中考数学-实数及其运算练习
中考数学专题训练:实数的运算、化简求值(含答案)
中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。
2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。
3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。
4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。
5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。
7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。
【答案】解:原式=4×2+1-6 =-+1+6 =7。
8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。
11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。
13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。
2023年中考数学考点讲练专题3 实数的运算
专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。
中考数学专题-实数的有关概念与计算-(解析版)
实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。
2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)
知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。
有括号的先算括号,先算小括号,再算中括号,最后算大括号。
2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。
3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。
乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。
③分母有理化。
即()()b a ba ba b a b a ba −=±=± 1。
④二次根式的加减法:()m b a m b m ±=±。
4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。
5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。
中考数学专题训练(一):实数运算
实数运算1、(2013•衡阳)计算的结果为( )A .B .C . 3D . 5 考点: 二次根式的乘除法;零指数幂.专题: 计算题.分析: 原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答: 解:原式=2+1=3.故选C点评: 此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.2、(2013•常德)计算+的结果为( )A . ﹣1B . 1C . 4﹣3D . 7 考点: 实数的运算.专题: 计算题.分析: 先算乘法,再算加法即可.解答: 解:原式=+=4﹣3=1.故选B .点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D 。
4、(2013台湾、6)若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者?( )A .1300B .1560C .1690D .1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题分析:本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣=﹣1.故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.6、(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.7、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0=2.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.解答:解:原式=2﹣1+1=2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.8、(2013•黔西南州)已知,则a b=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 . 考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答: 解:原式=3﹣1﹣4×+2=2.故答案为:2.点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等知识点,属于基础题.11、(2013•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答: 解:∵(±5)2=25∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。
中考数学专题练习 实数(含解析)
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
中考数学专题复习1实数的运算(原卷版)
实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
中考数学总复习《实数》专项测试卷附答案
中考数学总复习《实数》专项测试卷附答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作( )A.+100℃B.-100℃C.+50℃D.-50℃2.-|-2024|的倒数是( )A.-2024B.2024C.-12024D.120243.有理数a,b在数轴上的表示如图所示,则下列结论正确的是( )A.-b<aB.ab>0C.|a|<|b|D.b+a<04.“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为( ) A.6×103 B.60×103C.0.6×105D.6×1045.下列四个数中,绝对值最大的是( )A.0B.-13C.-3D.√76.如图,数轴上表示√2的点是( )A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x <2,化简√(x -1)2+|x -2|的结果为( )A .-1B .1C .2x -3D .3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1= .9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为 .10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A.676B.674C.1 348D.1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025参考答案A层·基础过关1.(中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作(B)A.+100℃B.-100℃C.+50℃D.-50℃2.(2024·德州二模)-|-2024|的倒数是(C)A.-2024B.2024C.-12024D.120243. (2024·济南二模)有理数a,b在数轴上的表示如图所示,则下列结论正确的是(A)A.-b<aB.ab>0C.|a|<|b|D.b+a<04.(2024·青岛中考)“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为(D)A.6×103B.60×103C.0.6×105D.6×1045.(2024·临沂二模)下列四个数中,绝对值最大的是(C)A.0B.-13C.-3D.√76.(2024·南充中考)如图,数轴上表示√2的点是(C)A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为(B)A.-1B.1C.2x-3D.3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1=3.9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为2.780 9×104.10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.【解析】原式=-2×(-3)-3+2-1=6+2-3-1=4.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.【解析】(π-3)0-2sin 60°+|-√3|=1-2×√32+√3=1-√3+√3=1. 12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°. 【解析】70+(16)-1+|-12|-(√5)2-sin 30° =1+6+12-5-12 =2.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在(C)A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为(D)A .676B .674C .1 348D .1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的8×103倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=5.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12【解析】(1)-1+(π-2 022)0-3tan 30°+|√3-√2|2+√3-√2=2+1-3×√33=2+1-√3+√3-√2=3-√2.)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12【解析】原式=1+2-√3+√3-4=3-4=-1.C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是(D)A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025。
中考《数学》实数的有关概念与计算专题练习题(共53题)
实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。
实数的有关计算问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】
实数的有关计算问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.2.实数运算的“三个关键”(1).运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.(2).运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.(3).运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)计算:2sin60°+√12+|−5|−(π+√2)0.【答案】3√3+4【解析】【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】+2√3+5−1=3√3+4.解:原式=2×√32【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.【例2】(2022·北京·中考真题)计算:(π−1)0+4sin45∘−√8+|−3|.【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:(π−1)0+4sin45∘−√8+|−3|.=1+4×√22−2√2+3=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)计算:.【答案】5【解析】【分析】针对零指数幂,绝对值,特殊角的三角函数值,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=1+√2−2×√22+4=5.2.(2014·北京·中考真题)计算:(6−π)0+(−15)−1−3tan30°+|−√3|.【答案】-4【解析】【详解】特殊角的三角函数值,按顺序计算即可试题解析:原式=1+(−5)−√3+√3=-4考点:1、零指数幂;2特殊角的三角函数值;3、绝对值;4、负指数幂3.(2015·北京·中考真题)计算:(12)−2−(π−√7)0+|√3−2|+4sin60°.【答案】5+√3【解析】【分析】先根据一个数的负指数幂等于正指数幂的倒数,一个不等于零的数的零指数幂为1,一个数的绝对值是非负数,特殊角三角函数值sin60°=√32,求出各项的值即可. 【详解】解:原式=4−1+2−√3+4×√32=5−√3+2√3 =5+√3 【点睛】本题考查实数的混合运算;特殊角三角函数值.4.(2016·北京·中考真题)计算:(3−π)0+4sin45∘−√8+|1−√3|. 【答案】√3.【解析】【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算即可.【详解】解:原式=1+4×√22−2√2+√3−1=√3. 5.(2017·北京·中考真题)计算:4cos30°+(1−√2)°−√12+|−2|.【答案】3.【解析】【详解】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.试题解析:原式=4×√32 +1-2√3+2=2√3+1-2√3+2=3 . 6.(2018·北京·中考真题)计算:4sin45°+(π−2)0−√18+|−1|.【答案】2−√2【解析】【分析】按照实数的运算顺序进行运算即可.【详解】原式=4×√22+1−3√2+1=2−√2.【点睛】本题考查实数的运算,主要考查零次幂,绝对值,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.7.(2019·北京·中考真题)计算:|−√3|−(4−π)0−2sin60∘+(14)−1.【答案】3【解析】【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可【详解】原式=√3−1+2×√32+4=√3−1−√3+4=3【点睛】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.8.(2020·北京·中考真题)计算:(13)−1+√18+|−2|−6sin45°【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3+3√2+2−6×√22=3+3√2+2−3√2=5.【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京房山·二模)计算:tan60°+(3−π)0+|1−√3|+√27.【答案】5√3【解析】【分析】分别计算三角函数值、零指数幂,化简绝对值和二次根式,再进行加减即可.【详解】解:原式=√3+1+√3−1+3√3=5√3.【点睛】本题考查特殊角三角函数、零指数幂以及绝对值和二次根式的化简,属于基础题,熟练掌握上述基本知识是解题的关键.2.(2022·北京朝阳·二模)计算√18+2sin45∘−(12)−1+|√2−2|.【答案】3√2【解析】【分析】分别根据二次根式的性质,45°角的三角函数值,负整数指数幂及绝对值的性质进行化简,最后再由二次根式的运算法则合并即可.【详解】解:原式=3√2+2×√22−2+2−√2 =3√2.故答案为:3√2.【点睛】 此题考查了实数的混合运算,正确掌握二次根式的性质,45°角的三角函数值,负整数指数幂定义及绝对值的性质是解题的关键.3.(2022·北京平谷·二模)计算:√83+(13)−1−2cos30°+|1−√3|.【答案】4【解析】【分析】先利用负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质化简,再合并,即可求解.【详解】 解:√83+(13)−1−2cos30°+|1−√3|=2+3−2×√32+√3−1=2+3−√3+√3−1 =4.【点睛】本题主要考查了负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质,熟练掌握相关运算法则是解题的关键是解题的关键.4.(2022·北京北京·二模)计算:(12)−1−4cos30∘+√12+|−2|.【答案】4【解析】【分析】先计算乘方和化简二次根式,并把特殊角的三角函数值代入,去值符号,再计算乘法,最后计算加减即可.【详解】解:原式=2−4×√32+2√3+2 =2-2√3+2√3+2=4.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则,负整指数幂的运算,熟记特殊角的三角函数值是解题的关键.5.(2022·北京丰台·二模)计算:|−3|−2sin45∘+√8+(π+√3)0【答案】4+√2【解析】【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【详解】解:原式 = 3−2×√22+2√2+1 =3−√2+2√2+1=4+√2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.(2022·北京西城·二模)计算:|−√2|+2cos45°−√8+(13)−2. 【答案】9【解析】【分析】先去绝对符号,把特殊角三角函数值代入,化简二次根式并计算乘方,再进行乘法运算,最后计算加减即可.【详解】解:原式=√2+2×√22-2√2+9 =√2+√2-2√2+9=9.【点睛】本题考查实数的混合运算,熟练掌握特殊角的三角函数值、二次根式化简、负整指数幂的运算是解题的关键.7.(2022·北京顺义·二模)计算:√18−4cos45°+|−2|−(1−√2)0. 【答案】√2+1【解析】【分析】根据二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂,进行实数的计算即可求解.【详解】解:原式=3√2−4×√22+2−1 =3√2−2√2+2−1 =√2+1.【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂是解题的关键.8.(2022·北京市十一学校二模)计算:√3tan30°+|√2−2|−√83+(π−3)0【答案】2−√2【解析】【分析】先根据特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂化简,再合并,即可求解.【详解】 解:√3tan30°+|√2−2|−√83+(π−3)0 =√3×√33+2−√2−2+1=1+2−√2−2+1=2−√2【点睛】本题主要考查了特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂,熟练掌握相关运算法则是解题的关键.9.(2022·北京大兴·一模)计算:2sin30°+√8+|−5|−(−12)−1. 【答案】8+2√2【解析】【分析】先计算锐角三角函数、算术平方根、绝对值和负整数指数幂,再利用实数的加减法法则计算即可.【详解】解:原式=2×12+2√2+5−(−2)=1+2√2+5+2=8+2√2.【点睛】本题考查特殊三角函数值、负整数指数幂、算术平方根等内容,掌握运算法则是解题的关键.10.(2022·北京东城·二模)计算:(−1)2022+√83−(13)−1+√2sin45°.【答案】1【解析】【分析】先计算乘方和开方运算,并把特殊角的三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-3+√2×√22=1+2-3+1=1【点睛】本题考查实数的混合运算,熟练掌握负整指数幂的运算法则和熟记特殊角的三角函数值是解题的关键. 11.(2022·北京丰台·一模)计算:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0. 【答案】√3+1【解析】【分析】分别根据负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂计算出各数,再根据混合运算的法则进行计算;【详解】解:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0=2﹣2×√32+2√3﹣1 =2﹣√3+2√3﹣1 =√3+1【点睛】此题考查了负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂,掌握相关运算法则是解题的关键.12.(2022·北京一七一中一模)计算:3tan30°+(13)−1+20220+|√3−2|.【答案】6【解析】【分析】根据特殊角三角函数值,负整数指数幂,零指数幂,绝对值的计算法则求解即可.【详解】解:3tan30°+(13)−1+20220+|√3−2|=3×√33+3+1+2−√3 =√3+3+1+2−√3=6.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,零指数幂,绝对值,实数的混合计算,熟知相关计算法则是解题的关键.13.(2022·北京平谷·一模)计算:√12+(15)−1−3tan30°−|−2|.【答案】3+√3【解析】【分析】根据特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质进行求解即可.【详解】 解:√12+(15)−1−3tan30°−|−2|=2√3+5−3×√33−2 =2√3+5−√3−2=3+√3.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质,实数的运算,熟知相关计算法则是解题的关键.14.(2022·北京·东直门中学模拟预测)计算:2cos30°+√12−|−√3|−(π+√2)°.【答案】2√3−1【解析】【分析】根据0指数幂运算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=2×√32+2√3−√3−1=√3+2√3−√3−1=2√3−1.【点睛】本题考查的是实数的运算,熟知0指数幂的运算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.15.(2022·北京市第一六一中学分校一模)计算:2sin45°+|√2−3|−(π−2022)0+(13)−2.【答案】11【解析】【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【详解】解:2sin45°+|√2−3|−(π−2022)0+(13)−2=2×√22+3−√2−1+32=√2+3−√2−1+9=11.【点睛】此题考查了实数的运算、特殊角的三角函数值、零指数幂和负整数指数幂,熟练掌握运算法则是解本题的关键.16.(2022·北京朝阳·一模)计算:2cos30°+|−√3|−(π−√3)0−√12.【答案】-1【解析】【分析】根据实数的计算,把各个部分的值求出来进行计算即可.【详解】解:原式=2×√32+√3−1−2√3 =√3+√3−1−2√3=-1.【点睛】本题考查了实数的混合运算,准确记忆特殊角的锐角三角函数值、绝对值化简、零指数幂、二次根式的化简是解题的关键.17.(2022·北京顺义·一模)计算:2tan60°−√27+(12)−2+|1−√3|.【答案】3【解析】【分析】直接利用二次根式的性质、绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【详解】解:原式=2×√3−3√3+4+√3−1=3【点睛】此题主要考查了特殊角的三角函数值、实数运算,正确化简各数是解题关键.18.(2022·北京·中国人民大学附属中学朝阳学校一模)计算:4cos45°+(√3−1)0−√8+2−1. 【答案】32【解析】【分析】先分别根据特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂计算,然后根据实数混合运算法则计算即可求得结果.【详解】解:原式=4×√22+1−2√2+12 =2√2+32−2√2 =32. 【点睛】本题考查了特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.19.(2022·北京·模拟预测)计算:cos 230°+|1﹣√2|﹣2sin45°+(π﹣3.14)0 【答案】34【解析】【分析】根据cos30°=√32,|1−√2|=√2−1,sin45°=√22,(π−3.14)0=1,再计算即可. 【详解】解:原式=(√32)2+√2−1−2×√22+1 =34+√2−√2 =34【点睛】本题主要考查了实数的运算,掌握特殊角三角函数值,零指数次幂,绝对值的性质是解题的关键. 20.(2022·北京市师达中学模拟预测)计算:(15)−1−(π−2022)0+|√3−1|−3tan30°【答案】3【解析】【分析】先根据负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值分别计算,然后再根据实数的混合运算法则计算即可求得结果.【详解】解:原式=5−1+√3−1−3×√33=3+√3−√3=3【点睛】本题主要考查负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.21.(2022·北京朝阳·模拟预测)计算:(﹣1)2020﹣√9﹣(3﹣π)0+|3﹣√3|+(tan30°)﹣1.【答案】0【解析】【分析】计算乘方、算术平方根、零指数幂、去绝对值符号、代入三角函数值并计算负整数指数幂,再计算加减可得;【详解】解:原式=1﹣3﹣1+3﹣√3+(√33)-1=1﹣3﹣1+3﹣√3+√3=0.【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.22.(2022·北京·一模)计算√2cos45°+(1−π)0+√14+|1−√2|.【答案】32+√2【解析】【分析】根据特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值进行计算即可.【详解】原式=√2×√22+1+12+(√2−1)=1+1+12+√2−1=32+√2【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值是解题的关键.23.(2022·北京·北理工附中模拟预测)计算:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| 【答案】−√3−1【解析】【分析】根据二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值,进行计算即可【详解】解:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| =−3√32−1+2×√33−|√32−2√33| =−3√32+2√33−(2√33−√32)−1 =−√3−1 【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.24.(2022·北京师大附中模拟预测)计算:√8+(−12)−1−4cos45°+|−2|【答案】0【解析】【分析】根据二次根式的性质、负整数指数幂、特殊角的三角函数值分别计算各项,即可求解.【详解】解:原式=2√2−2−4×√22+2 =0.【点睛】本题考查实数的混合运算,掌握二次根式的性质、负整数指数幂、特殊角的三角函数值是解题的关键. 25.(2022·北京四中模拟预测)计算:(13)−1−√12+3tan30°+|√3−2|.【答案】5−2√3【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=3−2√3+3×√33+2−√3 =5−2√3.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.26.(2021·北京平谷·二模)计算:|−√2|−2cos45°+(π−1)0+(12)−1【答案】3【解析】【分析】根据绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂进行运算即可【详解】解:|−√2|−2cos45°+(π−1)0+(12)−1 =√2−2×√22+1+2 =3【点睛】本题考查了实数的混合运算,涉及到绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂,熟练掌握法则是解题的关键27.(2021·北京朝阳·二模)计算:√12+(√5−2)0−(13)−1+tan60°. 【答案】3√3−2【解析】【分析】直接根据无理数的运算,零指数幂,负整数指数幂和特殊角的三角函数值计算即可.【详解】解:原式=2√3+1−3+√3=3√3−2.【点睛】本题主要考查实数的运算,掌握无理数的运算,零指数幂,负整数指数幂的运算法则和特殊角的三角函数值是关键.28.(2021·北京顺义·二模)计算:(2−π)0+3−1+|√2|−2sin45°.【答案】43【解析】【分析】根据混合运算公式运算即可【详解】解:原式=1+13+√2−2×√22=43【点睛】本题主要考查实数混合运算内容,注意运算中的易错点,避免犯错,属于常考题.29.(2021·北京房山·二模)计算:(13)−1−2sin60°+|−√3|−(π−2021)0【答案】2【解析】【分析】根据负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值代入计算即可.【详解】解:原式=(13)−1−2sin60°+|−√3|−(π−2021)0=3−√3+√3−1=2.【点睛】此题考查实数的计算,正确掌握负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值是解题的关键.30.(2021·北京海淀·二模)计算:(12)−1+√8+|√3−1|−2sin60°.【答案】1+2√2【解析】【分析】原式利用负整数指数幂法则、二次根式的性质、绝对值的性质以及特殊角的三角函数值计算即可求出值.【详解】原式=2+2√2+√3−1−2×√32=1+2√2.【点睛】此题考查了实数的运算,负整数指数幂,绝对值的性质以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.。
初中数学中考总复习--实数的有关概念及计算考点训练
实数的有关概念及计算考点训练【考点一 实数的有关概念】1.(2022•玉环市一模)如果向东走5米记作+5米,那么﹣3米表示( )A .向东走5米B .向西走5米C .向东走3米D .向西走3米2.(2022•海曙区校级一模)在﹣6,3,0,4这四个数中,负数有( )A .1个B .2个C .3个D .4个3.(2022•鹿城区校级三模)下列实数中,为无理数的是( ) A .﹣5 B .0 C .23D .√7 4.(2022•丽水二模)实数π,0,﹣1,√2中,有理数的个数为( )A .3B .2C .1D .05.(2022•上虞区模拟)实数2,0,﹣2,√2中,为负数的是( )A .2B .0C .﹣2D .√2 6.(2020•杭州模拟)下列对实数π−12说法正确的是( )A .它是一个有理数B .它是一个单项式C .它是一个分数D .它的值等于1.07【考点二 科学记数法与近似数】【例2】(2022•宁海县模拟)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示,我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为( )A .2.12×107B .2.12×108C .0.212×109D .2.12×1091.(2022•拱墅区校级二模)中国信息通信研究院测算.2020﹣2025年,中国5G 商用带动的息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元,其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×1082.(2022•瑞安市校级三模)截至北京时间5月24日6时30分左右,全球累计确诊新冠肺炎病例约为167000000例,累计死亡348万例.数字“167000000”用科学记数法可表示为( )A .1.67×109B .0.167×109C .1.67×108D .16.7×1083.(2022•长兴县模拟)新型冠状病毒有包膜,颗粒呈圆形或者椭圆形,常为多形性.某种新冠病毒的直径大约为0.00000012米,这个数用科学记数法表示为( )A .1.2×10﹣7B .12×10﹣8C .120×106D .0.12×10﹣94.(2022•萧山区二模)2019年11月,联合国教科文组织正式宜布,将每年的3月14日定为“国际数学日”.国际数学日之所以定在3月14日,是因为“3.14”是圆周率数值最接近的数字.将圆周率“π”用四舍五入法取近似值3.14,是精确到( )A .个位B .十分位C .百分位D .千分位5.(2020•西湖区校级模拟)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为 .6.(2020•温岭市一模)疫情无情人有情,截至2月18日17时,仅我市慈善总会就接收到防控新冠肺炎疫情捐赠12525390元,用科学记数法表示这个捐赠款数,并精确到万元,可记作 元.【考点三 相反数、倒数、绝对值】【例3】(2022•江汉区校级模拟)实数−√2的相反数是( )A .−√2B .√2C .√2D .√2 1.(2020•江岸区模拟)−√3的相反数为( )A .√3B .−√33 C .3 D .﹣3 2.(2021•兰溪市模拟)实数﹣3的绝对值是( ) A .﹣3 B .13 C .3 D .−13 3.(2022•下城区校级二模)2的相反数是 ,﹣3的绝对值是 . 4.(2022秋•拱墅区月考)−12的倒数是 ;绝对值等于2的数是 .5.(2022秋•义乌市校级月考)已知|ab ﹣2|+|a ﹣1|=0,则b = .6.(2022秋•临平区月考)式子4+|x ﹣1|能取得的最小值是 ,这时x = ;式子3﹣|2x ﹣1|能取得的最大值是 ,这时x = .【考点四 平方根、立方根及实数的估算】【例4】(2022春•嵊州市期末)计算√(−3)2的结果是( )A .9B .﹣3C .3或﹣3D .3 1.(2022•婺城区一模)正数2的平方根可以表示为( )A .22B .±√2C .√2D .−√22.(2022秋•温州校级期中)下列计算结果正确的是( )A .±√4=2B .√4=±2C .√4=2D .√(−4)2=−43.(2022秋•拱墅区月考)若x 2=3,则x 的值是( )A .−√3B .√3C .±9D .±√34.(2022秋•萧山区校级期中)若m <0,则|2m |= ;√81的平方根是 .5.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .6.(2022秋•海曙区校级期中)大于−√3且小于π的所有整数和是 .7.(2022秋•温州校级期中)小于√5+1的正整数有 个.【考点五 实数的大小比较】【例5】(2022•瓯海区一模)下列四个数最大的是( )A .﹣1B .−12C .√2D .2 1.(2022秋•杭州期中)在数2,0,﹣2,−√3中,最大的数是( )A .−√3B .0C .﹣2D .22.(2022秋•杭州期中)下列大小关系判断正确的是( ) A .0>|﹣10| B .−19>−(−110) C .﹣3>−√10 D .﹣32>﹣π3.(2022秋•拱墅区校级月考)若X 为实数,记[X ]表示不超过X 的最大整数,则[﹣3.5]=( )A .﹣4B .﹣3C .3D .44.(2022秋•义乌市校级期中)比较大小:√7 2.5(填“>”、“<”或“=”).5.(2022秋•萧山区期中)比较大小:(1)﹣2 ﹣3; (2)|﹣5| √−83.【考点六 实数的运算】【例6】(2022春•富阳区期中)计算:(﹣3)2﹣30+3﹣1= .1.(2022秋•临平区期中)计算:(1)√52−33+√(35)2+(45)2; (2)√−273+√(−3)2−√−13. 2.(2022秋•萧山区期中)计算:(1)√−643+√16; (2)√(−2)2+|3.14−π|+3.14.3.(2022秋•海曙区校级期中)计算: (1)(34+712−76)÷(−160); (2)√(−5)2−|2−√2|−√−273+(−√3)2. 4.(2022秋•杭州期中)(1)若a 是最小的正整数,b 是绝对值最小的数,c =|√7−√11|,|x +2|+√y −3=0. 则a = ;b = ;c = ;x = ;y = .(2)若a 与b 互为相反数,c 与d 互为倒数,|e|=√2,求代数式4(a +b )+(﹣cd )2﹣e 2的值.5.(2022秋•苍南县期中)观察下列一组算式的特征及运算结果,探索规律:(1)√1×5+4=√9=3,(2)√2×6+4=√16=4,(3)√3×7+4=√25=5,(4)√4×8+4=√36=6.(1)观察算式规律,计算√5×9+4= ;√19×23+4= .(2)用含正整n 的式子表示上述算式的规律: .(3)计算:√1×5+4−√2×6+4+√3×7+4−√4×8+4+⋯+√2021×2025+4.【考点七 非负数的性质】【例7】(2021秋•奉化区期中)若(x ﹣2017)2+|2018+y |+√2019−m =0,则(x +y )m = .1.(2022秋•温州期中)已知|x −3|+(y +2)2+√z =0,则(z +y )x =( )A .6B .﹣6C .8D .﹣82.(2022春•仙居县期中)√a 2+2a +1−2的最小值是( )A .﹣2B .﹣1C .0D .23.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .4.(2013春•余姚市校级月考)若√a +3+(b −1)2=0,则a−b 4= .5.(2022秋•萧山区校级期中)(1)已知某正数的平方根为a +3和2a ﹣15,求这个数是多少?(2)已知m ,n 是实数,且√2m +1+|3n −2|=0,求m 2+n 2的平方根.。
中考数学分类(含答案)实数的运算
中考数学分类(含答案)实数运算一、选择题 1.(2010江苏盐城)20100的值是 A .2010 B .0 C .1 D .-1 【答案】C2.(2010山东威海)计算()2010200902211-⨯⎪⎭⎫⎝⎛-的结果是 A .-2 B .-1 C .2D .3【答案】B3.(2010台湾)计算 | -1-(-35) |-| -611-67 | 之值为何? (A) -37 (B) -31 (C) 34(D)311。
【答案】A 4.(2010台湾)计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。
【答案】A 5.(2010台湾)(A)5,5,5,5,5 (B) 1,16,25(C) 5,25,35,45,55 (D) 1,22,33,44,55 。
【答案】D 6.(2010台湾)图(五)数在线的A 、B 、C 三点所表示的数分别为 a 、b 、c 。
根据图中各点位置,判断下列各式何者 正确? (A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0 (C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。
【答案】D7.(2010浙江杭州) 计算 (– 1)2 + (– 1)3 =A.– 2B. – 1C. 0D. 2 【答案】C 8.(2010 浙江义乌)28 cm 接近于( ▲ ) A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度【答案】C 9.(2010 福建德化)2-的3倍是( ) A 、 6- B 、1 C 、6 D 、5- 【答案】AA B C O a bc 0 -1 1图(五)10.(2010 山东济南)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A .-10℃B .-6℃C .6℃D .10℃ 【答案】D11.(2010 东济南)下列各式中,运算正确的是( )A=B.=C .632a a a ÷=D .325()a a =【答案】A12.(2010山东临沂)计算()21-的值等于(A )-1 (B )1 (C )-2 (D )2 【答案】B13.(2010 河北)计算3×(-2) 的结果是A .5B .-5C .6D .-6【答案】D14.(2010 河北)下列计算中,正确的是A .020=B .2a a a =+ C3=±D .623)(a a =【答案】D 15.(2010 山东省德州)下列计算正确的是 (A)020=(B)331-=-3==【答案】C16.(2010江苏宿迁)3)2(-等于A .-6B .6C .-8D .8【答案】C 17.(2010 山东莱芜)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a1 0 -1 a b B A (第5题图)【答案】D18.(2010江西) 计算 -2- 6的结果是( )A .-8B . 8C . -4D . 4 【答案】A19.(2010年贵州毕节)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人 【答案】B.20.(2010湖北荆门)()()2012321-+-+⎪⎭⎫⎝⎛--π的值为( )A .-1B .-3C . 1D . 0【答案】C21.(2010 四川成都)3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 【答案】C 22.(2010湖北荆州)温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 【答案】A 23.(2010湖北荆州)下面计算中正确的是 A .532=+ B .()111=--C . ()2010201055=- D . x 32x ∙=x 6【答案】C24.(2010湖北荆州)在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310- D .cm 410-【答案】B 25.(2010湖北省咸宁)下列运算正确的是A .263-=- B .24±= C .532a a a =⋅ D .3252a a a+= 【答案】C 26.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ 全品中考网 ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102【答案】C 27.(2010湖南怀化)下列运算结果等于1的是( ) A .)3()3(-+-B .)3()3(---C .)3(3-⨯-D .)3()3(-÷-【答案】D28.(2010山东泰安)如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是( )A 、0a b +>B 、0ab <C 、0a b -<D 、0a b ->【答案】D 29.(2010云南红河哈尼族彝族自治州)下列计算正确的是A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)2【答案】C 30.(2010云南楚雄)下列计算正确的是( )A .a 2〃a 3=a 6B .6÷2=3C .(21)-2=-2 D . (-a 3)2=-a 6【答案】B31. (2010湖北随州)下列运算正确的是( )A .1331-÷= B a =C .3.14 3.14ππ-=-D .326211()24a b a b = 【答案】D32. (2010四川乐山)计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)5 【答案】A33. (2010黑龙江哈尔滨)某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( ) (A )16℃ (B )20℃ (C )-16℃ (D ).-20℃ 【答案】B34. (2010 福建三明)如果□,1)23(=-⨯则□内应填的实数是 ( )A .23-B .32-C .23 D .32 【答案】B35. (2010湖北襄樊)某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高( ) A .10℃ B .-10℃ C .6℃ D .-6℃【答案】A36. (2010 湖北孝感)2010)1(-的值是( )A .1B .—1C .2010D .—2010【答案】A37.(2010 山东淄博)下列结论中不能由0=+b a 得到的是(A )ab a -=2(B )b a =(C )0=a ,0=b (D )22b a =【答案】C38.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B39.(2010云南玉溪) 的结果是)(计算12010)21(1:.1---A. 1B. -1C.0D. 2【答案】B40.(2010 甘肃)()=-21( )A .1B .-1C .2D .-2 【答案】A 41.(2010 山东荷泽)2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是 A .10℃ B .6℃ C .4℃ D .2℃ 【答案】A42.(2010青海西宁) 计算)3(21-⨯--的结果等于A.5B.5-C.7D.7-(第11题)43.(2010广西梧州)用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( ) A .36 B .117 C .115 D .153 【答案】44.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 45.(2010湖北宜昌)冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )。
中考数学----《实数混合运算》专项练习题(含答案解析)
中考数学----《实数混合运算》专项练习题(含答案解析) 1.计算:()2022192sin 30−︒. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()20221192sin 3013213132−︒=+−⨯=+−=. 【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)3624−−π−−+. 【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式111644=−++7= 【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:01(10)1620222⎛⎫−⨯− ⎪⎝⎭. 【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=−+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|9−−︒+−+【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=−⨯++1223=−++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()0212 3.143tan 60132π−−−︒+−.【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 0212 3.143tan 6013())2(π−−−︒+−123133314=−+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|325(33)−+−− 3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可. 【详解】解:原式43513=+【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,2a a . 7.计算:(011322452−+︒−−. 【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1211222+=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.019(2022)2−−+.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2−−+1312=−+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒.【答案】3【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒33 【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则. 10.计算:015(3)|67⎛⎫⨯−+−− ⎪⎝⎭. 【答案】166−【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解. 【详解】解:015(3)|67⎛⎫⨯−+− ⎪⎝⎭1561=−+166=−【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键. 11.计算:(()2623+⨯−.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)623606=+−=+−−=⨯ 【点睛】本题考查实数的混合运算,关键是掌握2(a a =.12.2324 【答案】6−【分析】根据二次根式的混合运算进行计算即可求解. 【详解】解:原式626=6=−【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:2013sin3082−︒︒⎛⎫− ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=12 14222−⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣32|+(π10012(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣32|+(π10012+(﹣12)﹣2333333=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:12022125(1)3−⎛⎫+−⎪⎝⎭.5【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3−⎛⎫+−⎪⎝⎭3521=−5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.124sin3032︒;3【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可; 【解析】解:原式1234232=⨯+3=【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)(3)π−−︒+−−.【答案】1 【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可. 【详解】解:2022032tan 45(1)(3)π−−︒+−−32111=−⨯+−3211=−+−1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)(21)2(6)23−︒−++−−+⨯−. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)(21)2(6)23−︒−++−+⨯− =1191422++−− =6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()20211+84sin 45+2−︒−.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可 【详解】解:原式2122422=−+⨯+ 122222=−+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.23862−−.【答案】4. 38=2,-6=6,计算出结果.【详解】解:原式2644=+−=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 21.计算:()043897⨯−+−. 【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()043897⨯−+−− 12831=−+−+6=−;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键. 22.025|7|(23)−−+.【答案】1−【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=−+=−.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)4−+−【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可; 【详解】解:0|2021|(3)4−+−202112=+−,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π−−+−︒. 【答案】32【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:011(2021)()2cos 452π−−+−︒, 2122=+− 32=【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60233122−⎛⎫−+︒−+−− ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可. 【详解】解:()101tan 60233122−⎛⎫−+︒−−+− ⎪⎝⎭π ()=2+3233−+1-2=2323123−−=3−【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1427134sin 60π−+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1427134sin 60π−︒ =3133314−+ =1333123−+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 602020233π−︒⎛⎫+−+−+ ⎪⎝⎭ 【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式329123=++3123=12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:552×822)0. 【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】 解:原式=12352522122− =35521−=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(23)(23)tan 60(23)π++︒−− 3【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】 原式222(3)31=− 4331=−+3=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o ; 36.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】 ()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o 3314323=−−−36=;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则. 31.计算:120201(1)|132sin 602−︒⎛⎫−+−+− ⎪⎝+⎭. 【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】 解:原式=)312312++−=12313+=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos45(2020)|22π︒︒+−+−.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】 解:2cos45(2020)|22π︒︒+−+=2×22+1+22 =2+1+22=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11()18|2|6sin 453−−−︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=2332262+−⨯ 332232=+−5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|122sin45(2020)︒−+−;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式221212−⨯+ =0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3|131|13=++−33113=+−3=【点睛】 本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101()2cos 4512(31)3−−+−【答案】1【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】101()2cos 4512(31)3−−+ 2322211=−⨯− 22131=−1=.【点睛】 本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:013120208302−⎛⎫+︒− ⎪⎝⎭. 【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯− 112=+−0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键. 38.计算:1202138(π﹣3.14)0﹣(﹣15)-1. 【答案】5【解析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:13182cos60-(-1) 2π−⎛⎫−⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=1 22212−++⨯−=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0 31 8312sin604⎛⎫−−︒+ ⎪⎝⎭【答案】2−.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式323121−+−+ =23131 =−+【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可. 【详解】 解:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 2223231=−−+3=−【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:()10131012454−︒⎛⎫−−++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131012454−︒⎛⎫−−+ ⎪⎝⎭ =3114−++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.101313tan 30(3.14)2π−⎛⎫−︒+−+ ⎪⎝⎭ 【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】 原式331312=−++ 31312=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()(202 3.14219π−+ 【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式221(21)3=−+2219=+10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.18。
2021中考数学 一轮专题训练:实数及其运算(含答案)
2021中考数学一轮专题训练:实数及其运算一、选择题(本大题共10道小题)1. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元2. 下列实数中,有理数是()A. 8B. 34 C.π2 D. 0.10100100013. 若x2+4x-4=0,则3(x-2)2-6(x-1)(x+1)的值为()A.-6B.6C.18D.304. 计算|-8|--0的值是 ()A.-7B.7C.7D.95. 能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是()A. a=-2B. a=13C. a=1 D. a= 26. 下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A. 495B. 497C. 501D. 5037. 计算(-3)0+---1的结果是()A.1+B.1+2C.D.1+48. 已知|a|=1,b是2的相反数,则a+b的值为()A.-3B.-1C.-1或-3D.1或-39. 下列运算正确的是( )A .-2(3x -1)=-6x -1B .-2(3x -1)=-6x +1C .-2(3x -1)=-6x -2D .-2(3x -1)=-6x +210. 观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+…+72019的结果的个位数字是 ( ) A .0B .1C .7D .8二、填空题(本大题共10道小题)11. 计算:7x -4x =________.12. 将下列各式写成乘方的形式:(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)×(-2.3)=________; (2)⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14=________.13. 化简-3(a -2b +1)的结果为________.14. 计算:-÷= .15. 甲地的海拔为-300米,乙地比甲地高320米,那么乙地的海拔为________.16. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.17. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米.18. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .19. 我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.20. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题(本大题共6道小题)21. 已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.22. 计算:2cos60°+(-1)2017+|-3|-(2-1)0.23. 列式并计算:(1)-2减去-13与12的和是多少?(2)正213、正635、负313的和与525的差是多少?24. 一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?25. 阅读理解阅读材料:因为|x|=|x-0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1-x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x-2|=3的几何意义是什么?这里x的值是多少?(2)等式|x-4|=|x-5|的几何意义是什么?这里x的值是多少?(3)式子|x-1|+|x-3|的几何意义是什么?这个式子的最小值是多少?26. 有四个数,第一个数是m+n2,第二个数比第一个数的2倍少1,第三个数是第二个数减去第一个数的差,第四个数是第一个数与m的和.(1)求这四个数的和;(2)当m=1,n=-1时,这四个数的和是多少?2021中考数学一轮专题训练:实数及其运算-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】D【解析】A,B,C都是无理数,所以都是错误的.3. 【答案】B[解析]∵x2+4x-4=0,即x2+4x=4,∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6=-3x2-12x+18=-3(x2+4x)+18=-12+18=6.故选B.4. 【答案】B5. 【答案】A【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a=13,1,2时,|a|>-a总是成立,当a=-2时,|-2|=2=-(-2),此时|a|=-a,故本题选A.6. 【答案】A【解析】当把3按此规律操作时,不难得出应该是362486248…,除首位的3外,四个一循环,因而(100-1)÷4=24…3,则这个多位数前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495.7. 【答案】D8. 【答案】C[解析]∵|a|=1,b是2的相反数,∴a=1或a=-1,b=-2.当a=1时,a+b=1-2=-1;当a=-1时,a+b=-1-2=-3.综上,a+b的值为-1或-3,故选C.9. 【答案】D10. 【答案】A[解析]根据70=1,71=7,72=49,73=343,74=2401,75=16807,可知个位数字的变化周期为4,相邻的四个数和的个位数字为0.∵2020÷4=505,故70+71+…+72019的结果的个位数字是0,故选项A正确.二、填空题(本大题共10道小题)11. 【答案】3x12. 【答案】(1)(-2.3)5(2)(-1 4)413. 【答案】-3a+6b-314. 【答案】-15. 【答案】20米[解析] (-300)+320=20(米).16. 【答案】-3[解析] 由图可知a=-4,b=-1,所以a-b=-4-(-1)=-4+1=-3.17. 【答案】418. 【答案】1.1[解析]根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=1.1,故答案为:1.1.19. 【答案】4[解析]根据每行、每列、两条对角线上的三个数之和相等,可知三行、三列、两对角线上的三个数之和都等于15, ∴第一列第三行数为:15-2-5=8,∴m=15-8-3=4.20. 【答案】4a +8[解析] 由图可知,右上角的数为a ,则左上角的数为a -1,右下角的数为a +5,左下角的数为a +4,所以这4个数的和为a +(a -1)+(a +4)+(a +5)=4a +8.三、解答题(本大题共6道小题)21. 【答案】解:(x -2y )2-(x -y )(x +y )-2y 2 =x 2-4xy +4y 2-(x 2-y 2)-2y 2 =-4xy +3y 2 =-y (4x -3y ). ∵4x=3y , ∴原式=0.22. 【答案】解:原式=2×12-1+3-1=2.(6分)23. 【答案】解:(1)-2-(-13+12)=-2--2+36=-2-16=-136. (2)213+635-313-525=(213-313)+(635-525)=-1+115=15.24. 【答案】解:(1)5-3+10-8-6+12-10=0, 故守门员回到了原来的位置.(2)守门员离开球门的位置最远是12米.(3)守门员一共走了|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).25. 【答案】解:(1)等式|x -2|=3的几何意义是数轴上表示数x 的点与表示数2的点之间的距离等于3.这里x 的值是-1或5.(2)设数轴上表示数x ,4,5的点分别为P ,A ,B ,则等式|x -4|=|x -5|的几何意义是点P 到点A 的距离等于点P 到点B 的距离.这里x 的值是412.(3)设数轴上表示数x ,1,3的点分别为P ,M ,N ,则式子|x -1|+|x -3|的几何意义是点P 到点M 的距离与点P 到点N 的距离的和.结合数轴可知,当1≤x≤3时,式子|x -1|+|x -3|的值最小,最小值是2.26. 【答案】[解析] 先分别表示出第二、三、四个数,再求和.解:(1)第二个数是2(m +n 2)-1=2m +2n 2-1,第三个数是(2m +2n 2-1)-(m +n 2)=2m +2n 2-1-m -n 2=m +n 2-1,第四个数是m +n 2+m =n 2+2m.所以这四个数的和为m +n 2+(2m +2n 2-1)+(m +n 2-1)+(n 2+2m)=m +n 2+2m +2n 2-1+m +n 2-1+n 2+2m =5n 2+6m -2. (2)当m =1,n =-1时,5n 2+6m -2=5×(-1)2+6×1-2=5+6-2=9.。
【汇总】初中数学专项练习《实数》100道计算题包含答案
初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、计算:| -2|+2cos45°- + .2、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.3、已知且与互为相反数,求的平方根.4、如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.5、一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.6、如图:已知点A、B表示两个实数﹣、,请在数轴上描出它们大致的位置,用字母标示出来;O为原点,求出O、A两点间的距离.求出A、B两点间的距离.7、填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数8、已知2a-1的平方根是±3,b-1的立方根是2,求a-b的值.9、求下列各式中的x值.(1)25x2﹣196=0(2)(2x﹣1)3=8.10、若|x|=7,y2=9,且x>y,求x+y值11、在数轴上表示下列各数,并用“<”连接起来。
, , , , , 。
12、把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3. ,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.13、计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.14、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根15、一个正数x的平方根是3a﹣4和1﹣6a,求x的值.16、求下列式中的x的值:3(2x+1)2=27.17、解下列方程:(1)(x+5)2+16=80(2)﹣2(7﹣x)3=250.18、已知25x2﹣144=0,且x是正数,求代数式的值.19、规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.20、若5a+1和a﹣19是数m的平方根,求m的值.21、已知的平方根是,的立方根是2,是的整数部分,求的值..22、若5a+1和a﹣19是数m的平方根.求a和m的值.23、已知2a-7的平方根是±5,2a+b-1的算术平方根是4,求- +b的值.24、把下列各数填在相应的集合内:100,﹣0.82,﹣30 ,3.14,﹣2,0,﹣2011,﹣3.1 ,,﹣,2.010010001…,正分数集合:{ …}整数集合:{ …}负有理数集合:{ …}非正整数集合;{ …}无理数集合:{ …}.25、+3﹣5.26、已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.27、求下列各式中x的值.(1)9x2﹣4=0(2)(1﹣2x)3=﹣1.28、(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.29、计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.30、计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.31、已知和互为相反数,且x-y+4的平方根是它本身,求x、y 的值.32、在数轴上表示下列各数:0,﹣2.5,3 ,﹣2,+5,1 ,并用“<”号连接。
2021年九年级数学中考复习:实数及其运算练习卷(word版含答案解析)
2021届中考实数及其运算练习卷一、选择题1.下列选项中,比小的数是A. B. 0 C. D.2.数1,,0,中最小的是()A. 1B. 0C.D. —23.下列各数中,比小的数是A. —3B. —1C. 0D. 24.下列各数中最大的负数是A. B. C. —1 D. —35.下列各组数比较大小,判断正确的是A. B. C. D.6.某市有一天的最高气温为,最低气温为,则这天的最高气温比最低气温高A. B. C. D.7.计算的结果是A. B. C. 1 D. 58.的值是A. B. 1 C. 5 D.9.下列各对数中,数值相等的是A. 与B. 与C. 与D. 与10.的倒数是A. B. C. 2021 D.11.下列各式中结果为负数的是A. B. C. D.12.下列算式中,运算结果为负数..的是A. B. C.—(—3)D.13.九章算术中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为米,那么低于海平面300米应记为A. B. C. D.14.数轴上到点的距离为5的点表示的数为A. B. C. 3或 D. 5或15.有理数a,b在数轴上的位置如图所示,则下列结论正确的是A. B.C. D.16.若a与5互为相反数,则等于A. 0B. 5C. 10D.17.的相反数是A. 0B.C.D. 2018.的倒数等于A. 2020B.—2020C.D.19.已知实数x,y满足,则代数式的值为A. 1B. —1C. 2021D. —202120.在中,已知、都是锐角,,那么的度数为A. B. C. D.21.若将“收入100元”记作“元”,则“支出50元”应记作()A. 元B. 元C. 元D. 元22.的相反数为A. B. 3 C. 0 D. 不能确定23.下列四个数中最大的数是A. 0B.C.D.24.下列数中,是无理数的是A. B. 0 C. D.25.的相反数是A. 2020B.C.D.26.计算,结果正确的是A. —4B. —3C. —2D. —127.在,,,0,,中,负数的个数有A. 2个B. 3个C. 4个D. 5个28.若实数a、b在数轴上对应的点如图,下列结论正确的共有(),,,,;A. 2 个B. 3 个C. 4 个D. 5 个29.在有理数、、、中负数有A. 4B. 3C. 2D. 130.数a,b在数轴上的位置如图所示,下列式子中错误的是()A. B. C. D.31.的平方根是A. 4B.C.D.32.下列说法正确的是A. 是25的算术平方根B. 是64的立方根C. 是的立方根D. 的平方根是33.的平方根是A. B. C. D.二、填空题34.截至2020年11月17日凌晨,中国首次火星探测任务“天问一号”探测器已在轨飞行116天,距离地球约63800000千米,请将63800000用科学记数法表示________.35.月球的半径约为1738000m,把1738000这个数用科学记数法表示为.36.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为______.37.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学记数法表示为.38.截止2020年,世界总人口已接近于76亿人,用科学记数法可表示为.39.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为,数字用科学记数法表示为______.40.是大气压中直径小于或等于的颗粒物,将用科学记数法表示为________.41.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是,这个数据用科学记数法表示是________.三、解答题42.计算:.43.计算:.44.计算:.45.计算:;46.计算:.47.计算:48.计算:.49.计算:.50.计算:.51. 计算:(π-3.14)0+(12)-1-|-2|-(-1)2020.52. 计算:|-3|+(-1) 2020×(π-3.14) 0-(−13)−2+tan45°.53.计算: |3-2|+(π-2021)0-(13)-1+3tan30°.54. 计算:2cos45°+(-12)-2+(2020-2)0+|2-2|.55.计算: │-3│+(-tan45°)3×(π-3.14)0-(-12)-3-(3+2)(3-2)56.计算:|-2|+π0-16+327÷3+2cos45°.答案和解析1.【答案】D【解析】先比较数的大小,再得出选项即可.能熟记有理数的大小比较法则的内容是解此题的关键.解:A、,故本选项不符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项符合题意;故选:D.2.【答案】D【解析】根据有理数大小比较的方法即可得出答案.解:,所以最小的数是.故选D.3.【答案】A【解析】有理数的大小比较.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小,根据有理数大小比较法则解答即可.【解答】解:,比小的数是,故选A.4.【答案】A【解析】根据有理数的大小比较即可求出.解题的关键是熟练运用有理数的大小比较法则,本题属于基础题型.特别记住:两个负数,绝对值大的其值反而小.解:因为,所以最大的负数是,故选:A.5.【答案】D【解析】解:,选项A不符合题意;,选项B不符合题意;,选项C不符合题意;,选项D符合题意.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.6.【答案】A【解析】有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:.故选:A.7.【答案】D【解析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解熟记减去一个数等于加上这个数的相反数是解题的关键.解:.故选:D.8.【答案】A【解析】直接利用有理数的减法运算法则计算得出答案.解:.故选:A.9.【答案】C【解析】分别求出选项中的每一项,,,,,,,,即可求解.牢固掌握有理数的乘方和乘法运算法则是解题的关键.解:,,不正确;,,不正确;,,C正确;,,不正确;故选:C.10.【答案】B【解析】求一个数的倒数,掌握求一个整数的倒数就是写成这个整数分之一是解题的关键.解:的倒数是,故选:B.11.【答案】D【解析】根据相反数、有理数的乘方、绝对值,解析化简即可解答.解决本题的关键是明确正数和负数的概念.解:A、,是正数,故错误;B、,是正数,故错误;C 、,是正数,故错误;D 、,是负数,正确.故选:D.12.【答案】B【解析】本题考查了正数和负数,涉及的知识点有绝对值的性质、有理数的乘方、相反数,属于基础题,难度较易.将每一项的式子进行化简,然后根据负数的定义进行判断即可.【解答】解:A、,是正数;B、,是负数;C、,是正数;D、,是正数,故选B.13.【答案】A【解析】本题考查了正数和负数,解决本题的关键是理解正负数的意义.根据相反意义的量可以用正负数来表示,高于海平面200米记为米,那么低于海平面300米应记为米.【解答】解:如果高于海平面200米记为米,那么低于海平面300米应记为米.故选:A.14.【答案】C【解析】设未知数,根据数轴上两点之间的距离等于这两点所表示的数的差的绝对值,列方程求解即可.数形结合是常用的方法.解:设这个数为x,由题意得,,或,解得,或.故选:C.15.【答案】C【解析】由数轴知,再根据有理数的加法法则和乘法法则计算可得.解题的关键是掌握数轴上右边的数总是大于左边的数及有理数的加法法则和乘法法则.由数轴知,则A选项错误.B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.16.【答案】C【解析】根据a与5互为相反数,可得:,据此求出等于多少即可.解:与5互为相反数,,故选:C.17.【答案】B【解析】直接利用零指数幂的性质以及相反数的定义分析得出答案.正确把握相关定义是解题关键.解:,则1的相反数是.故选:B.18.【答案】C【解析】根据绝对值性质和倒数的概念求解可得.解题的关键是掌握乘积是1的两数互为倒数.解:,即2020的倒数等于,故选:C.19.【答案】A【解析】直接利用非负数的性质进而得出x,y的值,即可得出答案.正确得出x,y的值是解题关键.解:,,,解得:,,则.故选:B.20.【答案】C【解析】直接利用绝对值的性质以及偶次方的性质得出,,进而得出,,即可得出答案.正确得出,是解题关键.解:,,,,,,,的度数为:.故选:C.21.【答案】B【解析】解:如果将“收入100元”记作“元”,那么“支出50元”应记作“元”,故选:B.22.【答案】B【解析】解:的相反数是3,故选:B.根据相反数的定义进行解答即可.23.【答案】A 【解析】解:根据题意得:,则最大的数是0,故选:A .24.【答案】D 【解析】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:带有根号且开方开不尽的数,无限不循环小数,某些含有兀的数.【解答】解:,0,31是有理数,是无理数.故选D . 25.【答案】A 【解析】解:的相反数是2020,故选:A .26.【答案】C 【解析】首先应根据负数的绝对值是它的相反数,求得,再根据有理数的减法法则进行计算.解:原式.故选:C .27.【答案】C 【解析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.解:,,,,负数有:,,,,负数的个数有4个,故选:C .28.【答案】B 【解析】根据各点在数轴上位置即可得,且,再根据有理数的四则运算法则判断即可. 解:由题意可知,且, ,故正确;,故错误; ,故错误;,故错误; ,故正确;,故正确.正确的有共3个. 故选:B .29.【答案】B 【解析】先化简题目中的数字即可解答本题. 解:, , , ,有理数、、、中负数有3个,故选:B .30.【答案】B 【解析】本题考查了数轴,数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.根据数轴表示数的方法得到,数a表示的点比数b表示点离原点远,则;;,.【解答】解:根据题意得,,;;,数a表示的点比数b表示点离原点远,,选项ACD正确,选项B不正确.故选B.31.【答案】D【解析】根据平方根的定义,即一个数的平方等于a,则这个数叫a的平方根.注意:一个正数的平方根有两个,并且它们互为相反数.解:,的平方根为,则的平方根是.故选:D.32.【答案】C【解析】根据立方根、平方根、算术平方根的定义解答即可.解题的关键是明确它们各自的计算方法.解:A、是25的平方根,原说法错误,故此选项不符合题意;B、4是64的立方根,原说法错误,故此选项不符合题意;C、是的立方根,原说法正确,故此选项符合题意;D、,16的平方根是,原说法错误,故此选项不符合题意.故选:C.33.【答案】D【解析】首先根据算术平方根的定义求出的值,再根据平方根的定义求2的平方根.注意此题求的是的平方根,而不是4的平方根.注意一个正数有两个平方根,它们互为相反数.解:,2的平方根为的平方根为.故选:D.34.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:将将63800000用科学记数法表示为,故答案为.35.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【解答】解:.故答案为.36.【答案】【解析】解:将数据1300000用科学记数法可表示为:.故答案为:.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.37.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.根据确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同解答即可.【解答】解:,故答案为:.38.【答案】【解析】此题考查科学记数法、绝对值较大的数.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.根据科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.可得出答案.【解答】解:76亿,故答案是:.39.【答案】【解析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为:.40.【答案】【解析】解:,故答案为:.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.41.【答案】【解析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.答案:.42.【答案】解:原式.【解析】本题考查的知识点比较多:绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算的有关内容,熟练掌握且区分清楚,才不容易出错.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.43.【答案】解:原式.【解析】本题主要考查的是实数的运算,涉及有理数的乘方,绝对值,特殊角的三角函数值以及负整数指数幂的有关知识,先将给出的式子进行变形,然后再计算即可.44.【答案】解:原式.【解析】本题主要考查了实数的运算,根据题意先运用法则计算零指数幂和负整数指数幂及利用特殊角三角函数值计算最后一项,然后合并即可.45.【答案】解:原式【解析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算,最后计算加减即可得到结果.46.【答案】解:原式.【解析】本题主要考查实数的运算,零指数幂与负整数指数幂,特殊角的三角函数值,掌握法则是解题的关键.第一项根据负整数指数幂的法则计算,第二项根据零指数幂的法则计算,第三项根据特殊角的三角函数值计算,第四项根据二次根式的性质化简,然后算乘法,最后算加减即可.47.【答案】解:原式.【解析】本题主要考查了带特殊角三角函数的实数运算,考查了负整数指数幂,零指数幂、绝对值,熟练掌握运算法则是解题的关键.直接根据特殊角三角函数、绝对值的性质、负整数指数幂、零指数幂的性质化简式子,然后计算可得答案.48.【答案】解:原式.【解析】本题考查代数式的值、负整数指数幂、绝对值、零指数幂及特殊角的三角函数值,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.解答此题可先求出负整指数幂,零整指数幂的值,写出角的正弦值,并化简绝对值,然后再加减即可.49.【答案】解:原式.【解析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.50.【答案】解:【解析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.51.原式==1+2-2-1=0.52.原式=3+1×1-9+1=3+1-9+1=4-9+1=-4.53.原式=2-3+1-3+3=0.54.原式=2-2+1+2-2=1.55.原式=3-1×1+8-(9-2)=3-1+8-7=3.56.计算:|-2|+π0-16+327÷3+2cos45°.56.原式=2+1—4+1+1=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式
第一节 实数及其运算练习
姓名:________ 班级:________ 用时:______分钟
1.(·原创题)2 019的相反数是( )
A .2 019
B .-2 019
C.12 019 D .-12 019
2.(·临淄模拟)-34的倒数是( )
A.43 B .-43
C.34 D .-34
3.(·杭州中考)|-3|=( )
A .3
B .-3
C.13 D .-13
4.(·南京中考)9
4的值等于( ) A.3
2 B .-3
2
C .±3
2 D.81
16
5.(·攀枝花中考)下列实数中,无理数是( )
A .0
B .-2
C. 3
D.1
7
6.(·南充中考)下列实数中,最小的数是( ) A .- 2 B .0
C .1 D.38
7.(·易错题)下列各数中绝对值最小的是( )
A .3
B .-π
C .2 3
D .-2
8.(·恩施州中考)64的立方根为( )
A .8
B .-8
C .4
D .-4
9.(·邵阳中考)用计算器依次按键
,得到的结果最接近的是( ) A .1.5
B .1.6
C .1.7
D .1.8
10.(·宜宾中考)我国首艘国产航母于2018年4月26日正式下水,排水量约为65 000吨.将65 000用科学记数法表示为( )
A .6.5×10-4
B .6.5×104
C .-6.5×104
D .0.65×104 11.(·重庆中考B 卷)估计56-24的值应在( )
A .5和6之间
B .6和7之间
C .7和8之间
D .8和9之间
12.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“+5”,那么“亏7”可以记为________.
13.(·南充中考)某地某天的最高气温是6 ℃,最低气温是-4 ℃,则该地当天的温差为________℃.
14.计算:2-1+(-2)2
=________.
15.(·内江中考改编)小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000 326毫米,将0.000 326用科学记数法表示为________________.
16.(·邵阳中考)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.
17.(·原创题)计算:(2 019-2)0-(12
)-1+|-2|.
18.计算: 6÷(-3)+4-8×2-2
.
19.(·攀枝花中考)如图,实数-3,x,3,y 在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
20.(·重庆中考B 卷改编)下列说法中正确的是( )
A .如果一个数的相反数等于这个数本身,那么这个数一定是0
B .如果一个数的倒数等于这个数本身,那么这个数一定是1
C .如果一个数的平方等于这个数本身,那么这个数一定是0
D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0
21.(·易错题)9的平方根是______.
22. 运用科学计算器进行计算,按键顺序如下: ( 3 · 5 - 1 · 5 ) × 4 x 2 - 8 a b /c 5 =
则计算器显示的结果是________.
23.(·黔南州中考)如图为洪涛同学的小测卷,他的得分应是__________分.
24.(·南充中考)计算:(1-2)2-(1-22)0+sin 45°+(12)-1
.
25.(·达州中考)计算:(-1)
2 018+(-12)-2-|2-12|+4sin 60°.
26.(·原创题)计算:-23+2 0190-(-8)
2 019×(-0.125)2 018+
|π-3.14|.
27.(·创新题)在平面直角坐标系中,点P 的坐标为(m,n),则OP →可以用点P 的坐标表示为OP →=(m,n).已知
OA 1→=(x 1,y 1),OA 2→=(x 2,y 2),若x 1x 2+y 1y 2=0,则OA 1→与OA 2→互相垂直.
下面四组向量:
①OB 1→=(3,-9),OB 2→=(1,-13
); ②OC 1→=(2,π0),OC 2→=(2-1,-1);
③OD 1→=(cos 30°,tan 45°),OD 2→=(sin 30°,tan 45°);
④OE 1→=(5+2,2),OE 2→=(5-2,-2
2).
其中互相垂直的有( )
A .1组
B .2组
C .3组
D .4组
参考答案
【基础训练】
1.B 2.B 3.A 4.A 5.C 6.A 7.D 8.C 9.C 10.B
11.C 12.-7 13.10 14.5
2 15.3.26×10-4 16.-2
17.解:原式=1-2+2=1.
18.解:原式=-2+2-8×1
4=-2.
【拔高训练】
19.B 20.A 21.± 3 22.30.4 23.100 24.解:原式=2-1-1+2
2+2=3
2 2.
25.解:原式=1+4-(23-2)+4×3
2
=1+4-23+2+23=7.
26.解:原式=-8+1-(-8)+π-3.14
=π-2.14.
【培优训练】
27.B。