第三章 凝固过程的基本原理

合集下载

金属凝固原理——形核

金属凝固原理——形核
得临界晶核半径 r*:
r 2SLVS 2SLVs Tm
GV
Hm T
形核功:G 136S 3L V H Sm T mT2
r* 与ΔT 成反比,即过冷度ΔT 越大,r* 越小; ΔG*与ΔT2成反比,过冷度ΔT 越大,ΔG* 越小。
精选版课件ppt
12
临界晶核的表面能为:
A S L 4(r )2 S L 16 S 3 L V H S m T m T 2
基本热力学条件(必要条件) 大量形核的过冷度( T *) 是完成形核过程的充分条件。
精选版课件ppt
8
§3-2 均质形核
• 均质形核 :形核前液相金属或合金中无外来固相质点而 从液相自身发生形核的过程,所以也称“自发形核” (实际生产中均质形核是不太可能的,即使是在区域精炼 的条件下,每1cm3的液相中也有约106个边长为103个原 子的立方体的微小杂质颗粒)。
第3章作业:
1.均质形核和异质形核的临界晶核半径都

2LS Vs Tm
Hm T
,两者区别何在?异质形核与
均质形核相比,其特点是什么?
2.界面共格对应原则的实质是什么?举例说
明此原则的应用。
精选版课件ppt
32
精选版课件ppt
30
三、异质形核动力学
用异质形核的形核率 I **来描述: I**cexpGAK G* Tf()
· I**I* ( T相同时)
· 对同一形核衬底( 相同),
T越大,I **也越大。
· 不同形核衬底, 越小,T*越* 小
· 当T很大时,I * 和 I **反而越小
精选版课件ppt
31
精选版课件ppt
22
进一步研究细化后引入界面共格对应原则:

初二上册物理第三章熔化和凝固知识点

初二上册物理第三章熔化和凝固知识点

八年级上册物理熔化和凝固知识点_初二上册物理
第三章熔化和凝固知识点
熔化和凝固:物质从固态变为液态叫熔化;从液态变为固态叫凝固。

1、物质熔化时要吸热;凝固时要放热;
2、熔化和凝固是可逆的两物态变化过程;
3、固体可分为晶体和非晶体;
(1)晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质;
(2)晶体和非晶体的根本区别是:晶体有熔点(熔化时温度不变继续吸热),非晶体没有熔点(熔化时温度升高,继续吸热);(熔点:晶体熔化时的温度);
4、晶体熔化的条件:
(1)温度达到熔点;(2)继续吸收热量;
5、晶体凝固的条件:(1)温度达到凝固点;(2)继续放热;
6、同一晶体的熔点和凝固点相同;
7、晶体的熔化、凝固曲线:
(1)AB段物体为固体,吸热温度升高;
(2)B点为固态,物体温度达到熔点(50℃),开始熔化;
(3)BC物体股、液共存,吸热、温度不变;
(4)C点为液态,温度仍为50℃,物体刚好熔化完毕;
(5)CD为液态,物体吸热、温度升高;
(6)DE为液态,物体放热、温度降低;
(7)E点位液态,物体温度达到凝固点(50℃),开始凝固;
(8)EF段为固、液共存,放热、温度不变;
(9)F点为固态,凝固完毕,温度为50℃;
(10)FG段位固态,物体放热温度降低;
注意:1、物质熔化和凝固所用时间不一定相同,这与具体条件有关;
2、热量只能从温度高的物体传给温度低的物体,发生热传递的条件是:物体之间存在温度差;。

凝固过程

凝固过程

7


第二节 材料结晶的基本条件
章 1 热力学条件
(2)热力学条件

△Gv=-Lm△T/Tm
二 a △T>0, △Gv<0-过冷是结晶的必要

条件(之一)。
结 b △T越大, △Gv越小-过冷度越大,

越有利于结晶。
条 c △Gv的绝对值为凝固过程的驱动力。

8


第二节 材料结晶的基本条件
章 2 结构条件
(1)液态结构模型

微晶无序模型

拓扑无序模型
节 (2)结构起伏(相起伏):液态材料中出现的短程有序原子集团

的时隐时现现象。是结晶的必要条件(之二)。







结构起伏大小
9


第三节 晶核的形成

均匀形核:新相晶核在遍及母相的整个体积内无轨则均匀形成。
第 非均匀形核:新相晶核依附于其它物质择优形成。

条 件
2h
16


第四节 晶核的长大
章 1 晶核长大的条件
(1)动态过冷

动态过冷度:晶核长大所需的界面过冷度。

(是材料凝固的必要条件)

(2)足够的温度

(3)合适的晶核表面结构



17


第四节 晶核的长大
章 2 液固界面微结构与晶体长大机制
粗糙界面(微观粗糙、宏观平整-金属或合金材料的界面):

节 1 均匀形核

(1)晶胚形成时的能量变化

人教版八年级上册物理第三章第2节熔化和凝固(课件)(30张PPT)

人教版八年级上册物理第三章第2节熔化和凝固(课件)(30张PPT)
温度/℃ 40 44 46 48 48 48 48 48 48 48 49 52 56
温度/℃ 55 50
怎样作图
1、描点 2、用光滑线连 接各点
45
40 0
时间/分 2海波4 熔6化8的图10象12 14
松香熔化过程记录表
时间/分 0 1 2 3 4 5 6 7 8 9 10 11 12
温度/℃ 60 61 62 63 63 65 66 68 71 74 76 78 80
B
D乙 C
熔化时间是 3 分钟,另一图线 的物质可能是 非晶体 。
200
180A 1
2
34
5
6
时间/分
7
(2)乙图线温度升高的是 AB、CD 段,温度不变的是 BC 段,
AB段处于 固体 状态,BC段处于 固液共存 状态,
CD段处于 液体 状态,吸热的是 AB、BC、CD 段,
5.在气温-20℃的冬天,河面上冰的上表面温度是_ ℃, 冰的下表面温度是___℃
温度/℃ 75
70
65
60 0
2
4
6
时间/分 8 10 12 14
松香的熔化图像
根据实验中的数据描绘图像如下
55 温度/℃
D
75 温度/℃ D
时间/ 分
时间/ 分
50 B
C
45 A
400海2波的4 熔6 化8图10像12 14
实验总结:
70
C
B
65
A
600 松2 香4 的6 熔8化10图12像14
练习
1.如图所示,下列说法中正确的是:(A ) A 甲图可能是海波熔化图象 B.乙图可能是松香凝固图象 C.丙图可能是明矾熔化图象 D.丁图可能是石英凝固图象

第三章 第2节 熔化和凝固 人教版社物理八年级上册

第三章 第2节 熔化和凝固 人教版社物理八年级上册
3.2 熔化和凝固
一、物态变化
固态、液态和气态是物质常见的三种状态。
二氧化碳

物质各种状态间的变化叫 固态 做物态变化。
液态
氧 气态
二、熔化和凝固
蜡烛燃烧
河水结冰
物质从固态变为液态的过程叫做熔化, 从液态变为固态的过程叫做凝固。
实验:探究固体熔化时温度变化的规律
海波
石蜡
提出问题 不同物质在由固态变成液态的过程中,温 度的变化规律相同吗?? 设计实验 实验器材:铁架台、酒精灯、石棉网、烧 杯、试管、温度计、停表、搅拌器 实验方法:水浴法,目的是使物质均匀受 热。
古龙:冰比冰水冰。
状态
固 固 固 固液 固液 固液 固液 液 液 液
石蜡熔化实验数据
时间/min 0 1 2 3 4 5 6 7 8 9
温度/℃ 28 35 41 45 47 48 52 56 61 66
状态
固 固软 软 稠 稠 液 液 液 液
分析与论证
温度/℃
55
.
50
45
图象。纵轴表示温度,横轴表示时间。 在方格纸上描点,用平滑的线将这些 点连接起来。
凝固点:液体凝固形成晶体时确定的温度。同一种物质的凝 固点和它的熔点相同。非晶体没有确定的凝固点。




D
E
F
图:物质 凝固时的 温度变化 曲线
O 甲 晶体
G 时间
乙 非晶体时间ຫໍສະໝຸດ 想想议议:图甲中,EF、FG、GH各段分别表示温度怎样 变化?物质是在吸热还是放热?物质处于什么状态?
小资料:几种晶体物质的熔点(标准大气压)
结论:海波有固定的熔 化温度;熔化过程吸收 热量,温度保持不变。

凝固过程的基本原理

凝固过程的基本原理

其平衡的熔点温度越低。
12
(2)压力的影响 系统压力改变而引起的液, 固相自由能的变化:
GL VLP SLTp GS VS P SS Tp
△Tp-----因压力改变引起的平衡熔点的变化。
Tp TmV
p
H m
通常金属(VS-VL)=△V<0,则压力升高,平衡熔点上升.而△V>0,的金属 Sb,Bi压力升高,平衡熔点降低.通常压力改变时,熔点的变化很小, 10-2℃/大气压,故生产中靠改变压力来提高过冷度细化晶粒是很困难的。 熔体中导入超声波,产生空化作用,空穴破灭时,产生很大压力,使熔点上升 几十度.
5
二、晶体生长的热力学与动力学 (一)晶体生长的热力学 (二)均质形核 (三)非均质形核
6
(一)晶体生长的热力学 1. 相变驱动力 2. 压力、曲率对熔点的影响 3. 溶质平衡分配系数
7
1. 相变驱动力
系统的自由能随温度的变化关系: 系统的自由焓(G)可表示为:
G=H-TS
H----热焓,S----熵,T----绝对温度
一定的过冷度也会有一定的晶胚尺寸(或晶胚表面曲度)与之对应,比 该曲度大的晶胚(曲率半径小)将熔化消失,而比该曲度小的晶胚(曲
率半径大)将继续长大,此即临界晶核。
10
当恒压下金属有多种晶体结构时, 各自在其对应的熔点温度下与液 相平衡Δ无熔点只能由气相形成. 热力学上,只有α相能在平衡温度 下形成而βγ不能.但是在连续冷 却条件下的较低温度下是析出稳 定相α,还是介稳相Β,γ将取决 于体积自有能,界面能和异质形核 的条件. .
即:△G =GL-GS=0, 两相处于平衡状态。
当T<Tm时,GL>GS,固相稳定;
当T>Tm时,GL<GS,液相稳定; 当温度高于熔点或低于熔点时,

第三章第2节熔化和凝固

第三章第2节熔化和凝固

第三章第2节熔化和凝固认识熔化与凝固一、考点突破[来源:Z。

xx。

k ]1. 明白物质的固态和液态之间是能够转化的,明白熔化和凝固的概念。

2. 能够区分生活、生产中的熔化与凝固现象。

3. 明白晶体和非晶体的区别。

4. 明白物质的状态与熔点(凝固点)的关系。

二、重难点提示重点:能够辨别熔化与凝固现象及相伴着的吸、放热过程。

难点:晶体与非晶体的异同点。

三、考点精讲一、熔化和凝固(重点)1. 熔化:物质由固态变为液态的过程叫做熔化。

如冰变为水,由固态变为液态属于熔化现象。

2. 凝固:物质由液态变为固态的过程叫做凝固。

如水结成冰,由液态变为固态属于凝固现象。

【归纳·整理】熔化和凝固是发生在固态和液态之间的物态变化过程,判定物态变化是否属于熔化和凝固,关键是看物质是由固态变液体,依旧由液态变固态。

熔化和凝固是两个相反的物态变化过程。

【课堂练习】下列自然现象中,属于熔化现象的是()A. 春天,河里的冰化成水B. 夏天清晨,花草叶子上花附着的露水C. 秋天清晨,覆盖大地的雾D. 冬天,空中纷飞的雪花思路分析:要判定物态变化是否属于熔化,关键要看物质是不是从固态变为液态。

选项A冰化成水,由固态变为液态,属于熔化现象;选项B 露水不是由固态的冰变成的;选项C雾也不是由固态的冰变成的;选项D 雪是固态,不是液态,因此本题应选A。

答案:A二、晶体和非晶体1. 固体分为晶体和非晶体两大类(1)晶体:通过实验探究固体熔化时温度的变化规律,发觉有些固体在熔化过程中尽管不断吸热,温度却保持不变。

这类固体有确定的熔化温度,我们把这类固体叫做晶体。

晶体分子的排列是整齐的、有规则的,冰、食盐、石墨、金属等差不多上晶体。

(2)非晶体:有些固体在熔化过程中,只要不断地吸热,温度就不断上升,没有固定的熔化温度。

这类固体没有确定的熔化温度,我们把这类固体叫做非晶体。

非晶体分子的排列是杂乱无章的。

石蜡、松香、玻璃、沥青等差不多上非晶体。

【八年级物理上册】第三章第2节--熔化和凝固

【八年级物理上册】第三章第2节--熔化和凝固

第2节熔化和凝固一、物态变化物质通常有三种状态,即固态、液态和气态。

如冰、水和水蒸气就是水这种物质的三种状态。

物质在各种状态间的变化叫做物态变化。

二、熔化和凝固1、熔化:物体从固态变成液态的过程叫熔化。

2、凝固:物质从液态变成固态的过程叫凝固。

三、熔点和凝固点1、晶体:在熔化过程中,尽管不断吸热,温度却保持不变的固体叫做晶体。

2、非晶体:在熔化过程中,只在不断吸热,温度就不断上升的固体叫做非晶体。

3、常见的晶体和非晶体[1]、常见的晶体:海波、冰、石英水晶、食盐、明矾、萘、各种金属等等;[2]、非晶体物质:松香、石蜡玻璃、沥青、蜂蜡等等。

4、熔点:晶体熔化时的固定温度叫做熔点。

非晶体没有确定的熔点。

5、晶体和非晶体的熔化图象[熔化吸热][1]、晶体熔化图像:熔化特点:固液共存,吸热,温度不变熔化的条件:(1)达到熔点。

(2)继续吸热。

[2]、非晶体熔化图像:熔化特点:不断吸热,先变软变稀,最后变为液态温度不断上升。

6、液体凝固[凝固放热][1]、凝固点:液体凝固形成晶体时的固定温度叫做凝固点。

[2]、同一晶体的熔点和凝固点是相同的。

非晶体没有确定的凝固点。

[3]、液体凝固形成晶体的图象凝固特点:固液共存,放热,温度不变凝固的条件:⑴达到凝固点。

⑵继续放热。

【两个条件缺一不可!】[4]、液体凝固形成非晶体的图象凝固特点:放热,逐渐变稠、变黏、变硬、最后成固体,温度不断降低。

[拓展]在晶体中加入其他物质时,晶体的熔点(或凝固点)会发生变化(一般会降低)。

比如冬天常在结冰的路面上撒盐来降低冰雪的熔点,从而加速除冰过程。

【典型例题】类型一、熔化和凝固现象1.下列自然现象中,通过熔化形成的是()A.春天河里的冰雪化成了水B.夏天清晨,花叶上的露水C.秋天,笼罩大地的雾D.冬天空中纷飞的雪花【思路点拨】辨别物态变化,首先确定物体开始的状态(固、液、气),物体最后的状态(固、液、气),然后根据物体变化的名称来判断。

金属凝固原理——形核知识讲解

金属凝固原理——形核知识讲解
第三章 形核§3-1 凝固的
基本热力学条件 §3-2 均质形核 §3-3 异质形核
凝固是物质由液相转变为固相的过程,是液态成形技术
的核心问题,也是材料研究和新材料开发领域共同关注 的问题。 严格地说,凝固包括: (1)由液体向晶态固体转变(结晶) (2)由液体向非晶态固体转变(玻璃化转变)
常用工业合金或金属的凝固过程一般只涉及前者,本 章主要讨论结晶过程的形核及晶体生长热力学与动力学。
r 3
3
(2
3cos
cos3
)
பைடு நூலகம்
Gv Vs
r3
LS
(2
3cos
cos3
)
得到类似于均质形核的系统自由能变化曲线 (见下图),曲线有一最大值,该值对应的半径
用 r** 表示,称为异质形核的临界晶核半径。
图3.7 均质和异质形核功图
1 2
3
3.1
凝固过程包括:形核过程和晶体长大过程。凝固后的宏观组织由晶粒和 晶界组成
§3-1 凝固的基本热力学条件 一、液-固相变驱动力 二、大量形核的过冷度(T *)
一、 液-固相变驱动力
• 从热力学推导系统由液体向固体转变的 相变驱动力ΔG
图3.2 液-固体积自由能的变化
当 T >Tm 时,有:ΔGV = Gs - GL> 0
一、异质形核的热力学条件
二、异质形核机理
三、异质形核动力学
一、异质形核的热力学条件
如果液相中存在固相质点,且液相又能润湿质 表面,则液体能在固相质点表面形成新相晶核。
设生核衬底的质点表 面为一平面,在其上生 成一球冠的新相(见右 图)。则系统自由能的 变化为:
G V Gv ( A )
Vs

人教版物理八年级上第三章3.2.2熔化与凝固2

人教版物理八年级上第三章3.2.2熔化与凝固2
晶体凝固特点:凝固过程中温度不变,不断放热 非晶体凝固时 没有固定的温度 温度不断降低 放热
熔化与凝固


D
阶段 AB
温度变化 物质状态
升高
固态

BC
48
BC EF
CD
A
G
DE
时间/分
EF
FG
不变 升高 降低 不变 降低
比较两幅图像,你们能发现些什么?
固液共存 液态 液态
固液共存 固态
吸/放热
吸热 吸热 吸热 放热 放热 放热
C
B
48
44
晶体凝固规律
1、晶体在凝固过程中温度 不变,这个温度叫做凝固点;
2、凝固过程中处于固液共存 状态; 3、晶体只有达到一定温度 时才开始凝固;
40
4、凝固过程放热。
A
36
0 2 4 6 8 10 12 14 时间/min
凝固 晶体凝固的条件:
1、温度要达到凝固点。
2、还要继续放热。
和凝固
点,熔化和凝固 过程中温度改变。
吸热
放热,达 到凝固点
放热
温馨提示
亲爱的同学,课后请做一下习题测 试,假如达到90分以上,就说明你 已经很好的掌握了这节课的内容, 有关情况将记录在你的学习记录上, 亲爱的同学再见!
A.用冰的效果好,因为冰的温度低 B.用水的效果好,因为水比冰更容易吸热 C.用冰的效果好,因为冰吸热温度不变 D.两者效果相同
小结
固体
相同点
不同点
熔化条件 凝固条件
晶体 非晶体
熔化过程都 是由固态变 为液态,都 要吸热;凝 固过程都是 由液态变为 固态都要放 热。
有熔点和凝固 点,熔化和凝 固过程中温度 不变。

第三章 纯金属(晶体)的凝固

第三章 纯金属(晶体)的凝固
形核率可表示为: N= KN1. N2 ,
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的

材料科学基础第三章

材料科学基础第三章

• 从纯金属冷却曲线可以看出:金属从液态 冷却到理论凝固温度(熔点)Tm时并不凝固, 而是再降至实际开始结晶温度Tn时才开始 结晶;随后温度回升到接近Tm时出现恒温 结晶(曲线平台),结晶终止后温度继续下降。
• 曲线出现“平台”,是金属液固转变所释 放的潜热与系统散热量相等的结果。
• 在“平台”温度下,液固相不平衡,所以 “平台”温度不是熔点但相差不大。
• 如果只有一粒晶核长大,则由这一粒晶核 长大的金属就是一块金属单晶体。
• 3.1.2 金属结晶的宏观现象
• 金属结晶伴随着一系列宏观特征的改变, 如结晶潜热的释放,融化熵的变化等。研 究这些宏观特征的变化是研究金属结晶过 程的重要手段。
• 3.1.2.1 冷却曲线与金属结晶温度:用热分 析装置将金属融化后缓慢降温,每隔一定 时间记录一次温度,绘制成温度-时间关系 曲线,称为冷却曲线。这种测定冷却曲线 的方法叫热分析法。
金属中,表面能可用表面张力表示。当晶 核稳定时,有:
• σLW=σSW+σSLcosθ
(3-15)
• 形成一个晶核时,总自由能的变化为:
ΔG’=-ΔGBV+ΣσAi
(3-16)
• 晶核体积(球冠体积)为:
• VS=πr3(2-3cosθ+cos3θ)/3
(3-17)
• (VS=πh2(r-h/3), h=r(1-cosθ))
核功越小。
• 在过冷液相中,均匀形核依靠结构起伏形 成大于临界晶核的晶胚;再从能量起伏中
获得形核功形成稳定的晶核。结构起伏和 能量起伏是均匀形核的必要条件。
• 临 但界 晶晶胚核的半最径大尺rk随寸过rm冷ax却度随ΔT过增冷加度而的减增小加;而 增加。如图所示:两条曲线的交点为均匀 形核的临界过冷度ΔT*。当系统过冷度 ΔT<ΔT*时,

新人教版物理八上第3章第2节熔化和凝固 知识点考点汇总

新人教版物理八上第3章第2节熔化和凝固 知识点考点汇总

第三章物态变化第2节熔化和凝固1.物质由固态变为液态的过程叫熔化;物质由液态变为固态的过程叫凝固。

2.固体分为晶体和非晶体。

晶体有一定的熔点和凝固点,非晶体没有一定的熔点和凝固点。

3.熔化和凝固是相反的物态变化过程。

熔化吸热,凝固放热。

知识点1:熔化和凝固1.物态变化固态、液态和气态是物质常见的三种状态,在一定的条件下,物质的三态间可以发生变化。

物质由一种状态变成另一种状态叫物态变化。

物质从固态变成液态叫熔化。

例如:冰熔化成水,铁块熔化成铁水等。

物质从液态变成固态叫凝固,例如:水结冰等。

2.固体熔化时温度的变化规律提出问题不同物质在由固态变成液态的熔化过程中,温度的变化规律相同吗?假设猜想[猜想一] 熔化过程中一定要加热,所以物质一定要吸收热量,这时温度可能是不断上升的。

[猜想二] 固体熔化时虽然不断吸热,但需完成由固态到液态的转变,这时温度可能会不变。

实验设计探究[思考] (1)固体熔化时需观察其状态与温度的变化,如何控制固体物质温度不会过快上升呢?(2)熔化过程较为缓慢,以什么样的时间间隔进行温度测量呢?(3)对实验测定的数据用什么方法处理较为合适?[实验设计方案] (1)实验目的:研究蜡和海波的熔化过程。

(2)实验器材:铁架台、酒精灯、烧杯、试管、温度计、碎蜡块、海波、水、石棉网、火柴、钟表。

(3)实验步骤:①组装仪器。

按如图所示进行组装,在两个分别盛有海波和蜡的试管中各插入一支温度计,使试管(盛固体物质段)充分浸入水中。

使用石棉网的目的是为了使烧杯受热均匀。

使玻璃泡处于海波或碎蜡块中间位置。

,大致可分为两类金等考点1:晶体和非晶体熔化和凝固的探究【例1】如图所示是海波和蜡的熔化实验图象,以下说法正确的是( )A.甲在第2 min时是固态B.甲在ab段不吸热C.甲的熔点是48 ℃D.乙是蜡答案:A、C、D点拨:晶体熔化过程中吸热,温度保持不变,非晶体在熔化过程中,吸热温度上升;由图象可知甲为海波,乙为蜡;海波在ab段吸热,温度不变,所以B选项错误。

第三章 凝固动力学

第三章 凝固动力学
在这种情况中,只能是非自发形核,不可能达到最大的过冷 度 。为了达到最大过冷度,获得自发形核的温度,必须将这些夹 杂清除,而清除这些夹杂,又必须使液体分成极小的微滴。当然, 液滴愈细,不含夹杂的液滴数也就愈多,这样就可以比较方便地 测出均质形核温度。
6
§3-1 自发形核
7
§3-1 自发形核
8
§3-1 自发形核
30
§3-2 非自发形核
润湿角除与界面张力有关外,还与形核剂表面粗糙度有关。假若供 形核的界面不是平面,而是曲面,则界面的曲度大小与方向(凸、凹) 会影响界面的催化效果。图3-21为在三个不同形状的界面上形成的三个 晶胚,它们具有相同的曲率半径和相同的θ角,但三个晶胚的体积却不 一样。凸面上形成的晶胚体积最大,平面上次之,凹面上最小。
14
§3-1 自发形核
液相中出现晶胚之后,由于其尺寸与液相原子的尺寸不同, 为使系统自由能降低,将会发生单个原子与晶胚混合从而引起熵 值增加的现象,在隔离系统中,使熵值增大的过程是使自由能降 低的自发过程。图3-8为液态单个原子数N1和由n个原子组成的晶 胚教Nn混合的示意图。混合后的系统与只有单个液相原子的系统 自由能差为:
29
§3-2 非自发形核
δ值较小的物质对形核是有效的。但是,这种点阵匹配原理并不是完 善的,特别是用它作为选择形核剂的标准还远远不够,因为它与很多事实 不符,例如尽管Ag与Sn的δ值比Pt与Sn的δ值小,但Pt能作Sn的形核剂, 而Ag却不能,这说明单靠点阵常数的差异还不能作为判断形核剂的唯一标 准,其它的物理化学特性是不能忽视的,目前关于形核剂的选用,主要还 是依靠经验。
上述情况必须有几个先决条件,首先是润湿角和温度无关,其次是夹杂 的基底面积要大于晶胚接触所需要的面积,最后是晶胚和夹杂的接触面为 平面。

3第三章 材料的凝固1(芦凤桂)

3第三章 材料的凝固1(芦凤桂)

3.1.4金属的同素异构转变
同素异构转变:在固态下随温度的改变由一种晶格转变成另一种晶格 的现象。具有同素异构转变的金属有:Fe、Mn、Co、Ti、Sn等。 1. 铁的同素异构转变: 纯铁液体

同素异构转变时,发生原子重新排列,是一种 结晶过程,称为二次结晶 其发生结构转变的温度称为临界温度或临界点
杠杆定律
在合金的结晶过程中,各相的成分及其相对质量都在 不断变化。在某一温度下处于平衡状态的两相的 成分和相对质量可用杠杆定律确定,杠杆定律适 用于两相区。 在温度t1时合金浓度为x的合金总重量为W0,液相重 量为WL,固相重量为Ws
x1 o
x
x2
成份/%
不平衡结晶

在合金的实际冷却过程中,由于冷却速度较快使原子的扩散受到影 响,致使合金晶粒内部分成分不一致,枝状晶的晶轴含有较多高熔 点元素。
上节内容回顾
化学键的分类 晶体、非晶体及各自特点 金属具有导电性、电阻、光泽和传递热能 常见的晶格类型 晶面指数、晶向指数 固溶体的概念和分类 金属间化合物概念和分类

第三章 材料的凝固 I
芦凤桂
内容提要
金属结晶过程 金属结晶的热力学条件 形核与长大 晶粒大小控制 合金的凝固:二元相图、二元匀晶相图、 二元共晶相图、二元包晶相图
金属结晶过程包括形核和晶粒长大 1.晶核的形成: (1)自发形核:近程有序的原子集 团达到一定过冷度时成为结晶核心而 长大,由液态内部自发长出结晶核心 的形核方式叫做自发形核。△T越大, 金属液体向固态转变的驱动力越大, 能稳定存在的近程有序的原子集团的 尺寸越小,生成的自发形核越多;但 △T过大时,原子扩散能力减弱,形 核率降低。 (2)非自发形核:依靠悬浮在熔体 中难熔杂质的固态颗粒或有意加入固 态微粒形成的晶核。符合“结构相似、 尺寸相当”原则。

3第三章--材料的凝固ppt课件(全)

3第三章--材料的凝固ppt课件(全)

溶体转变线
温N

J A+
L D
相区标注
L+A AE
C L+ Fe3C F
组织组成物标注 G
A+ Fe3C
A+
Le
复相组织组成物:
F
珠光体P(F+ Fe3C)
A+F S Fe3CⅡ A+ Fe3CⅡ+Le Le+ Fe3CⅠ K
P P
F+ Fe3C
P+
Le’
莱氏体Le(A+ Fe3C)
QP+F Fe3CⅡ P+ Fe3CⅡ+Le’ Le’+ Fe3CⅠ
混合物,称作莱氏体,用Le 表示。为蜂窝状。以Fe3C为 基,性能硬而脆。
莱氏体
PSK:共析线
S ⇄FP+ Fe3C 共析转变的产物是与
Fe3C的机械混合物, 称 作珠光体,用P表示。
L+δ
δ+
L+
+
L+ Fe3C + Fe3C
F+ Fe3C
扫描电镜形貌 珠光体(光镜)
珠光体的组织特点是 两相呈片层相间分布, 性能介于两相之间。 PSK线又称A1线 。
Q
不易分辨。室温组织为P.
珠光体
共析钢的结晶过程
㈢ 亚共析钢的结晶过程 0.09~0.53%C亚共析钢
冷却时发生包晶反应。

A
H
B

J
以0.45%C的钢为例 合金在 4 点以前通过匀
晶→包晶→匀晶反应全
部转变为。到4点,由
G S
P
+Fe3C

凝固原理-3凝固动力学

凝固原理-3凝固动力学

如果析出的固相为球形:
∆Gi = Aσ
∆H m ∆T 4 ∆G = πr 3 + 4πr 2σ 3 Tm
△ Gv-单位体积自由能的改变值; ∆H -凝固潜热,∆T-过冷度, T m-熔点,σ-固/液界面张力
第三章 凝固动力学
∆H m ∆T 4 ∆G = πr 3 + 4πr 2σ 3 Tm
T< Tm
3.1.1均质形核的能量条件
包括固液两相体积自由能的变化和固液界面表面能的变 化。 1、液固转变的体积自由能差∆GV,为驱动力。 2、形成固液界面所需的能量∆Gi ,为阻力。
第三章 凝固动力学
形核功
第三章 凝固动力学
4 ∆H m ∆T ∆G = πr 3 + 4πr 2σ 3 Tm
∆G = ∆GV + ∆Gi
2013/11/29
第三章 凝固动力学 3.1 自发形核(均质形核)
凝固原理
第三章 凝固动力学
在均匀的单一的母相中形成新相结晶核心的过程。从本质 上来讲,均质形核是在没有夹杂和外表面影响下,一个相( 新相 )通过另一个相(原有相)的原子聚集而形成新相核心的 过程。
李元东
0931-2976795 liyd_sim@
第三章 凝固动力学
均质形核所需的临界过 冷度约为0.2Tm(Tm 是 金属熔点)。在该过冷度 下,晶核的临界半径约 为10-7cm,晶核约含有 200~300个原子。
∆T I 在过冷度为 0.2Tm ~ 0.4 Tm的范围内急剧增 加 0.2Tm
I
第三章 凝固动力学
3.2 非自发形核
3.2.1 形核功 及形核速率
由于温度起伏使晶坯尺寸超 过临界半径 r*后,总的能量 降低,晶核可连续长大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元系的凝固(可 用二元系的凝固特 征分析)
因此,对凝固过程基本原理的研究通常以二元系为对象。 在实验和计算的基础上建立了大量的二元相图,为凝固 分析奠定了基础
2
所有二元相图都是由共晶、偏晶、包晶及固溶体四种基本相 图所构成的
单相合金凝固是最典型的, 除共晶点和偏晶点外,其它成分 合金在开始凝固时仅有一个相析 出。 最常见的多相合金凝固是共晶凝 固:L→α+β
S 0 p0 , T L 0 p0 , T
L 0 p0 , T p RgT ln f L wL p
L


17
两相平衡时:
S 0 p0 , T RT ln f S wS L 0 p0 , T RgT ln f L wL
纯组元时,在熔点时,溶质在液固相中的化学位相等: 得到:
0 L p0 , T 0 S p0 , T f S wS ln L exp f wL R T g
L S
0 L 0 S
k0ቤተ መጻሕፍቲ ባይዱ
wS f wL f
L 0 p0 , T S 0 p0 , T exp R T g
21
1 台阶生长的Aziz模型: k k 1 k exp a 0 0
连续生长过程的表达式: k a
k0 1

R Di
Di---界面扩散系数,R-----凝固速率, δ-----凝固方法上的原子厚度 R-----凝固方向上的原子厚度
15
随凝固速率的变化,凝固界面附近溶质分配呈现3种 情况: L
S L S wL* S L wL=wL* wS* wS=wL* b)近平衡凝固 wL wLa*
wL
wSa* c)快速凝固
wL
a)平衡凝固
wL*,wS*:平衡凝固条件下界面上液、固侧溶质分配系数; wLa*,wSa*:非平衡条件下界面上液、固侧溶质分配系数;
第三章 凝固过程的基本原理
一、相图与凝固 二、晶体生长的热力学与动力学 三、晶体的长大
1
一. 相图与凝固 1. 二元合金的凝固
工程合金通常是多组元的。
凝固中各组元的形态:单质、固溶体、化合物析出。
单组元,纯物质。 (相当于二元系在 溶质质量分数趋于 零的情况)
二元合金系是研 究凝固过程基本 原理的基础。
(1)固相界面曲率的影响 固相曲率可引入固相的压力,此压力使固相的自由能升高,而使系统的 熔点降低。固-液两相的自由能的变化为:
GL VL P S L Tr S L Tr
p 0
GS VS p S S Tr
---Tr 因固相曲率而造成的温差,△P-----由于曲率而造成的固相附加压力
1 1 GS VS r r 2 1 S S Tr
设k为平均界面曲率: 固液两相平衡时:
1 1 1 k 2 r 1 r2
GS 2VS k S S Tr
Tr 2VS k 2TmVS k S m H m
22
界面溶质分配系数: k
*
Cs CL
*
在非平衡凝固条件下,界面处固-液相的成分即使在一定的温度下也不是像 平衡条件下的定值,而是在一定的范围内波动,范围取决于动力学条件。 M.Krumnacker和 J.C. Brice等研究了固液界面的溶质分配系数与生长速度的 f v 关系: k*
f v
对于k0<1的合金,晶体的生长速度越快,k*越大,越偏离平衡分配系数。而 生长速度越低,两者越接近。而对于k0>1的合金,则相反。 J.C. Brice导出了k*与生长速度f的关系: k * k f 1 k *
0
v
v是原子的扩散速度,α是溶质分子在固液界面上的粘着系数,β是被吸附分 子的解离常数。 可见,当f→0时,k* → k0, 当f→ ∞时, k* → 1
GS GL ,
当曲率k为正时,△Tr为正,此时平衡熔点下降,且曲率半径越小, 其平衡的熔点温度越低。
12
(2)压力的影响 系统压力改变而引起的液, 固相自由能的变化:
GL VL P SL Tp
Tp p
GS VS P SS Tp
Tm V H m
△Tp-----因压力改变引起的平衡熔点的变化。
19
(3)有效溶质分配系数 当凝固速度稍快时,凝固界面上溶质迁移仍然能达到平衡, wS*/wL*=k0,但是内部不能达到平衡,即所谓近平衡。 近平衡凝固过程的有效溶质分配系数:ke 界面处固相的溶质质量分数wS*与溶质 富集层外的液相溶 质质量分数wL之比,即: *
ke wS wL
Burton等通过求解扩散场方程确定了ke的计算式:
13
3. 二元合金凝固过程的溶再分配
(1)溶再分配的概念 (2)平衡溶质分配系数k0 (3)有效溶质分配系数
(4)非平衡溶质分配系数
14
(1)溶再分配的概念
溶质再分配:二元合金凝固中,组元在液相和固相中化学位的变化, 固相成分不同于液相,造成液相和固相中成分梯度,而引起溶质扩 散现象,即溶质再分配。 凝固过程重要的伴生现象,影响凝固组织 ws 描述溶质再分配的关键参数: k 溶质分配系数 : wL 平衡条件下,ws 、 wL由固相线和液相线确定。然而,实 际条件下,平衡是很难的,故引入近平衡凝固、非平衡 凝固分配系数。因此,溶质分配系数有三个层次: 平衡溶质分配系数k0、 有效溶质分配系数ke、 非平衡溶质分配因数ka 。 凝固过程溶质分配的平衡条件指:凝固界面上溶质迁移的平衡及固相 和液相内部扩散的平衡。
3
偏晶凝固:
与共晶凝固相似,析出相之一为 液相:L1→α+L2
包晶凝固:
LP + β → α
4
2. 多元合金的凝固
多元合金的凝固过程复杂得多,并且仅三元系有较成熟的相图可以 借鉴。 三元相的三个边由二元相图 构成,成分位于液相面特殊 点,如多相反应点上的合金 在平衡凝固过程中将会发生 两个以上的相同时析出的过 程,且凝固在恒温下进行。 成分位于线上的合金也将发 生多相凝固,但析出固相和 液相的成分是变化的。

GV
Tm
9
过冷度 是影响相变驱动力的决定性因素。 r 为什么相变要过冷度? S S-L平衡时,原子双向跳动的速度相等,方向相反; 晶胚越小,表面曲度越大,稳定度越小: △P=2σ/r 一定温度下,r越小,熔化速度越快,而凝固速度越慢; r一定时,温度越低,S-L自由能差越大,熔化速度越小,而凝固速度越 大; 因此,凝固速度与熔化速度相等的温度随晶胚尺寸的减小而降低。
p
p k RT ln f S wS


溶质在液相中的化学位:
分别是溶质元素在固相和液相中的标准化学位; 只有在纯物质的熔点时两者才相等。 fS,fL-----溶质在液相和固相中的活度因数,温度函数,R---气体常数, P-----外压,p0-----标准大气压,T----热力学温度,k----曲率,σ—界面张力。 由液相化学位与固相化学位相等得:(忽略曲率的影响)
在稀溶液中,活度系数均为1. 由于溶质元素纯组元的液相化学位比固相的低。 因此,k0<1 故,固相溶质浓度低于液相。
18
影响k0的因素: 1)温度与合金成分: 由上式可知k0与温度有关;而凝固温度与合金成分有关, 由相图决定。因此,实际上, k0不是常数,而是合金 成分的函数。 2)凝固界面曲率 由分析可知,只有当曲率小于10-6cm时,才有明显影响, 故 一般可忽略。 3)压力 通常是指在标准大气压下的溶质平衡分配系数。分析可知, 只有当压力差大于10MPa时才有显著影响。

dT
表明:在通常的压力一定条件下,温度升高时,自由能是下降的。
8
相变的驱动力 △G 在熔点Tm时: 液相自由能=固相自由能, 即:△G =GL-GS=0, 两相处于平衡状态。 当T<Tm时,GL>GS,固相稳定; 当T>Tm时,GL<GS,液相稳定; △T 当温度高于熔点或低于熔点时, △G即为相变的驱动力, 过冷度 在Tm以下温度时:一克分子物质由液相转变为固相自由能(焓)的变化为: △GV = GS-GL=(HS-TSS)-(HL-TSL) = ( HS - HL)-T(SS-SL) = △H-T△S △H、△S均为固、液两相的克分子焓和克分子熵的差额,温度的函数, △H≈结晶潜热(△Hm),△S ≈熔融熵(△Sm) 在Tm温度时, -△Hm+Tm△Sm=0, 即:△Sm=△Hm/Tm 因此: H m T △T---即为过冷度。
10
当恒压下金属有多种晶体结构时, 各自在其对应的熔点温度下与液 相平衡Δ无熔点只能由气相形成. 热力学上,只有α相能在平衡温度 下形成而βγ不能.但是在连续冷 却条件下的较低温度下是析出稳 定相α,还是介稳相Β,γ将取决 于体积自有能,界面能和异质形核 的条件. .
11
2. 压力、曲率对熔点的影响
5
二、晶体生长的热力学与动力学 (一)晶体生长的热力学 (二)均质形核 (三)非均质形核
6
(一)晶体生长的热力学 1. 相变驱动力 2. 压力、曲率对熔点的影响 3. 溶质平衡分配系数
7
1. 相变驱动力
系统的自由能随温度的变化关系: 系统的自由焓(G)可表示为: G=H-TS H----热焓,S----熵,T----绝对温度 自由焓 G也称等压位,而对应的为自由能F,也称等容位, F = u- TS,又:G = H-TS = u + PV- TS, 当pV很小时,G =u –TS=F,故有时粗略地将自由焓称为自由能 由G= u+PV-TS 可得:dG = du-TdS -SdT+ PdV + VdP du =δ q -δ A q:系统从外界吸收的热量,A: 系统对外界所做的功。 恒温下:δ q = TdS,而只有膨胀功时,δ A = PdV 故 du=TdS-PdV 则有: dG=-TdS +VdP dG S 在恒压条件下dp=0,故:dG=-SdT ,即:
相关文档
最新文档