x x =-.则(1)(3)0t t +-=.解得1t =-或3t =.当1t =-时,221x x -=-,即2(1)0x -=.解得121x x ==.当3t =时,223x x -=,即(3)(1)0x x -+=.解得33x =,41x =-.综上所述,原方程的解为121x x ==,33x =,41x =-.。

《一元二次方程的解法》典型例题及解析

《一元二次方程的解法》典型例题及解析

《一元二次方程的解法》典型例题及解析1.以配方法解3x2+4x+1 = 0时,我们可得出下列哪一个方程式( )A.(x+2) 2= 3 B.(3x+)2 =C.(x+)2 =D.(x+)2 =答案:D说明:先将方程3x2+4x+1 = 0的二次项系数化为1,即得x2+x+= 0,再变形得x2+x+()2 =()2−,即(x+)2 =,答案为D.2.想将x2+x配成一个完全平方式,应该加上下列那一个数( )A. B. C.D.答案:D说明:题目所给的式子中x2系数为1,因此,要将它配成一个完全平方式只需加上一次项系数一半的平方,即,所以答案为D.3.下列方程中,有两个不相等的实数根的是( )A.x2−9x+100 = 0 B.5x2+7x+5 = 0C.16x2−24x+9 = 0 D.2x2+3x−4 = 0答案:D说明:方程x2−9x+100 = 0中b2−4ac = 81−400<0;方程5x2+7x+5 = 0中b2−4ac = 49−4×5×5 = 49−100<0;方程16x2−24x+9 = 0中b2−4ac = 576−4×16×9 = 0;方程2x2+3x−4 = 0中b2−4ac = 9+32 = 41>0,所以方程2x2 = 3x−4 = 0有两个不相等的实数根,故选D.4.下列方程中,有两个相等实数根的是( )A.4(x−1)2−49 = 0 B.(x−2)(x−3)+(3−x) = 0C.x2+(2+1)x+2= 0 D.x(x−)+1 = 0答案:B说明:A中方程整理为一般形式为4x2−8x−45 = 0,这里b2−4ac = 64+720 = 784>0;B中方程整理为一般形式为:x2−6x+9 = 0,这里b2−4ac = 36−36 = 0;C中方程b2−4ac = 21+4−8= 21−4>0;D中方程整理为一般形式为x2−x+1 = 0,这里b2−4ac = 5−4 = 1>0;所以只有方程(x−2)(x−3)+(3−x) = 0有两个相等实数根,答案为B.5.下列方程4x2−3x−1 = 0,5x2−7x+2 = 0,13x2−15x+2 = 0中,有一个公共解是( )A.x =B.x = 2 C.x = 1 D.x = −1 答案:C说明:方程4x2−3x−1 = 0可变形为(4x+1)(x−1) = 0,方程5x2−7x+2 = 0可变形为(x−1)(5x−2) = 0,方程13x2−15x+2 = 0可变形为(x−1)(13x+2) = 0,所以这三个方程的公共解为x = 1,答案为C.6.用适当的方法解下列一元二次方程.(1)(x+4)2−(2x−1)2 = 0(2)x2−16x−4 = 0(3)2x2−3x−6 = 0(4)(x−2)2 = 256(5)(2t+3)2 = 3(2t+3)(6)(3−y)2+y2 = 9(7)(1+)x2−(1−)x = 0解:(1)平方差公式分解因式,方程变形为[(x+4)+(2x−1)][(x+4)−(2x−1)] = 0,化简后即3(x+1)(5−x) = 0,因此,可求得x1 = −1,x2 = 5.(2)用配方法,方程可变形为(x−8)2 = 68,两边开方化简可得x = 8±2(3)用公式法,b2− 4ac = (−3)2−4×2×(−6) = 57,所以x =(4)方程两边直接开方,得x−2 = ±16,即x1 = 18,x2 = −14(5)方程可化为(2t+3)(2t+3−3) = 0,即2t(2t+3) = 0,解得t1 = 0,t2 = −(6)方程变形为(y−3)2+y2−9 = 0,(y−3)[(y−3)+(y+3)] = 0,即2y(y−3) = 0,解得y1 = 0,y2 = 3(7)用因式分解法,方程可变形为x[(1+)x−1+] = 0,所以x1 = 0,x2 === 2−3扩展资料一元二次方程,数学史上的一场论战中世纪的欧洲,代数学的发展几乎处于停滞的状态,其真正的起步,始于公元1535年的一场震动数学界的论战.大家知道,尽管在古代的巴比伦或古代的中国,都已掌握了某些类型一元二次方程解法.但一元二次方程的公式解法,却是由中亚数学家阿尔·花拉子米于公元825年给出的.花拉子米是把方程x2+px+q = 0配方后改写为:的形式,从而得出了方程的两个根为:在欧洲,被誉为“代数学鼻祖”的古希腊的丢番图,虽然也曾得到过类似的式子,但由于丢番图认定只有根式下的数是一个完全平方数,且根为正数时,方程才算有解,因而数学史上都认为阿尔·花拉子米为求得一元二次方程一般解的第一人.花拉子米之后,许多数学家都致力于三次方程公式解的探求,但在数百年漫漫的历史长河中,除了取得个别方程的特解外,都没有人取得实质性进展,许多人因此怀疑这样的公式解根本不存在!话说当时意大利的波伦亚大学,有一位叫费洛的数学教授,也潜心于三次方程公式解这一当时世界难题的研究,功夫不负有心人,他终于取得了重大突破.公元1505年,费洛宣布自己已经找到了形如x3 + px = q方程的一个特别情形的解法,但他没有公开自己的成果,为的是能在一次国际性的数学竞赛中一放光彩.遗憾的是,费洛没能等到一个显示自己的才华的机会就抱恨逝去,临死前他把自己的方法传给了得意门生,威尼斯的佛罗雷都斯.现在话转另外一头,在意大利北部的布里西亚,有一个颇有名气的年轻人,叫塔塔里亚(Nicolo Tartaglia,1500-1557),此人从小天资聪明,勤奋好学,在数学方面表现出超人的才华,尤其是他发表的一些论文,思路奇特,见地高远,因而一时间名闻遐迩.塔塔里亚自学成才自然受到了当时一些习惯势力的歧视,公元1530年,当时布里西亚的一些人公开向塔塔里亚发难,提出以下两道具有挑战性的问题:(1)求一个数,其立方加上平方的3倍等于5;(2)求三个数,其中第二个数比第一个数大2,第三个数又比第二个数大2,它们的积为1000.读者不难知道,对第一个问题,若令所求数为x,则依题意有:x3+3x2 = 5而对第二个问题,令第一个数为x,则第二、三数分别为x+2,x+4,于是依题意有:x(x+2)(x+4)=1000化简后x3+6x2+8x−1000 = 0以上是两道三次方程的求解问题,塔塔里亚求出了这两道方程的实根,从而赢得了这场挑战,并为此名声大震!消息传到了波伦亚,费洛的门生佛罗雷都斯心中顿感震怒,他无法容忍一个不登大雅之堂的小人物与他平起平坐!于是双方商定,在1535年2月22日,于意大利的米兰,公开举行数学竞赛,各出30道问题,在两小时内决定胜负.赛期渐近,塔塔里亚因自己毕竟是自学出身而感到有些紧张.他想:佛罗雷都斯是费洛的得意弟子,难保他不会拿解三次方程来对付自己,那么自己所掌握的一类方法与费洛的解法究竟相距多远呢?他苦苦思索着,脑海中的思路不断进行着各种新的组合,这些新的组合终于撞击出灵感的火花,在临赛前八天,塔塔里亚终于找到了解三次方程的新方法,为此他欣喜若狂,并充分利用剩下的八天时间,一面熟练自己的新方法,一面精心构造了30道只有运用新方法才能解出的问题.2月22日那天,米兰的大教堂内,人头攒动,热闹非凡,大家翘首等待着竞赛的到来.比赛开始了,双方所出的30道题都是令人眩目的三次方程问题,但见塔塔里亚从容不迫,运笔如飞,在不到两小时的时间内,解完了的佛罗雷都斯的全部问题.与此同时,佛罗雷都斯却提笔拈纸,望题兴叹,一筹莫展,终于以0:30败下阵来!消息传出,数学界为之震动.在米兰市有一个人坐不住了,他就是当时驰名欧洲的医生卡当(Girolamo Cardano,1501-1576).卡当其人,不仅医术颇高,而且精于数学.他也潜心于三次方程的解法,但无所获.所以听到塔塔里亚已经掌握三次方程的解法时,满心希望能分享这一成果.然而当时的塔塔里亚已经誉满欧洲,所以并不打算把自己的成果立即发表,而醉心于完成《几何原本》的巨型译作.对众多的求教者,则一概拒之门外.当过医生的卡当,熟谙心理学的要领,软缠硬磨,终于使自己成了唯一的例外.公元1539年,塔塔利亚终于同意把秘诀传授给他,但有一个条件,就是要严守发现的秘密.然而卡当实际上没有遵守这一诺言.公元1545年,他用自己的名字发表了《大法》一书,书中介绍了不完全三次方程的解法,并写道:“大约30年前,波伦亚的费洛就发现了这一法则,并传授给威尼斯的佛罗雷都斯,后者曾与塔塔里亚进行过数学竞赛,塔塔里亚也发现了这一方法.在我的恳求下,塔塔里亚把方法告诉了我,但没有给出证明.借助于此,我找到了若干证明,因其十分困难,特叙述如下.”卡当指出:对不完全三次方程x3+px+q = 0,公式给出了它的解,这就是今天我们所说的卡当公式.《大法》发表第二年,塔塔里亚发表了的《种种疑问及发明》一文,谴责卡当背信弃义,并要求在米兰与卡当公开竞赛,一决雌雄.然而到比赛那一天,出阵的并非卡当本人,而是他的天才学生斐拉里(Ferrari L.,1522-1565),此时斐拉里,风华正茂,思维敏捷,他不仅掌握了解三次方程的全部要领,而且发现了一般四次方程的极为巧妙的解法.塔塔里亚自然不是他的对手,终于狼狈败退,并因此番挫折,心神俱伤,于公元1557年溘然与世长辞!没想到,正是这场震动数学界的论战,使沉沦了一千三百多年的欧洲代数学,揭开了划时代的新篇章!。

解一元二次方程练习及答案

解一元二次方程练习及答案

解一元二次方程练习及答案解一元二次方程练习及答案【篇一:一元二次方程的解法综合练习题及答案】txt>一元二次方程之概念.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-a.1个b.2个 c.3个 d.4个5=0 x一元二次方程之根的判别一、选择题1.一元二次方程x2-ax+1=0的两实数根相等,则a的值为(). a.a=0 b.a=2或a=-2 c.a=2 d.a=2或a=02.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是(). a.k≠2 b.k2 c.k2且k≠1 d.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(?填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)?=0的根的情况是________.三、综合提高题不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.一元二次方程的解法专题训练1、因式分解法①移项:使方程右边为0②因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组③由a?b=0,则a=0或b=0,解两个一元一次方程2、开平方法 x2?a(a?0)1?ax2??ax?b?2?a(a?0x?b??a解两个一元一次方程3、配方法①移项:左边只留二次项和一次项,右边为常数项(移项要变号).....②同除:方程两边同除二次项系(每项都要除).....③配方:方程两边加上一次项系数一半的平方.......④开平方:注意别忘根号和正负⑤解方程:解两个一元一次方程4、公式法①将方程化为一般式②写出a、b、c ③求出b2?4ac,④若b2-4ac<0,则原方程无实数解⑤若b2-4ac>0,则原方程有两个不相等的实数根,代入公式b?x=求解2a⑥若b2-4ac=0,则原方程有两个相等的实数根,代入公式x??求解。

(完整版)(755)换元法解一元二次方程专项练习35题(有答案)8页ok

(完整版)(755)换元法解一元二次方程专项练习35题(有答案)8页ok

换元法解一元二次方程专项练习(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(3)已知:(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.(5)(x2﹣2x)2+(x2﹣2x)﹣2=0 (6)2(﹣x)2﹣(x ﹣)﹣1=0.(7)(x﹣1)2+5(1﹣x)﹣6=0 (8)(x+3)2﹣5(x+3)﹣6=0.(9)2(x﹣1)2+5(x﹣l)+2=0.(10)(x+2)2﹣3(x+2)+2=0.(11)(2x﹣3)2﹣5(2x﹣3)=﹣6(12)(2x﹣x2)2﹣2(x2﹣2x)+1=0.(13)(x2﹣1)2﹣5(x2﹣1)+4=0.(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.(16)(x2﹣x)2﹣5(x2﹣x)+6=0,(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.(18)(2x+1)2﹣6(2x+1)+5=0(19)(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2.(20)已知(x2+y2)2﹣3(x2+y2)﹣40=0,求x2+y2.(21)(x2+x)(x2+x﹣3)﹣3(x2+x)+8=0.(22)(x+2)2+6(x+2)﹣91=O;(23)(3x﹣2)2+(2﹣3x)=20.(24)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0.(25)(x2﹣2)2﹣7(x2﹣2)=0.(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.(28)(x2﹣1)2﹣5(x2﹣1)+4=0,(29)(x2﹣x)2﹣8(x2﹣x)+12=0.(30)(x2+x)2﹣8(x2+x)+12=0.(31)(x2﹣1)2﹣5(x2﹣1)+4=0,(32)(x2﹣2x)2﹣2(x2﹣2x)﹣3=0(33)(x2﹣1)2﹣5(x2﹣1)+4=0换元法解一元二次方程35题参考答案:(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1(3)(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4 整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6(5)(x2﹣2x)2+(x2﹣2x)﹣2=0解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣(6)2(﹣x)2﹣(x ﹣)﹣1=0.解:2(﹣x)2﹣(x ﹣)﹣1=0,变形得:2(x ﹣)2﹣(x ﹣)﹣1=0,设y=x ﹣,则原方程可化为2y2﹣y﹣1=0,…(2分)因式分解得:(2y+1)(y﹣1)=0,解得:y=﹣或y=1,…(5分)当y=﹣时,x ﹣=﹣,解得:x=0;当y=1时,x ﹣=1,解得:x=,∴x1=,x2=0(7)(x﹣1)2+5(1﹣x)﹣6=0解:设x﹣1=y,则原方程可化为:y2﹣5y﹣6=0,∴y1=﹣1,y2=6,∴x﹣1=﹣1,x﹣1=6∴x1=0,x2=7(8)(x+3)2﹣5(x+3)﹣6=0.解:设y=x+3,则原方程可化为y2﹣5y﹣6=0.解得:y1=6,y2=﹣1.当y1=6时,x+3=6,x1=3;当y2=﹣1时,x+3=﹣1,x2=﹣4.∴x1=3,x2=﹣4(8)2(x﹣1)2+5(x﹣l)+2=0.解:设x﹣l=y,则由原方程,得2y2+5y+2=0,即(y+2)(2y+1)=0,∴y+2=0,或2y+1=0,解得,y=﹣2,或y=﹣;①当y=﹣2时,x﹣1=﹣2,解得,x=﹣1;②当y=﹣时,x﹣1=﹣,解得,x=;综上所述,原方程的解是x1=﹣1,x2=(9)(x+2)2﹣3(x+2)+2=0.解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0(10)(2x﹣3)2﹣5(2x﹣3)=﹣6解:(1)∵3x2﹣5x﹣2=0∴(3x+1)(x﹣2)=0即3x+1=0或x﹣2=0解得x1=2;x2=.(11)设t=2x﹣3,则原方程可化为:t2﹣5t+6=0∴(t﹣2)(t﹣3)=0∴t=2或3,即2x﹣3=2或3解得x1=;x2=3(12)根据题意,令y=x2﹣2x,原方程可化为:y2﹣2y+1=0,解得y=1,即x2﹣2x=1,可用公式法求解,其中a=1,b=﹣2,c=﹣1,∴△=8>0,∴方程的解为x==,即x1=1﹣,x2=1+(13)(x2﹣1)2﹣5(x2﹣1)+4=0.解:设x2﹣1=t.则由原方程,得t2﹣5t+4=0,即(t﹣1)(t﹣4)=0,解得,t=1或t=4;①当t=1时,x2﹣1=1,∴x2=2,∴x=±;②当t=4时,x2﹣1=4,∴x2=5,∴x=±.综合①②,原方程的解是:x1=,x2=﹣,x3=,x4=﹣(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0解:设x2﹣x=y,所以原方程变化为:y2﹣2y﹣3=0,解得y=﹣1或3,当y=﹣1时,x2﹣x=﹣1,无解;当y=3时,x2﹣x=3,解得,x1=,x2=,∴原方程的解为x1=,x2=(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.解:根据题意,设a+2b=x,代入原方程得:x2﹣2x+1=0,即(x﹣1)2=0∴x=1,即a+2b=1,所以(a+2b)2010=1(16)(x2﹣x)2﹣5(x2﹣x)+6=0解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=0,解得y=2或3,当y=2时,x2﹣x=2,解得:x1=2,x2=﹣1;当y=3时,x2﹣x=3,解得,x3=,x4=,∴原方程的解为x1=2,x2=﹣1,x3=,x4=.(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3(18)(2x+1)2﹣6(2x+1)+5=0解:设2x+1=a,原方程可化为a2﹣6a+5=0,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;∴原方程的解为x1=0,x2=2(19).解:设u=x2+3x﹣4,v=2x2﹣7x+6,则u+v=3x2﹣4x+2.则原方程变为u2+v2=(u+v)2,即u2+v2=u2+2uv+v2,∴uv=0,∴u=0或v=0,即x2+3x﹣4=0或2x2﹣7x+6=0.解得(20)解:设x2+y2=t(t≥0),则t2﹣3t﹣40=0,所以(t﹣8)(t+5)=0,解得,t=8或t=﹣5(不合题意,舍去),故x2+y2=8(21)解:设x2+x=y,原方程可变形为:y(y﹣3)﹣3y+8=0,y2﹣6y+8=0,(y﹣4)(y﹣2)=0,解得:y1=4,y2=2,当y1=4时,x2+x=4,解得:x1=,x2=.当y2=2时,x2+x=2,解得:x3=1,x4=﹣2(22)(x+2)2+6(x+2)﹣91=O;设x+2=y,则原方程可变形为:y2+6y﹣91=0,解得:y1=7,y2=﹣13,当y1=7时,x+2=7,x1=5,当y2=﹣13时,x+2=﹣13,x2=﹣15;(23)设3x﹣2=t,则t2﹣t﹣20=0,∴(t+4)(t﹣5)=0,∴t+4=0或t﹣5=0,解得 t=﹣4或t=5.当t=﹣4时,3x﹣2=﹣4,解得 x=﹣;当t=5时,3x﹣2=5,解得 x=,综上所述,原方程的解为:x=﹣或 x=.(24)解:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0,分解因式得:(x2﹣3x﹣4)(x2﹣3x+2)=0,即(x﹣4)(x+1)(x﹣1)(x﹣2)=0,可得x﹣4=0或x+1=0或x﹣1=0或x﹣2=0,解得:x1=4,x2=﹣1,x3=1,x4=2(25)解:根据题意,把y=x2﹣2代入方程(x2﹣2)2﹣7(x2﹣2)=0得:y2﹣7y=0,解得y1=0,y2=7,当y1=0时,即x2﹣2=0,解得:x1=﹣,x2=,当y2=7时,即x2﹣2=7,解得:x3=﹣3,x4=3,∴原方程的解为:x1=﹣,x2=,x3=﹣3,x4=3(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.解:设x2+y2=t,则原方程变形为t(t+2)﹣8=0,整理得t2+2t﹣8=0,∴(t+4)(t﹣2)=0,∴t1=﹣4,t2=2,当t=﹣4时,则x2+y2=﹣4,无意义舍去,当t=2时,则x2+y2=2.所以x2+y2的值为2(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,∴(x2+y2)2﹣(x2+y2)﹣12=0,即(x2+y2+3)(x2+y2﹣4)=0,∴x2+y2=﹣3,或x2+y2=4,∵x2+y2≥0,∴x2+y2=4(28)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,设x2﹣1=y原方程可化为y2﹣5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2﹣1=1,∴x=±;当y=4时,x2﹣1=4,∴x=±,∴原方程的解为x1=,x2=﹣,x3=,x4=﹣.(29)解方程:(x2﹣x)2﹣8(x2﹣x)+12=0.设x2﹣x=A,由题意,得A2﹣8A+12=0,解得:A1=6,A2=2.当A=6时,x2﹣x=6,解得:x1=3,x2=﹣2;当A=2时,x2﹣x=2,解得:x3=2,x4=﹣1.∴原方程的解为:x1=6,x2=﹣2,x3=2,x4=﹣1 (30)解方程:(x2+x)2﹣8(x2+x)+12=0.解:设y=x2+x,方程化为y2﹣8y+12=0,即(y﹣2)(y ﹣6)=0,解得y=2或y=6,即x2+x=2或x2+x=6,分解因式得:(x+2)(x﹣1)=0或(x﹣2)(x+3)=0,解得:x1=﹣2,x2=1,x3=2,x4=﹣3(31)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解;设x2﹣1=y,即(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,又化为(y﹣1)(y﹣4)=0解得y1=1,y2=4.当y=1即x2﹣1=1时,x2=2,x=±;x1=,x2=﹣当y=4即x2﹣1=4时,x2=5,x=±;x3=,x4=﹣(32)解方程(x2﹣2x)2﹣2(x2﹣2x)﹣3=0解:设x2﹣2x=y,即(x2﹣2x)2=y2,原方程可化为y2﹣2y﹣3=0,解得y1=3,y2=﹣1,当y1=3时,x2﹣2x=3,解得x1=3,x2=﹣1;当y2=﹣1时,x2﹣2x=﹣1,解得x3=x4=1;∴原方程的解为x1=3,x2=﹣1;x3=x4=1(33)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y1=1时,x2﹣1=1,∴;当y2=4时,x2﹣1=4,∴.因此原方程的解为:.(34)设x2+3x=y.∵x(x+3)(x2+3x+2)=24,∴(x2+3x)(x2+3x+2)=24,∴y(y+2)=24,即(y﹣4)(y+6)=0,解得,y=4或y=﹣6;①当y=4时,x2+3x=4,即(x﹣1)(x+4)=0,解得,x1=﹣4,x2=1;②当y=﹣6时,x2+3x=﹣6,即x2+3x+6=0,∵△=9﹣24=﹣15<0,∴该方程无解;综上所述,原方程的根是:x1=﹣4,x2=1 (35)解:(x2+y2)2﹣(x2+y2)﹣12=0,设x2+y2=a,则有a2﹣a﹣12=0,因式分解得:(a﹣4)(a+3)=0,解得:a1=4,a2=﹣3,∵x2+y2>0,即a>0,∴a=﹣3不合题意,舍去,则x2+y2=a=4。

第04讲 解一元二次方程——因式分解法与换元法(解析版)-2024学年九年级数学上册学与练(人教版)

第04讲 解一元二次方程——因式分解法与换元法(解析版)-2024学年九年级数学上册学与练(人教版)

第04讲解一元二次方程——因式分解法与换元法课程标准学习目标①复习巩固因式分解的方法②利用因式分解法解一元二次方程③整体法或换元法解一元二次方程 1.复习巩固熟练掌握因式分解的几种方法。

2.学会利用因式分解解一元二次方程。

3.学会并掌握整体法或换元法解一元二次方程。

知识点01因式分解的方法1.因式分解的方法:①提公因式法:=++cm bm am ()c b a m ++;②公式法:平方差公式:=-22b a ()()b a b a -+;完全平方公式:=+±222b ab a ()2b a ±;③十字相乘法:分解c bx x ++2,若mn c =且b n m =+,则=++c bx x 2()()n x m x ++。

题型考点:①对因式分解进行熟练应用。

【即学即练1】1.把下列各式因式分解:(1)2a 2﹣4a ;(2)(a 2+9)2﹣36a 2;(3)x 2+2x ﹣15.【解答】解:(1)2a 2﹣4a=2a (a ﹣2);(2)(a 2+9)2﹣36a 2;=(a 2+9+6a )(a 2+9﹣6a )=(a +3)2(a ﹣3)2;(3)x 2+2x ﹣15=(x +5)(x ﹣3).知识点02利用因式分解法解一元二次方程1.因式分解法解一元二次方程的基本步骤:①将一元二次方程的右边全部移到左边,使其右边为0。

②对方程的左边进行因式分解,使其成为两个整式的积的形式。

③别分令两个整式为0,得到两个一元一次方程。

④解这两个一元一次方程,一元一次方程的解合起来就是一元二次方程的解。

题型考点:①根据求根公式确定c b a ,,的值。

②利用公式法解一元二次方程。

【即学即练1】2.一元二次方程(x ﹣5)2=4(x ﹣5)的解为()A .x =5B .x =﹣5C .x 1=5x 2=9D .x 1=5x 2=1【解答】解:(x ﹣5)2=4(x ﹣5),(x ﹣5)2﹣4(x ﹣5)=0,(x ﹣5)(x ﹣5﹣4)=0,x ﹣5=0或x ﹣5﹣4=0,所以x 1=5,x 2=9.故选:C .【即学即练2】3.方程x 2﹣3x ﹣18=0的根是()A .x 1=3,x 2=6B .x 1=﹣3,x 2=6C .x 1=3,x 2=﹣6D .x 1=﹣3,x 2=﹣6【解答】解:x 2﹣3x ﹣18=0,(x +3)(x ﹣6)=0解得:x 1=﹣3,x 2=6.故选:B .【即学即练3】4.解方程(3x ﹣4)2﹣(4x +1)2=0.【解答】解:(3x ﹣4)2﹣(4x +1)2=0,∴,x 2=﹣5.知识点03整体法或换元法解一元二次方程1.整体法或换元法:在解一元二次方程时,有时候会把含有未知数的一个式子看作一个整体,然后用一个简单的字母表示,起达到方程简化的目的,在解其方程的方法叫做整体法或换元法。

第05讲 一元二次方程的特殊解法-九年级数学(解析版)

第05讲 一元二次方程的特殊解法-九年级数学(解析版)

第05讲一元二次方程的特殊解法【人教版】·模块一用换元法解一元二次方程·模块二含绝对值的一元二次方程的解法·模块三配方法的应用·模块四课后作业【例1】已知2+22+2+2−15=0,求2+2的值.【答案】3【分析】先用换元法令2+2=o>0),再解关于的一元二次方程即可.【详解】解:令2+2=o>0),则原等式可化为:o+2)−15=0,解得:1=3,2=−5,∵>0,∴=3,即2+2=3.2+2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意2+2为非负数是本题的关键.【例2】已知2+B−=0的解是1=1,2=−4,则方程2+32+2+3−=0的解是()A.1=−1,2=−3.5B.1=1,2=−3.5C.1=−1,2=3.5D.1=1,2=3.5【答案】A【分析】由这两个方程结合整体思想,可得2+3=1,2+3=−4,解这两个一元一次方程即得方程2+32+2+3−=0的解.【详解】解:令2+3=,∵方程2+B−=0的解是1=1,2=−4,∴方程2+B−=0的解是1=1,2=−4,∴对于方程方程2+32+2+3−=0而言,2+3=1或2+3=−4,解得=−1或=−3.5,故选A.【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程2+ 32+32+3−4=0中的2+3当作一个整体,则此方程与B²+3−4=0毫无二致.【例3】阅读下面的材料:解方程4−72+12=0这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2=,则4=2,∴原方程可化为2−7+12=0,解得1=3,2=4,当=3时,2=3,=±3,当=4时,2=4,=±2.∴原方程有四个根是1=3,2=−3,3=2,4=−2.以上方法叫换元法,达到了降次的目的,体现了数学的转化思想.运用上述方法解答下列问题:(1)解方程:(2+p2−5(2+p+4=0;(2)已知实数,满足(2+2+2的值.【答案】(1)1=2=3=4=(2)5【分析】(1)设=2+,则2−5+4=0,整理,得(−1)(−4)=0,解关于的一元二次方程,然后解关于的一元二次方程即可求解;(2)设=2+2,则2−3−10=0,整理,得(−5)(+2)=0,解一元二次方程即可求解.【详解】(1)解:设=2+,则2−5+4=0,整理,得(−1)(−4)=0,解得1=1,2=4,当2+=1即2+−1=0时,解得=;当2+=4即2+−4=0时,解得=;∴原方程的解为1=−1+52,2=−1−52,3=4=(2)设=2+2,则2−3−10=0,整理,得(−5)(+2)=0,解得1=5,2=−2(舍去),2+2=5.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【变式1】若实数x满足22+2−52+1=3,那么2−4r1=__________.【答案】−23【分析】先将原方程化为2+−5r1=3,再令=+1,进一步将原方程化为2−5=3,解方程求出的值,即可得到+1=52,即可求出原式的值.【详解】解:∵22+2−52+1=3∴2+−5+1=3令=+1,则原方程为2−5=3,整理得:22−3−5=0解得:1=52,2=−1(不符合题意,舍去)∴+1=52∴2−4+1=1−4+1=152−4=−23故答案为:−23【点睛】本题考查了分式方程和一元二次方程的解法,解题关键是熟练掌握分式方程和一元二次方程的解法.【变式2】若关于的一元二次方程B2+B−3=0(≠0)有一个根为=5,则方程−12+B−3=必有一根为______.【答案】=6【分析】把−12+B−3=化为o−1)2+−1−3=0,再结合题意得到−1= 5,解出即可.【详解】解:∵−12+B−3=,∴o−1)2+−1−3=0.令−1=,则B2+B−3=0,∵方程B2+B−3=0(≠0)有一个根为=5,∴方程B2+B−3=0有一根为=5,∴o−1)2+−1−3=0有一根为−1=5,∴−1=5,∴=6.故答案为:=6.【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键.【变式3】阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如:解方程:x2–3|x|+2=0.解:设|x|=y,则原方程可化为:y2–3y+2=0.解得:y1=1,y2=2.当y=1时,|x|=1,∴x=±1;当y=2时,|x|=2,∴x=±2.∴原方程的解是:x1=1,x2=–1,x3=2,x4=–2.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:x4–10x2+9=0.(2)解方程:r12–22r1=1.(3)若实数x满足x2+12–3x–3=2,求x+1的值.【答案】(1)x=±1或x=±3;(2)x=1或x=–12;(3)x+1=4.【分析】(1)设x2=a,则原方程可化为a2–10a+9=0,解方程求得a的值,再求x的值即可;(2)设r12=m,则原方程可化为m–2=1,即m2–m–2=0,解方程求得m的值,再求x的值,检验后即可求得分式方程的解;(3)设x+1=y,则原方程可化为y2–3y–4=0,解方程求得y 的值,即可求得x+1的值.【详解】(1)设x2=a,则原方程可化为a2–10a+9=0,即(a–1)(a–9)=0,解得:a=1或a=9,当a=1时,x2=1,∴x=±1;当a=9时,x2=9,∴x=±3;(2)设r12=m,则原方程可化为m–2=1,即m2–m–2=0,∴(m+1)(m–2)=0,解得:m=–1或m=2,当m=–1时,r12=–1,即x2+x+1=0,由Δ=1–4×1×1=–3<0知此时方程无解;当m=2时,r12=2,即2x2–x–1=0,解得:x=1或x=–12,经检验x=1和x=–12都是原分式方程的解;(3)设x+1=y,则原方程可化为:y2–2–3y=2,即y2–3y–4=0,∴(y+1)(y–4)=0,解得:y=–1或y=4,即x+1=–1(方程无解,舍去)或x+1=4,故x+1=4.【点睛】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.【变式4】转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x4-3x2-4=0时,我们就可以通过换元法,设x2=y,将原方程转化为y2-3y-4=0,解方程得到y1=-1,y2=4,因为x2=y≥0,所以y=-1舍去,所以得到x2=4,所以x1=2,x2=-2.请参考例题解法,解方程:2+3-2+3−2=0.【答案】x1=1,x2=-4【分析】利用题中给出的方法设2+3=y,把方程转化为含y的一元二次方程,求出y的值,再求解无理方程,求出x的值.【详解】解:设2+3=y,则x2+3x=y2,原方程可化为:y2-y-2=0,∴y1=-1,y2=2,∵2+3=y≥0,∴y1=-1舍去,∴2+3=2,∴x2+3x=4,∴x2+3x-4=0,∴x1=1,x2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.【例1】阅读下面的材料,并完成相应的任务.材料:解含绝对值的方程:2−5−6=0.解:分两种情况:(1)当≥0时,原方程可化为:2−5−6=0,解得1=6,2=−1(舍去);(2)当<0时,原方程可化为:2+5−6=0,解得1=−6,2=1(舍去).综上所述:原方程的解是1=6,2=−6.任务:请参照上述方法解方程:2−−2=0.【答案】1=2,2=−2【分析】分两种情况讨论∶当≥0时,当<0时,即可求解.【详解】解:分两种情况讨论(1)当≥0时,原方程可化为2−−2=0解得:1=2,2=−1(舍去);(2)当<0时,原方程可化为2+−2=0解得:1=−2,2=1(舍去);∴综上所述,原方程的根是1=2,2=−2.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【例2】阅读题例,解答下题:例:解方程:2−|U−2=0.解:将含有绝对值符号的方程中的绝对值去掉,就分情况考虑:(1)当≥0,2−−2=0,解得1=−1(不合题意,舍去),2=2;(2)当<0,2+−2=0,解得1=1(不合题意,舍去),2=−2.综上所述,原方程的解是=2或=−2.依照上例解法,解方程2+2|+2|−4=0.【答案】1=0,2=−2【分析】根据例题中的解题方法对+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合的取值范围最终确定答案即可.【详解】解:①当+2≥0,即≥−2时,方程变形得:2+2(+2)−4=0∴2+2=0∴o+2)=0∴1=0,2=−2;②当+2<0,即x<−2时,方程变形得:x2−2(x+2)−4=0∴x2−2x−8=0∴(x+2)(x−4)=0∴x1=−2(舍去),x2=4(舍去)∴综上所述,原方程的解是1=0或2=−2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.【变式1】阅读下面的材料,解答问题.材料:解含绝对值的方程2−3−10=0.解分两种情况(1)当x≥0时,原方程化为W−3K10=0,解得1=5,2=−2(舍去)(2)当x<0时,原方程化为2+3K10=0,解得1=−5,2=2(舍去)综上所述,原方程的解是1=5,2=−5.问题:仿照上面的方法,解方程2−22r3+9=0.【答案】1=1,2=3【分析】仿照例题,分p−32与I−32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2r1≥0,即p−32时,原方程可化为:2−2(2r3)+9=0整理得:2−4r3=0解得:1=1,2=3当2r1<0,即I−32时,原方程可化为:2+2(2r3)+9=0整理得2+4r15=0∵Δ=42−4×1×15=−44<0,∴此方程无实数解,综上所述,原方程的解为:1=1,2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.【例1】已知=2−,=−2为任意实数,则−的值()A.大于0B.等于0C.小于0D.无法确定【答案】A【分析】根据整式的加减化简,然后根据配方法得出−=−12+1>0,即可求解.【详解】解:∵=2−,=−2∴−=2−−−2=2−2+2=−12+1>0∴−的值大于0,故选:A.【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.【例2】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:=2−2B+22−2+2,利用配方法求的最小值,解:2−2B+22−2+2=2−2B+2+2−2+1+1=−2+−12+1∵−2≥0,−12≥0,∴当==1时,有最小值1.请根据上述材料解决下列问题:(1)在横线上添加一个常数,使之成为完全平方式:2−23+______.(2)若=142+2−1,求的最小值.(3)已知2+22+2−2B−2+4+5=0,则++的值为______.【答案】(1)19(2)−5(3)0【分析】(1)加一次项系数一半的平方,配成完全平方式;(2)提取系数14后,再加一次项系数一半的平方16,并减去16,配成完全平方式,利用偶次方的非负性可知的最小值;(3)拆项后配成三个完全平方式,利用偶次方的非负性可得−=0,−1=0,+2=0,据此求出、、的值,即可求解.【详解】(1)解:2−2⋅⋅13+=2−23+19=−,故答案为:19;(2)解:=142+2−12+8+16−16−1=+42−5+42≥0,∵∴当=−4时,有最小值−5;(3)解:∵2+22+2−2B−2+4+5=0,∴2−2B+2+2−2+1+2+4+4=0,∴−2+−12++22=0,∵−2≥0,−12≥0,+22≥0,∴−=0,−1=0,+2=0,∴==1,=−2,∴++=1+1−2=0,故答案为:0.【点睛】本题考查了配方法的应用,偶次方的非负性,熟练掌握完全平方式是解题的关键.【例3】【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.例如,把二次三项式2−2+3进行配方.解:2−2+3=2−2+1+2=2−2+1+2=−12+2.我们定义:一个整数能表示成2+2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为5=22+12.再如,=2+2B+22=+2+2(x,y是整数),所以M也是“完美数”.(1)【问题解决】请你再写一个小于10的“完美数”;并判断40是否为“完美数”;(2)【问题解决】若二次三项式2−6+13(x是整数)是“完美数”,可配方成−2+(m,n为常数),则B的值为;(3)【问题探究】已知“完美数”2+2−2+4+5(x,y是整数)的值为0,则+的值为;(4)【问题探究】已知=2+42+8−12+(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的k值.(5)【问题拓展】已知实数x,y满足−2+3+−5=0,求+的最小值.【答案】(1)4(答案不唯一),是(2)12(3)−1(4)25(5)4【分析】(1)根据“完美数”的定义判断即可;(2)利用配方法进行转化,然后求得对应系数的值;(3)配方后根据非负数的性质可得和的值,进行计算即可;(4)利用完全平方公式把原式变形,根据“完美数”的定义证明结论;(5)将−2+3+−5=0变形为+=2−2+5,然后再配方即可求解.【详解】(1)4是“完美数”,理由:因为4=22+02;40是“完美数”,理由:因为40=62+22.故答案为:4(答案不唯一),是;(2)∵2−6+13=2−6+9+4=−32+4∴=3,=4,∴B=12故答案为:12;(3)∵2+2−2+4+5=−12++22=0∴=1,=−2,∴+=−1故答案为:−1;(4)=2+42+8−12+=+42+2−32+−25由题意得:−25=0,∴=25;(5)∵−2+3+−5=0∴+=2−2+5=−12+4≥4;∴当=1时,+的最小值为4.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.【变式1】若=2+2+2+4+2021,则p的最小值是()A.2021B.2015C.2016D.没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【详解】解:=2+2+2+4+2021=2+2+1+2+4+4+2016=2+2+1+2+4+4+2016=+12++22+2016,∵+12≥0,+22≥0,∴p的最小值为2016,故选:C.【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.【变式2】已知点os p在一次函数=2−1图象上,则2++3的最小值为______.【答案】1【分析】将点os p代入一次函数解析式得出,=2−1,代入代数式,根据配方法即可求解.【详解】解:∵点os p在一次函数=2−1图象上,∴=2−1∴2++3=2+2−1+3=2+2+1+1=+12+1≥1故答案为:1.【点睛】本题考查了一次函数的性质,配方法的应用,熟练掌握以上知识是解题的关键.【变式3】“2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:2+4+5=2+4+4+1=+22+1,∵+22≥0,∴+22+1≥1,∴2+4+5≥1.即:2+4+5的最小值是1.试利用“配方法”解决下列问题:(1)求代数式2−4+6最值;(2)已知2−4+2+2+5=0,求+的值;(3)比较代数式2−1与2−3的大小.【答案】(1)有最小值2(2)+=1(3)2−1>2−3【分析】(1)根据完全平方式的特征求解;(2)先配方,再求最值;(3)作差后配方比较大小.【详解】(1)解:2−4+6=2−4+4+2=−22+2故当−2=0,即=2时,代数式2−4+6最小值为2;(2)∵2−4+2+2+5=0,则2−4+4+2+2+1=0,∴−22++12=0,即−2=0,+1=0,∴=2,=−1,∴+=2−1=1;(3)2−1−2−3=2−2+2=−12+1,∵−12≥0,∴−12+1>0,∴2−1>2−3.【点睛】本题考查配方法的应用,正确配方,充分利用平方的非负性是求解本题的关键.1.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程2−|U−2=0.解:当O0时,原方程可化为2−−2=0.解得:1=2,2=−1(不合题意,舍去)当<0时,原方程可化为2+−2=0.解得:1=−2,2=1(不合题意,舍去)∴原方程的解是1=2,2=−2.(2)请参照上例例题的解法,解方程2−−|−1|−1=0.【答案】1=2,2=−2【分析】仿照第(1)题的解题过程,分两种情况:当−1⩾0时,当−1<0时,分别进行计算即可解答.【详解】解:当−1⩾0时,即O1时,原方程可化为:2−−(−1)−1=0,整理得:2−2=0,解得:1=0(不合题意,舍去),2=2;当−1<0时,即<1时,原方程可化为:2−+(−1)−1=0,整理得:2−2=0,解得:1=2(不合题意,舍去),2=−2;∴原方程的解是1=2,2=−2.【点睛】本题考查了绝对值的意义,解一元二次方程﹣因式分解法,理解例(1)的解法是解题的关键.2.阅读下面材料:为解方程(2−1)2−5(2−1)+4=0,我们可以将(2−1)看作一个整体,然后设2−1=,那么原方程可化为2−5+4=0,解得1=1,2=4.当=1时,2−1=1,∴2=2,=±2;当=4时,2−1=4,∴2=5,=±5.故原方程的解为:1=2,2=−2,3=5,4=−5.上述解方程的方法叫做“换元法”,请用“换元法”解决下列问题:(1)解方程:4+32−4=0;(2)已知实数m满足(1−22+4p(32−6+5)=2,求2−2的值.【答案】(1)1=1,2=−1(2)2−2的值是13【分析】(1)设2=,那么原方程可化为2+3−4=0,继而因式分解法解一元二次方程,即可求解.(2)原方程化为1−2(2−2p3(2−2p+5=2,设2−2=,那么原方程可化为(1−2p(3+5)=2,解关于的一元二次方程,进而再根据一元二次方程根的判别式取舍的值即可求解.【详解】(1)4+32−4=0,设2=,那么原方程可化为2+3−4=0,解得:1=−4,2=1,当=−4时,2=−4,因为不论x为何值,2不能为负数,所以此方程无解;当=1时,2=1,解得:x=±1,所以原方程的解为:1=1,2=−1;(2)1−22+432−6+5=2,1−2(2−2p3(2−2p+5=2,设2−2=,那么原方程可化为(1−2p(3+5)=2,62+7−3=0,(3−1)(2+3)=0,解得:1=13,2=−32,当=13时,2−2=13,当=−32时,2−2=−32,整理得:22−4+3=0,Δ=(−4)2−4×2×3=16−24=−8<0,此时方程无解,综合上述:2−2的值是13.【点睛】本题考查了换元法解一元二次方程,因式分解法解一元二次方程,掌握换元法解一元二次方程是解题的关键.3.阅读材料,解答问题.解方程:(4−1)2−10(4−1)+24=0.解:把4K1视为一个整体,设4−1=,则原方程可化为2−10r24=0.解得1=6,2=4.∴4−1=6或4−1=4.∴1=74,2=54.以上方法就叫换元法,达到简化或降次的目的,体现了转化的思想.请仿照材料解下列方程:(1)4−2−6=0;(2)(2−2p2−52+10−6=0.【答案】(1)1=3,2=−3;(2)1=1+7,2=1−7,3=4=1【分析】(1)仿照材料的方法,设2=,则原方程可化为2− −6=0,进而解方程即可求解;(2)仿照材料的方法,设2−2J,则原方程可化为2−5−6=0,进而解方程即可求解;【详解】解:(1)设2=,则原方程可化为2− −6=0,整理得(−3)(+2)=0,解得1=3,2=−2.当J3时,即2=3,∴=±3;当J−2时,2=−2无解.∴原方程的解为1=3,2=−3.(2)设2−2J,则原方程可化为2−5−6=0,整理得K6r1=0,解得1=6,2=−1.当J6时,即2−2=6,解得1=1+7,2=1−7;当J−1时,即2−2J−1,解得3=4=1.综上所述,原方程的解为1=1+7,2=1−7,3=4=1.【点睛】本题考查了解一元二次方程,掌握换元法解一元二次方程是解题的关键.4.阅读下面的材料,解答问题.材料:解含绝对值的方程:2−3|U−10=0.解:分两种情况:①当x≥0时,原方程化为2−3K10=0解得1=5,2=−2(舍去);②当x<0时,原方程化为2+3K10=0,解得3=−5,4=2(舍去).综上所述,原方程的解是1=5,2=−5.请参照上述方法解方程2−|r1|−1=0.【答案】1=2,2=−1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当r1≥0,即p−1时,原方程化为2−r1−1=0,解得1=2,2=−1;②当r1<0,即I−1时,原方程化为2+r1−1=0,解得3=0(舍去),4=−1(舍去).综上所述,原方程的解是1=2,2=−1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.5.阅读下面的材料,回答问题:(1)将关于x的一元二次方程2+bx+c=0变形为2=﹣bx﹣c,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知2﹣x﹣1=0,用“降次法”求出4﹣3x+2020的值是______.(2)解方程4−52+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2=y,那么4=2,于是原方程可变为2−5+4=0(1),解得1=1,2=4.当y=1时,2=1,∴x=±1;当y=4时,2=4,∴x=±2;∴原方程有四个根1=1,2=−1,3=2,4=−2.请你用(2)中的方法求出方程(2+p2−22−2=8的实数解.【答案】(1)2022(2)1=2=【分析】(1)根据题目所提供的方法即可求出答案;(2)根据换元法即可求解.(1)解:∵2﹣x﹣1=0,∴2=x+1,∴4﹣3x+2020=(+1)2−3+2020=2﹣x+2021=x+1﹣x+2021=2022.故答案为:2022;(2)解:设2+x=y,那么(2+p2=2,于是原方程可变为2−2−8=0,解得1=﹣2,2=4.当y=﹣2时,2+x+2=0,Δ=1﹣4×1×2=﹣7<0,∴方程无解;当y=4时,2+x﹣4=0,∴x∴原方程有两个根:x1x2【点睛】本题考查了降次法求代数式的值和换元法解一元二次方程,能够降次是解此题的关键.6.阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:2−6−22−6−8=0.【提示】可以用“换元法”解方程.解:设2−6=(t≥0),则有2−6=2,原方程可化为:2−2−8=0,【续解】【答案】1=8,2=−2【分析】按照题目思路,用因式分解法解2−2−8=0,求出t,再代入2−6=2,解出x,即可求解.【详解】解:+2−4=0,t+2=0或t﹣4=0,∴1=−2(依据≥0,此根舍去),2=4,当t=4时,2−6=2=42=16,则2−6−16=0,配方得−32=25,解得1=8,2=−2,经检验,原方程的解为1=8,2=−2.【点睛】本题主要考查了解一元二次方程的知识,题中涉及换元的思想.注意,原方程涉及二次根式,故所得的解,必须要代入原方程检验.7.阅读与理解:阅读材料:像+−1=3这样,根号内含有未知数的方程,我们称之为无理方程.解法如下:移项:−1=3−H;两边平方:x﹣1=9﹣6x+x2.解这个一元二次方程:x1=2,x2=5检验所得到的两个根,只有是原无理方程的根.理解应用:解无理方程=2.【答案】=2;x=3【分析】阅读材料:通过检验可确定原方程的解;理解应用:先移项得到−2=一元二次方程,然后进行检验确定原无理方程的根.【详解】解:阅读材料:经检验=2是原方程的解;故答案为:=2;理解应用:移项:−2=1+1,两边平方:2−4+4=解得1=54,2=3,经检验原无理方程的根为=3.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.8.阅读下列材料:为解方程4−2−6=0可将方程变形为22−2−6=0然后设2=,则22=2,原方程化为2−−6=0①,解①得1=−2,2=3.当1=−2时,2=−2无意义,舍去;当2=3时,2=3,解得=±3;∴原方程的解为1=3,2=−3;上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)2−22−52+10+6=0;(2)32+15+22+5+1=2.【答案】(1)1=1+3,2=1−3,3=3,4=−1;(2)1=0,2=−5.【分析】(1)根据阅读材料利用换元法降次,令=2−2,即原方程=2−5+6=0,求解即可.(2)同理,令2+5+1=,即原方程=32+2−5=0,求解即可.【详解】(1)设=2−2,得:2−5+6=0,解得:1=2,2=3.当1=2时,2−2=2,解得:=1±3,当2=3时,2−2=3,解得:=3,−1.∴原方程的解为1=1+3,2=1−3,3=3,4=−1.(2)设2+5+1=,则方程可变成32+2−5=0,∴(3+5)(−1)=0,1=−53,2=1.当1=−53时,2+5+1=−53,所以无解.当2=1时,2+5+1=1,∴2+5=0,∴1=0,2=−5.经检验1=0,2=−5是原方程的解.【点睛】本题考查利用换元法解一元二次方程.利用整体换元把一些形式复杂的方程变成一元二次方程,从而达到降次的目的是解答本题的关键.9.【阅读材料】利用公式法,可以将一些形如B2+B+o≠0)的多项式变形为o+p2+的形式,我们把这样的变形方法叫做多项式B2+B+o≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解或有关运算.例如:对于2+6+8.(1)用配方法分解因式;(2)当取何值,代数式2+6+8有最小值?最小值是多少?解:(1)原式=2+6+8+1−1=2+6+9−1=(+3)2−1=[(+3)+1][(+3)−1]=(+4)(+2).(2)由(1)得:2+6+8=(+3)2−1,∵(+3)2≥0,∴(+3)2−1≥−1,∴当=−3时,代数式2+6+8有最小值,最小值是−1.【问题解决】利用配方法解决下列问题:(1)用配方法因式分解:2+2−8;(2)试说明不论为何值,代数式−2+4−5恒为负数;(3)若已知(+p(−p=14(+p2且≠0,求K的值.【答案】(1)(+4)(−2)(2)见解析(3)2【分析】(1)根据题干信息,利用配方法分解因式即可;(2)先利用配方法将−2+4−5变形为−(−2)2−1,根据二次方的非负性,求出−2+4−5的值恒为负数;(3)先将(+p(−p=14(+p2变形为(2−+p2=0,得出2−+=0,即可求出K=2.【详解】(1)解:2+2−8=2+2+1−9=(+1)2−9=(+1+3)(+1−3)=(+4)(−2).(2)解:∵−2+4−5=−(2−4+4)−1=−(−2)2−1,∵−22≥0,∴−−22≤0,∴−−22−1≤−1<0∴不论为何值,代数式−2+4−5恒为负数.(3)解:∵(+p(−p=14(+p2,∴B−2+B−B=14(2+2B+2),∴4B−42+4B−4B=2+2B+2,∴(42−4B+2)+2(2−p+2=0,∴(2−p2+2(2−p+2=0,∴(2−+p2=0,∴2−+=0,∴2=−,∵≠0,∴K=2.【点睛】本题主要考查了配方法分解因式,解题的关键是熟练掌握完全平方公式2±2B+ 2=±2.10.【阅读材料】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、最值问题中都有着广泛的应用.例如:①用配方法因式分解:2+6+8.解:原式=2+6+9−1=+32−1=+3−1+3+1=+2+4②求2+6+11的最小值.解:原式=2+6+9+2=+32+2.∵+32≥0,∴+32+2≥2,即2+6+11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:2+4+____________.(2)因式分解:2−12+32.(3)求42+4+3的最小值.(4)用配方法因式分解:4+4.【答案】(1)4(2)−4−8(3)2(4)2+2+22−2+2【分析】(1)由2+4+___=2+2⋅×2+22,从而可得答案;(2)由2−12+32=2−2⋅×6+62−62+32化为两数的平方差,再利用平方差公式分解,从而可得答案;(3)由42+4+3=22+2×2⋅1+12−12+3化为一个非负数与一个常数的和,再利用非负数的性质求解最小值即可.(4)由4+4=22+2⋅2⋅2+22−2⋅2⋅2化为两数的平方差,再利用平方差公式分解即可;【详解】(1)∵2+4+4=+22,故答案为:4(2)2−12+32=2−2⋅×6+62−62+32=−62−22=−6+2−6−2=−4−8(3)42+4+3=22+2×2b1+12−12+3=2+12+2∵2+12≥0,∴2+12+2≥2,∴42+4+3的最小值是2(4)4+4=22+2⋅2⋅2+22−2⋅2⋅2=2+22−22=2+2+22−2+2【点睛】本题考查的是配方法的应用,同时考查了完全平方公式与平方差公式,解题的关键是掌握用配方法分解因式.11.已知实数、满足−2=8,则代数式2−32+−14的最小值是_____.【答案】58【分析】根据题意把原式变形,根据配方法把原式写成含有完全平方的形式,根据≥8,即可求解.【详解】∵−2=8,∴2=−8,≥8,则2−32+−14=2−3−8+−14=2−3+24+−14=2−2+10=−12+9∵≥8∴当=8时取得最小值,最小值为8−12+9≥58,故答案为:58.【点睛】本题考查配方法的应用和非负数的性质,解题的关键是掌握配方法的应用和非负数的性质.。

2020九年级数学上册第二十一章解-换元法同步练习(新版)新人教版

2020九年级数学上册第二十一章解-换元法同步练习(新版)新人教版

21.2.5解一元二次方程-换元法学校:___________姓名:___________班级:___________一.选择题(共15小题)1.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5 B.x1=1,x2=﹣3.5C.x1=1,x2=3.5 D.x1=﹣1,x2=3.52.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或23.已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()A.﹣3 B.1 C.﹣3或1 D.﹣1或34.已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=2,x2=6 D.x1=﹣2,x2=﹣65.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或36.已知x是实数且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x的值为()A.3 B.﹣3或1 C.1 D.﹣1或37.若实数x、y满足(x2+y2+2)(x2+y2﹣2)=0,则x2+y2的值为()A.1 B.2 C.2或﹣1 D.2或﹣28.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或29.已知方程ax2+bx+c=0的解是x1=2,x2=﹣3,则方程a(x+1)2+b(x+1)+c=0的解是()A.x1=1,x2=﹣4 B.x1=﹣1,x2=﹣4 C.x1=﹣1,x2=4 D.x1=1,x2=410.设(x2+y2)(x2+y2+2)﹣15=0,则x2+y2的值为()A.﹣5或3 B.﹣3或5 C.3 D.511.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4 B.2 C.4或﹣2 D.4或212.用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣113.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣414.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或315.若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1二.填空题(共5小题)16.若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b= .17.设x,y是一个直角三角形两条直角边的长,且(x2+y2)(x2+y2﹣1)=20,则这个直角三角形的斜边长为.18.已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是.19.若(x2+y2+3)2﹣6(x2+y2+3)+8=0,则x2+y2﹣5= .20.如果(m+n)(m+n+5)=6,则m+n= .三.解答题(共4小题)21.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.22.(3x﹣2)2﹣5(3x﹣2)+4=0.23.已知实数x,y满足(x2+y2)(x2+y2﹣12)=45,求x2+y2的值.24.阅读下面的材料,解答后面的问题材料:“解方程x4﹣3x2+2=0”解:设x2=y,原方程变为y2﹣3y+2=0,(y﹣1)(y﹣2)=0,得y=1或y=2当y=1时,即x2=1,解得x=±1;当y=2时,即x2=2,解得x=±综上所述,原方程的解为x1=1,x2=﹣1,x3=.x4=﹣问题:(1)上述解答过程采用的数学思想方法是A.加减消元法 B.代入消元法 C.换元法 D.待定系数法(2)采用类似的方法解方程:(x2﹣2x)2﹣x2+2x﹣6=0.2018-2019学年度人教版数学九年级上册同步练习:21.2.5解一元二次方程-换元法参考答案与试题解析一.选择题(共15小题)1.解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣4,所以x1=﹣1,x2=﹣3.5.故选:A.2.解:设y=a2﹣b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∴a2﹣b2=4或﹣2.故选:C.3.解:(x2+y2)(x2+y2+2)﹣3=0,(x2+y2)2+2(x2+y2)﹣3=0,(x2+y2+3)(x2+y2﹣1)=0,x2+y2﹣1=0,x2+y2=1,故选:B.4.解:∵方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∴方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.5.解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.6.解:由y=x2+3x,则(x2+3x)2+2(x2+3x)﹣3=0,可化为:y2+2y﹣3=0,分解因式,得,(y+3)(y﹣1)=0,解得,y1=﹣3,y2=1,当x2+3x=﹣3时,经△=32﹣3×4=﹣3<0检验,可知x不是实数当x2+3x=1时,经检验,符合题意.故选:C.7.解:设t=x2+y2,则t≥0,原方程变形为(t+2)(t﹣2)=0,解得:t=2或t=﹣2(舍去).故选:B.8.解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.9.解:设t=x+1,则方程a(x+1)2+b(x+1)+c=0化为at2+at+c=0,因为方程ax2+bx+c=0的解是x1=2,x2=﹣3,所以t1=2,t2=﹣3,当t=2时,x+1=2,解得x=1;当t=﹣3时,x+1=﹣3,解得x=﹣4,所以方程a(x+1)2+b(x+1)+c=0的解是x1=1,x2=﹣4.故选:A.10.解:设t=x2+y2,则原方程可化为t2+2t﹣15=0,∴t=x2+y2=3或t=x2+y2=﹣5,又∵t≥0,∴x2+y2=3.故选:C.11.解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A.12.解:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.13.解:设x2+2x=y,则原方程化为y(y﹣2)﹣8=0,解得:y=4或﹣2,当y=4时,x2+2x=4,此时方程有解,当y=﹣2时,x2+2x=﹣2,此时方程无解,舍去,所以x2+2x=4.故选:B.14.解:设y=x2+x+1=y,则(x2+x+1)2+2(x2+x+1)﹣3=0,可化为:y2+2y﹣3=0,分解因式得:(y+3)(y﹣1)=0,解得:y1=﹣3,y2=1,当x2+x+1=﹣3时,经△=12﹣4×1×4<0检验,可知x不是实数,当x2+x+1=1时,经检验,符合题意.故选:A.15.解:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.二.填空题(共5小题)16.解:设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.17.解:设x2+y2=t,则原方程可化为:t(t﹣1)=20,∴t2﹣t﹣20=0,即(t+4)(t﹣5)=0,∴t1=5,t2=﹣4(舍去),∴x2+y2=5,∴这个直角三角形的斜边长为,故答案为:.18.解:(x2+y2)(x2+y2﹣1)=12,(x2+y2)2﹣(x2+y2)﹣12=0,(x2+y2+3)(x2+y2﹣4)=0,x2+y2+3=0,x2+y2﹣4=0,x2+y2=﹣3,x2+y2=4,∵不论x、y为何值,x2+y2不能为负数,∴x2+y2=4,故答案为:4.19.解:设x2+y2+3=t∵(x2+y2+3)2﹣6(x2+y2+3)+8=0,∴t2﹣6t+8=0∴t=2或t=4当t=2时,x2+y2+3=2∴x2+y2=﹣1故t=2舍去当t=4时,x2+y2+3=4∴x2+y2=1∴原式=1﹣5=﹣4故答案为:﹣420.解:设m+n为x则(m+n)(m+n+5)=6变形为x(x+5)=6 移项去括号得x2+5x﹣6=0因式分解得(x+6)(x﹣1)=0解得x=1或﹣6即m+n=1或﹣6.三.解答题(共4小题)21.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.22.解:设(3x﹣2)=y,原方程等价于y2﹣5y+4=0因式分解,得(y﹣4)(y﹣1)=0,于是,得y﹣4=0或y﹣1=0,解得y=4或y=1,3x﹣2=4,3x﹣2=1,解得x1=2,x2=1.23.解:设x2+y2=a,则a(a﹣12)=45,a2﹣12a﹣45=0,(a﹣15)(a+3)=0,a1=15,a2=﹣3,∵x2+y2=a≥0,∴x2+y2=15.24.解:(1)上述解答过程采用的数学思想方法是换元法.故答案是:C;(2)设x2﹣2x=y,原方程化为y2﹣y﹣6=0,整理,得(y﹣3)(y+2)=0,得y=3或y=﹣2当y=3时,即x2﹣2x=3,解得x=﹣1或x=3;当y=﹣2时,即x2﹣2x=2,解得x=1±综上所述,原方程的解为x1=﹣1,x2=3,x3=1+.x4=1﹣.。

8.一元二次方程解法及应用(解答题)

8.一元二次方程解法及应用(解答题)

8.一元二次方程解法及应用(解答题)解答题58.(2009仙桃)解方程:2420x x ++=. 【关键词】一元二次方程 【答案】解:242x x +=- ()2244242222x x x x x ++=-++=+==∴122, 2.x x ==59.(2009年山西省)解方程:2230x x --= 【关键词】解一元二次方程【答案】解:移项,得223x x -=,配方,得()214x -=, ∴12x -=±,∴1213x x =-=,.60.(2009年赤峰市)某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率。

61.(2009年常德市)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成? 【关键词】年平均增长率【答案】设2008年到2010年的年平均增长率为 x ,则 2440(1)743.6x += 化简得 : 2(1) 1.69x +=, 120.330% 2.3x x ===-,(舍去)2743.6(10.3)1256.6841200⨯+=> 答:2008年到2010年的工业总产值年平均增长率为 30%,若继续保持上面的增长率, 在2012年将达到1200亿元的目标.62.(2009武汉)17.解方程:2310x x --=.【关键词】解一元二次方程【答案】解:131a b c ==-=- ,,,224(3)41(1)13b ac ∴-=--⨯⨯-=,123322x x +-∴==.(2009年上海市)20.解方程组:21220y x x xy -=⎧⎨--=⎩,①.②【关键词】解二元二次方程组 【答案】⎩⎨⎧=-=01y x 或⎩⎨⎧==32y x63.(2009年义乌)解方程2220x x --=。

考点07 解一元二次方程-换元法(解析版)

考点07 解一元二次方程-换元法(解析版)

考点07 解一元二次方程——换元法一.选择题(共12小题)1.(2021·全国八年级)若关于x 的一元二次方程()2500ax bx a ++=≠有一根为2020,则方程()()2115a x b x +++=-必有根为( )A .2021B .2020C .2019D .2015【答案】C【分析】设,即()()2115a x b x +++=-可改写为250at bt ++=,由题意关于x 的一元二次方程()2500ax bx a ++=≠有一根为2020x =,即250at bt ++=有一个根为2020t =,所以12020x +=,x =2019.【解析】由()()2115a x b x +++=-得到()()21150a x b x ++++=,对于一元二次方程()()2115a x b x +++=-,设,所以250at bt ++=,而关于x 的一元二次方程()2500ax bx a ++=≠有一根为2020x =, 所以250at bt ++=有一个根为2020t =,则12020x +=,解得2019x =,所以一元二次方程()()2115a x b x +++=-有一根为2019x =.故选:C .【点睛】本题考查一元二次方程的解.掌握换元法解题是解答本题的关键.2.(2020·深圳市龙岗区智民实验学校九年级月考)已知x 、y 为实数,且(x 2+y 2)(x 2+y 2-1)=12,那么x 2+y 2的值是( )A .-3或4B .4C .-3D .-4或3【答案】B【分析】利用换元法,令,解一元二次方程即可,注意取值范围.【解析】令,则,原方程变形为:()112t t -=,解得:或(舍去)故选:B .【点睛】本题考查换元法解一元二次方程,但是注意换元之后的取值范围是关键.3.(2020·佛山市南海区南海实验中学九年级月考)一元二次方程20ax bx c ++=的解是,现给出另一个方程2(23)(23)0a x b x c ++++=.它的解是( )A .B .C .D .121,3x x =-=-【答案】D【分析】 利用换元法解一元二次方程即可得.【解析】令,则方程2(23)(23)0a x b x c ++++=可变形为20ay by c ++=,由题意得:,即1221,2333x x ++==-, 解得121,3x x =-=-,故选:D .【点睛】本题考查了利用换元法解一元二次方程,熟练掌握换元法是解题关键.4.(2020·山东淄博市·八年级期中)解分式方程时,利用换元法设,把原方程变形成整式方程为( )A .2310y y ++=B .2310y y -+=C .2310y y --=D .2310y y +-=【答案】D【分析】先通过设元,然后把用倒数法转换为,把方程变为y 的方程,再整理去分母即可.【解析】设,,原方程变为y -+3=0,方程两边都乘以y 得,2310y y +-=, 把原方程变形成整式方程为:2310y y +-=.故选:D .【点睛】本题考查高次方程的解法,掌握换元的方法,有倒数换元法,平方换元法,根据方程的特点选取适当的换元方法,会用换元法进行判断,选择,或解方程是解题关键.5.(2020·四川遂宁市·射洪中学八年级期中)若,则的值是( )A .3B .-1C .3或1D .3或-1【答案】A【分析】用,解出关于a 的方程,取正值即为的值是.【解析】解:令,则(2)30a a --=, 即2230a a --=,即(3)(1)0a a ,解得,,又因为,所以故的值是3,故选:A.【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意.6.(2020·赤峰市松山区大庙中学九年级月考)已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,则x2+3x的值为()A.-3或1B.-3C.1D.不能确定【答案】C【分析】采用换元法,设x2﹣3x=y,将原方程变成一元二次方程求出y,然后根据一元二次方程的根的判别式舍去不成立的解即可;【解析】设x2﹣3x=y,则原方程可化为y2+2y-3=0()()-+=y y130解得:y1=﹣3,y2=1当x2﹣3x=-3,即x2﹣3x+3=0时2∆⨯<=3-430方程无解则x2+3x的值为1故选C【点睛】本题考查一元二次方程的解法和根的判别式,灵活运用换元法和根的判别式是解题关键.7.(2020·呼和浩特市赛罕区世宙中学)若(m2+n2)(m2+n2-2)-8=0,则m2+n2的值是().A.4B.-2C.4或-2D.-4或2【答案】A【分析】x x--=,解方程求出x后结合m2+n2≥0即得答设m2+n2=x,将原方程转化为()280案.【解析】x x--=,解:设m2+n2=x,则原方程可变形为:()280解得:,∵m2+n2≥0,∵m2+n2=4.故选:A.【点睛】本题考查了一元二次方程的解法,属于常考题型,正确换元、掌握解法是解题的关键.8.(2020·四川省达川第四中学九年级月考)(m2+n2)(m2+n2−2)−8=0,则m2+n2=()A.4B.2C.4或−2D.4或2【答案】A【分析】设y=m2+n2,然后解一元二次方程即可求出y的值,结合平方的非负性即可求出结论.【解析】解:设y=m2+n2,原方程变形为y(y-2)﹣8=0.整理得,y2-2y﹣8=0,(y-4)(y+2)=0,解得y1=4,y2=-2,∵m2+n2≥0,∵m2+n2的值为4,故选A.【点睛】本题考查了用换元法解一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,把m2+n2设为y,转化为关于y的一元二次方程是解题的关键.9.(2020·全国九年级单元测试)已知关于x的一元二次方程mx2﹣nx=p(m≠0)的两个根为x1=3,x2=5,则方程m(2x+5)2﹣n(2x+5)﹣p=0的根为()A.x1=3,x2=5B.x1=﹣1,x2=0C.x1=﹣2,x2=0D.x1=11,x2=15【答案】B【分析】利用整体思想可得2x+5=3或2x+5=5,从而求出结论.【解析】解:∵关于x的一元二次方程mx2﹣nx=p(m≠0)的两个根为x1=3,x2=5,∵方程m(2x+5)2﹣n(2x+5)﹣p=0中2x+5=3或2x+5=5,解得:x=﹣1或x=0,即x1=﹣1,x2=0,故选:B.【点睛】此题考查的是一元二次方程的特殊解法,掌握整体思想是解决此题的关键.10.(2020·四川省内江市第六中学九年级月考)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.11.(2020·江苏盐城市·汇文实验初中八年级月考)若实数、满足,则a2+b2的值为()A.-5B.-2或5C.2D.-5或-2【答案】C【分析】根据换元法,令a2+b2=m,将原式整理成含有m的一元二次方程,解出m的值,根据题意对m 的值进行取舍即可.【解析】解:令a2+b2=m ,原式可化为:(3)10m m +=,即23100m m +-=,解得:m=-5或m=2,因为a2+b2>0所以m=2a²+b²=2故答案为C.【点睛】本题考查了一元二次方程的解法,利用换元法求一元二次方程根,进而求出相应代数式的值,解决本题的关键是正确理解题意,能够用m 将所求式子替换下来.12.(2020·四川遂宁市·射洪中学)已知(x 2+y 2)(x 2+y 2-1)-6=0,则 x 2+y 2 的值是( ) A .3或-2B .-3或2C .3D .-2【答案】C【分析】设m=x2+y2,则有260m m --=,求出m 的值,结合x2+y20,即可得到答案.【解析】解:根据题意,设m=x2+y2,∵原方程可化为:(1)60m m --=,∵260m m --=,解得:或;∵220m x y =+≥,∵,∵;故选:C .二.填空题(共6小题)13.(2021·上海九年级专题练习)如果实数x 满足(x+)2﹣(x+)﹣2=0,那么x+的值是_____.【答案】2【分析】设,则原方程可变形为y2−y -2=0,求出解,将解分别代入x+=y 判断方程有无解即可.【解析】设,则原方程可变形为y2−y -2=0,解得y1=−1,y2=2,当y1=−1时,,化简得210x x ++=,∵∵=b2−4ac<0,∵此方程无解;当y2=2时,,化简得2210x x -+=, ∵∵=b2−4ac=0, ∵此方程有解, ∵;故答案为:2. 【点睛】此题考查换元法解一元二次方程,根据题意设解方程使计算更加简便,求解后注意检验方程是否有解是解题的关键.14.(2020·全国)若,则代数式 的值为_____ 【答案】4 【分析】 用换元法求解. 【解析】 解:设,则原方程为2340t t --=,解得1241t t -=,=,∵220a b +≥ , ∵, ∵ ,故答案为:4.【点睛】本题考查了高次方程,解一元二次方程及换元法解一元二次方程,正确掌握换元法是解决本题的关键.15.(2021·甘肃庆阳市·八年级期末)用换元法解方程时,设,换元后化成关于的一元二次方程的一般形式为______. 【答案】2230y y +-= 【分析】将代入得出,再化为一般形式即可. 【解析】根据题意原方程可化为, ,2230y y +-=.故答案为:2230y y +-=. 【点睛】本题考查利用换元法解分式方程.正确的换元是解题的关键.16.(2021·全国八年级)已知222(3)4(3)30x x x x ++++=,则的值为__. 【答案】. 【分析】设y =x2+3x ,则原方程转化为关于y 的一元二次方程y2+4y +3=0,利用因式分解法解该方程,然后再解关于y 的一元二次方程即可. 【解析】设,则2430y y ++=,即(1)(3)0y y ++=. 解得或. 则的值为或,22993993()44244x x x ++-=---, 231x x ∴+=-,故答案为:. 【点睛】本题主要考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.17.(2020·黑龙江齐齐哈尔市·九年级期中)已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____. 【答案】6 【分析】设x2+y2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x2+y2的值. 【解析】设x2+y2=m ,原方程可变形为:m(m ﹣5)=6, 即m2﹣5m ﹣6=0. ∵(m ﹣6)(m+1)=0, 解得m1=6,m2=﹣1.∵m=x2+y2≥0,∵x2+y2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.(2021·靖江市实验学校九年级月考)已知已知a、b实数且满足(a2+b2)2-(a2+b2)-12=0,则a2+b2的值为_____.【答案】4【分析】将a2+b2看成整体,设a2+b2=t,解关于t的一元二次方程即可,注意 a2+b2≥0.【解析】解:设a2+b2=t,则t2﹣t﹣12=0,解得:t1=4,t2=﹣3,∵a2+b2=t≥0,∵t=4,即a2+b2=4,故答案为:4.三.解析题(共6小题)19.(2021·扬州市江都区育才中学九年级期末)阅读下列材料:为解方程4260--=x x可将方程变形为然后设,则,原方程化为①,解①得,.当时,无意义,舍去;当时,,解得;∵原方程的解为,;上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题转化成简单的问题. 利用以上学习到的方法解下列方程: (1);(2)23152x x ++=. 【答案】(1),,,;(2),. 【分析】(1)根据阅读材料利用换元法降次,令,即原方程=2560y y -+=,求解即可.(2)同理,令,即原方程=23250y y ,求解即可.【解析】 (1)设,得:2560y y -+=, 解得:,. 当时,,解得:, 当时,,解得:,. ∵原方程的解为,,,.(2)设,则方程可变成23250yy ,∵, ,.当时,,所以无解. 当时,, ∵250x x +=, ∵,.经检验,是原方程的解. 【点睛】本题考查利用换元法解一元二次方程.利用整体换元把一些形式复杂的方程变成一元二次方程,从而达到降次的目的是解答本题的关键. 20.(2020·温岭市第三中学九年级期中)解方程:(1)(3)(1)3x x x -+=- (2)22(2)25x x +=+ 【答案】(1),;(2), 【分析】(1)用因式分解法求解,提取公因式; (2)用换元法求解,令,将原式变形成. 【解析】 解:(1)()30x x -=,,;(2)()22225x x +=+()()222221x x +=++,令,22210t t --=,4812∆=+=,, ,. 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的各种解法.21.(2020·山西临汾市·九年级期中)阅读材料:为解方程()()2221310x x ---=,我们可以将视为一个整体,然后设将原方程化为①,解得120,3y y ==. 当时当时,,24,2x x ∴=∴=± 原方程的解为 阅读后解答问题:在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想;利用上述材料中的方法解方程:【答案】(1)换元,整体与划归;(2), 【分析】(1)题目中的方法用的是换元法,体现了整体与划归的数学思想;(2)令,得,用因式分解法解方程求出t的值,再求出x的值.【解析】解:(1)将设为y,利用的是换元法,体现了整体与划归的数学思想,故答案是:换元,整体与划归;(2)令,则,解得,,当时,,解得,,当时,,,方程无解,综上:方程的解是,.【点睛】本题考查用换元法解一元二次方程,解题的关键是掌握换元法解一元二次方程的方法.22.(2020·河南驻马店市·九年级期中)阅读下列材料:已知实数m,n满足,试求的值.解:设22+=,则原方程变为,整理得,即,∵.2m n t∵22m n29+=.20m n+≥,∵22上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x,y满足,求的值.(2)若四个连续正整数的积为120,求这四个连续正整数.【答案】(1);(2)这四个整数为2,3,4,5(1)设2x2+2y2=m ,则原方程变为(m+3)(m -3)=27,解方程求得m=±6,根据非负数的性质即可求得x2+y2=3;(2)设最小的正整数为x ,则另三个分别为x+1、x+2、x+3,根据题意可得方程x (x+1)(x+2)(x+3)=120,整理为(x2+3x )(x2+3x+2)=120,设x2+3x=y ,则原方程变为y (y+2)=120,解方程求得y=-12或10,由于y 是正整数,可得y=10,所以x2+3x=10,再解方程求得x 的值即可. 【解析】解:(1)设,则(3)(3)27m m +-=,∵,即,∵,∵22220x y +≥,∵22226x y +=, ∵.(2)设最小数为x ,则, 即:,设,则221200y y +-=, ∵,,∵,∵2310y x x =+=, ∵,(舍去),∵这四个整数为2,3,4,5. 【点睛】本题考查了换元法,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问23.(2020·河北保定市·保定十三中九年级期中)阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设,那么,于是原方程可变为2540y y -+=①,解得当,时,∵; 当,时,∵; 原方程有四个根:.(1)在由原方程得到方程①的过程中,利用 法达到降次的目的,体现了数学的转化思想.(2)试用上述方法解方程()()2224120x xx x +-+-=【答案】(1)换元(2)x1=−3,x2=2. 【分析】(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x2+x 当成一个整体y 来计算,求出y 的值,再解一元二次方程. 【解析】(1)(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想. 故答案为:换元;(2)设x2+x =y ,原方程可化为y2−4y−12=0, 解得y1=6,y2=−2.由x2+x=6,得x1=−3,x2=2.由x2+x=−2,得方程x2+x+2=0,b2−4ac=1−4×2=−7<0,此时方程无实根.所以原方程的解为x1=−3,x2=2.【点睛】本题应用了换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.24.(2020·长沙市湘郡培粹实验中学)阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=.②已知关于x,y的方程组的解是,关于x,y的方程组的解是.【答案】(1)±3;(2)①(x+2)4;②或.【分析】(1)设2x+2y=a,则原方程变为(a+3)(a﹣3)=27,解之求得a的值,进而可得x+y 的值;(2)①设a=x2+4x+3,原式变形为a(a+2)+1=(a+1)2,将a代入进一步根据完全平方公式分解可得;②将原方程组变为,由题意得出,进一步即可得出答案.【解析】解:(1)设2x+2y=a,则原方程变为(a+3)(a﹣3)=27,整理,得:a2﹣9=27,即a2=36,解得:a=±6,则2x+2y=±6,∵x+y=±3;(2)①设a=x2+4x+3,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2+4x+4)2=(x+2)4;故答案为:(x+2)4;②由方程组得,整理,得:,∵方程组的解是,∵方程组的解是:,解得:或,故答案为:或.【点睛】本题是阅读理解题,主要考查了换元法、多项式的因式分解、一元二次方程的解法和方程组的拓展问题,读懂题意、明确方法、熟练掌握上述知识是解题的关键.。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

《一元二次方程》专题练习含答案解析

《一元二次方程》专题练习含答案解析

《一元二次方程》专题练习含答案解析一元二次方程一、选择题1.方程2x(x﹣3)=5(x﹣3)的解是()A.x=3 B.x= C.x1=3,x2=D.x=﹣32.方程(x+)2+(x+)(2x﹣1)=0的较大根为()A.﹣ B.C.D.3.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对4.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠05.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15% B.20% C.5% D.25%6.已知x=2是关于x的方程的一个解,则2a﹣1的值是()A.3 B.4 C.5 D.67.下列方程适合用因式方程解法解的是()A.x2﹣3x+2=0 B.2x2=x+4 C.(x﹣1)(x+2)=70 D.x2﹣11x﹣10=08.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.或﹣1 B.﹣ C.或1 D.9.方程x2﹣(+)x+=0的根是()A.x1=,x2=B.x1=1,x2= C.x1=﹣,x2=﹣D.x=±10.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售.那么每台实际售价为()A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1﹣70%)a元D.(1+25%+70%)a元二、填空题11.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是.12.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.13.已知两圆的圆心距为3,两圆的半径分别是方程x2﹣4x+3=0的两根,那么这两个圆的位置关系是.14.若方程x2﹣cx+2=0有两个相等的实数根,则c=.15.已知:m是方程x2﹣2x﹣3=0的一个根,则代数式2m﹣m2=.三、解答题:16.解方程(1)x2+3=3(x+1);(2)3x2﹣x﹣1=0.17.某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?18.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(min)之间满足:y=﹣0.1x2+2.6x+43(0≤x≤30),求当y=59时所用的时间.19.某企业1998年初投资100万元生产适销对路的产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点(即:1999年的年获利率是1998年的年获利率与10%的和).求1998年和1999年的年获利率各是多少?20.为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣解答问题:(1)填空:在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程:x4﹣x2﹣6=0.21.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.一元二次方程参考答案与试题解析一、选择题1.方程2x(x﹣3)=5(x﹣3)的解是()A.x=3 B.x= C.x1=3,x2=D.x=﹣3【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】本题应对方程进行移项,提取公因式x﹣3,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:2x(x﹣3)﹣5(x﹣3)=0∴(2x﹣5)(x﹣3)=0∴x1=3,x2=.故选C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法、配方法、公式法、因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.2.方程(x+)2+(x+)(2x﹣1)=0的较大根为()A.﹣ B.C.D.【考点】解一元二次方程﹣因式分解法.【分析】利用因式分解法得到(x+)2+(x+)(2x﹣1)=(x+)[(x+)+(2x﹣1)]=0,推出(x+)=0,[(x+)+(2x﹣1)]=0,求出方程的解即可.【解答】解:∵(x+)2+(x+)(2x﹣1)=0,∴(x+)[(x+)+(2x﹣1)]=0,∴(x+)=0,[(x+)+(2x﹣1)]=0,x1=﹣,x2=,故较大根为,故选:B.【点评】此题主要考查了因式分解解一元二次方程等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.3.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【考点】解一元二次方程﹣因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.4.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.5.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15% B.20% C.5% D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是250(1﹣x),那么第二次后的价格是250(1﹣x)2,即可列出方程求解.【解答】解:如果设平均每月降低率为x,根据题意可得250(1﹣x)2=160,∴x1=0.2,x2=1.8(不合题意,舍去).故选B.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”)6.已知x=2是关于x的方程的一个解,则2a﹣1的值是()A.3 B.4 C.5 D.6【考点】一元二次方程的解.【分析】把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.【解答】解:∵x=2是关于x的方程的一个解,∴×22﹣2a=0,即6﹣2a=0,则2a=6,∴2a﹣1=6﹣1=5.故选:C.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.7.下列方程适合用因式方程解法解的是()A.x2﹣3x+2=0 B.2x2=x+4 C.(x﹣1)(x+2)=70 D.x2﹣11x﹣10=0【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】本题可将选项先化简成ax2+bx+c=0,看是否可以配成两个相乘的因式,满足则方程适用因式分解.【解答】解:根据分析可知A、B、D适用公式法.而C可化简为x2+x﹣72=0,即(x+9)(x﹣8)=0,所以C适合用因式分解法来解题.故选C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.8.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.或﹣1 B.﹣ C.或1 D.【考点】一元二次方程的解.【分析】把x=1代入方程(m2﹣1)x2﹣mx+m2=0,得出关于m的方程,求出方程的解即可.【解答】解:把x=1代入方程(m2﹣1)x2﹣mx+m2=0得:(m2﹣1)﹣m+m2=0,即2m2﹣m﹣1=0,(2m+1)(m﹣1)=0,解得:m=﹣或1,当m=1时,原方程不是二次方程,所以舍去.故选B.【点评】本题考查了一元二次方程的解和解一元二次方程的应用,解此题的关键是得出关于m的方程.9.方程x2﹣(+)x+=0的根是()A.x1=,x2=B.x1=1,x2= C.x1=﹣,x2=﹣D.x=±【考点】解一元二次方程﹣因式分解法.【专题】因式分解.【分析】本题运用的是因式分解法来解题,将方程化为因式的乘积,然后根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:(x﹣)(x﹣)=0,解得x=或x=.故选A.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.10.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售.那么每台实际售价为()A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1﹣70%)a元D.(1+25%+70%)a元【考点】列代数式.【专题】应用题.【分析】每台实际售价=销售价×70%.【解答】解:可先求销售价(1+25%)a元,再求实际售价70%(1+25%)a元.故选B.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“?”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.二、填空题11.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是1.【考点】根与系数的关系.【分析】欲求方程的另一个根,可将该方程的已知根﹣2代入两根之积公式和两根之和公式列出方程组,解方程组即可求出另一个根.【解答】解:设方程的另一根为x1,又∵x2=﹣2.∴,解方程组可得x1=1.【点评】此题也可用此方法解答:将﹣2代入一元二次方程可求得k=﹣2,则此一元二次方程为x2+x﹣2=0,解这个方程可得x1=﹣2,x2=1.12.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是3200(1﹣x)2=2500.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题可根据:原售价×(1﹣降低率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.【解答】解:依题意得:两次降价后的售价为3200(1﹣x)2=2500,故答案为:3200(1﹣x)2=2500.【点评】本题考查降低率问题,由:原售价×(1﹣降低率)2=降低后的售价可以列出方程.13.已知两圆的圆心距为3,两圆的半径分别是方程x2﹣4x+3=0的两根,那么这两个圆的位置关系是相交.【考点】圆与圆的位置关系;解一元二次方程﹣因式分解法.【分析】由两圆的半径分别是方程x2﹣4x+3=0的两根,利用因式分解法即可求得两圆的半径,又由两圆的圆心距为3,即可求得这两个圆的位置关系.【解答】解:∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴两圆的半径分别是1,3,∵1+3=4>3,3﹣1=2<3,∴这两个圆的位置关系是:相交.故答案为:相交.【点评】此题考查了圆与圆的位置关系与一元二次方程的解法.此题难度不大,解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.14.若方程x2﹣cx+2=0有两个相等的实数根,则c=±2.【考点】根的判别式.【分析】根据方程x2﹣cx+2=0有两个相等的实数根,得出△=b2﹣4ac=0,然后进行计算即可.【解答】解:∵方程x2﹣cx+2=0有两个相等的实数根,∴△=(﹣c)2﹣4×1×2=0,∴c=±2;故答案为:±2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.已知:m是方程x2﹣2x﹣3=0的一个根,则代数式2m﹣m2=﹣3.【考点】一元二次方程的解.【分析】把x=m代入方程x2﹣2x﹣3=0得出m2﹣2m﹣3=0,再移项,即可得出答案.【解答】解:把x=m代入方程x2﹣2x﹣3=0得:m2﹣2m﹣3=0,∴2m﹣m2=﹣3,故答案为:﹣3.【点评】本题考查了一元二次方程的解的应用,解此题的关键是得出关于m的方程.三、解答题:16.解方程(1)x2+3=3(x+1);(2)3x2﹣x﹣1=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【专题】计算题.【分析】(1)方程整理后利用因式分解因式求出解即可;(2)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:(1)方程整理得:x2﹣3x=0,即x(x﹣3)=0,解得:x1=0,x2=3;(2)这里a=3,b=﹣1,c=﹣1,∵△=1+12=13,∴x=.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.17.某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?【考点】一元二次方程的应用.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率).即可表示出二月与三月的营业额,根据第一季度总营业额为331万元,即可列方程求解.【解答】解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=﹣3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.【点评】解与变化率有关的实际问题时:(1)主要变化率所依据的变化规律,找出所含明显或隐含的等量关系;(2)可直接套公式:原有量×(1+增长率)n=现有量,n表示增长的次数.18.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(min)之间满足:y=﹣0.1x2+2.6x+43(0≤x≤30),求当y=59时所用的时间.【考点】一元二次方程的应用.【专题】其他问题.【分析】将59代入y=﹣0.1x2+2.6x+43(0≤x≤30),求解即可.【解答】解:由题意可得,﹣0.1x2+2.6x+43=59,解得x=10,x=16,经检验均是方程的解.因此当y=59时所用的时间是10或16分钟.【点评】可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.19.某企业1998年初投资100万元生产适销对路的产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点(即:1999年的年获利率是1998年的年获利率与10%的和).求1998年和1999年的年获利率各是多少?【考点】一元二次方程的应用.【专题】销售问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率)解答,本题的等量关系是:98年的获利额+99年的获利额=56万元,可由此列方程求解.【解答】解:设98年的年获利率为x,那么99年的年获利率为x+10%,由题意得,100x+100(1+x)(x+10%)=56.解得:x=0.2,x=﹣2.3(不合题意,舍去).∴x+10%=30%.答:1998年和1999年的年获利率分别是20%和30%.【点评】此题结合投资与获利的实际问题,考查了列一元二次方程的能力.解答此题要注意以下问题:(1)求出1998和1999两年的获利;(2)根据两年共获利润56万元列方程.20.为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣解答问题:(1)填空:在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.(2)解方程:x4﹣x2﹣6=0.【考点】换元法解一元二次方程.【专题】阅读型.【分析】(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;(2)设x2=y,原方程可化为关于y的方程,求出方程的解得到y的值,即可确定出x 的值.【解答】解:(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;故答案为:换元;转化;(2)设x2=y,原方程可化为y2﹣y﹣6=0,解得:y1=3,y2=﹣2,∵x2=y>0,∴y1=3,即x2=3,则x=±.【点评】此题考查了换元法解一元二次方程,认真阅读题中的解法是解本题的关键.21.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.【考点】一元二次方程的应用.【专题】几何动点问题;压轴题.【分析】(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,则PB=(16﹣3x)cm,QC=2xcm,根据梯形的面积公式可列方程:(16﹣3x+2x)×6=33,解方程可得解;(2)作QE⊥AB,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【解答】解:(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,则PB=(16﹣3x)cm,QC=2xcm,根据梯形的面积公式得(16﹣3x+2x)×6=33,解之得x=5,(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作QE⊥AB,垂足为E,则QE=AD=6,PQ=10,∵PA=3t,CQ=BE=2t,∴PE=AB﹣AP﹣BE=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:(1)P、Q两点从出发开始到5秒时四边形PBCQ的面积为33cm2;(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10cm.【点评】(1)主要用到了梯形的面积公式:S=(上底+下底)×高;(2)作辅助线是关键,构成直角三角形后,用了勾股定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)换元,降次
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,
解得x=3或x=6;
(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0
即(x﹣3)(x﹣4)=0
解得x=3或x=4.
例4.阅读下面材料:解答问题
为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=± ;当y=4时,x2﹣1=4,∴x2=5,∴x=± ,故原方程的解为x1= ,x2=﹣ ,x3= ,x4=﹣ .
2.2.5《解一元二次方程—换元法》典型例题解析与同步训练
【知识要点】
1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
解得y1=6,y2=﹣2(4分)
当y=6时,x2﹣x=6即x2﹣x﹣6=0
∴x1=3,x2=﹣2(6分)
当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0
∵△=(﹣1)2﹣4×1×2<0
∴方程无实数解(8分)
∴原方程的解为:x1=3,x2=﹣2.(9分)
例5.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.
(3)先移项,然后用提取公因式法对左边进行因式分解即可.
(4)把(x﹣1)看作是一个整体,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解,故用因式分解法解答.
解:(1)因式分解,得(2x﹣1)(x+3)=0,
例题分析:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.
解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49,
∴x= = = ,
∴x1=3,x2=﹣ ;
(2)整理得,(x+5)2= ,
开方得,x+5=± ,
即x1=﹣4 ,x2=﹣5 ,
(3)设t=x2+x,将原方程转化为t2+t=6,
因式分解得,(t﹣2)(t+3)=0,
(1)先去括号,将方程化为一般式,然后再运用二次三项式的因式分解法进行求解.
(2)先设x2﹣x=y,采用换元法,然后解方程即可.
解:(1)x2+2x﹣8=0,
(x+4)(x﹣2)=0
∴x1=﹣4,x2=2.
(2)设x2﹣x=y
∴原方程化为y﹣ =1
∴y2﹣2=y
∴y2﹣y﹣2=0
∴(y+1)(y﹣2)=0
2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.
【典例解析】
例1.用适当方法解下列方程:
(1)2x2﹣5x﹣3=0
(2)16(x+5)2﹣9=0
设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.
所以2x﹣1=0或x+3=0,
解得,x= 或x=﹣3;
(2)移项得,(3﹣x)2+x2﹣9=0,
变形得,(x﹣3)2+(x+3)(x﹣3)=0,
因式分解,得(x﹣3)[(x﹣3)+(x+3)]=0,
解得,x=3或x=0;
(3)移项得,2(x﹣ቤተ መጻሕፍቲ ባይዱ)2﹣x(x﹣3)=0,
因式分解得,(x﹣3)[2(x﹣3)﹣x]=0,
上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.
例题分析:此题考查了学生学以致用的能力,解题的关键是掌握换元思想.
先把x2﹣x看作一个整体,设x2﹣x=y,代入得到新方程y2﹣4y﹣12=0,利用求根公式可以求解.
解:设x2﹣x=y,那么原方程可化为y2﹣4y﹣12=0(2分)
∴y1=﹣1,y2=2
∴x2﹣x=﹣1或x2﹣x=2
解x2﹣x=﹣1知:此方程无实数根.
解x2﹣x=2知x1=2,x2=﹣1;
∴原方程的解为:x1=2,x2=﹣1.
例3.解下列方程:
(1)2x2+5x﹣3=0
(2)(3﹣x)2+x2=9
(3)2(x﹣3)2=x(x﹣3)
(4)(x﹣1)2﹣5(x﹣1)+6=0
解得t1=2,t2=﹣3.
∴x2+x=2或x2+x=﹣3(△<0,无解),
∴原方程的解为x1=1,x2=﹣2.
例2.解方程:(1)(x+3)(x﹣1)=5
(2) .
例题分析:本题主要考查了解一元二次方程的方法和解分式方程.解一元二次方程时,要注意选择合适的解题方法,这样才会达到事半功倍的效果.还要注意换元思想的应用.
(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.
例题分析:应用换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.
(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.
(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.
(3)(x2+x)2+(x2+x)=6.
例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法
(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可;
(2)用直接开平方法解一元二次方程,先将方程化为(x+5)2= ,直接开方即可;
(3)设t=x2+x,将原方程转化为一元二次方程,求解即可.
相关文档
最新文档