方法技巧专题16函数中恒成立与存在性问题

合集下载

函数的恒成立、存在性问题的方法总结大全(干货)

函数的恒成立、存在性问题的方法总结大全(干货)

关于函数的恒成立、存在性(能成立)问题关于二次函数的恒成立、存在性(能成立)问题是常考考点,其基本原理如下:(1)已知二次函数2()(0)f x ax bx c a =++≠,则:0()00a f x >⎧>⇔⎨∆<⎩恒成立;0()00a f x <⎧<⇔⎨∆<⎩恒成立. (2)若表述为:“已知函数2()(0)f x ax bx c a =++≠”,并未限制为二次函数,则应有:00()000a a b f x c >==⎧⎧>⇔⎨⎨∆<>⎩⎩恒成立或;00()000a a b f x c <==⎧⎧<⇔⎨⎨∆<<⎩⎩恒成立或.注:在考试中容易犯错,要特别注意!!!恒成立问题与存在性(能成立)问题,在解决此类问题时,可转化为其等价形式予以解答,将此类问题的可能出现的17种情形归纳总结大全如下,并通过常考例题进行讲解:已知定义在[,]a b 上的函数()f x ,()g x .(1)[,]x a b ∀∈,都有()f x k >(k 是常数)成立等价于min [()]f x k >([,]x a b ∈). (2)[,]x a b ∀∈,都有()f x k <(k 是常数)成立等价于max [()]f x k <([,]x a b ∈). (3)[,]x a b ∀∈,都有()()f x g x >成立等价于min [()()]0f x g x ->([,]x a b ∈). (4)[,]x a b ∃∈,都有()()f x g x >成立等价于max [()()]0f x g x ->([,]x a b ∈). (5)1[,]x a b ∀∈,2[,]x a b ∀∈都有12()()f x g x >成立等价于min max [()][()]f x g x >. (6)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于min min [()][()]f x g x >. (7)1[,]x a b ∃∈,2[,]x a b ∀∈使得12()()f x g x >成立等价于max max [()][()]f x g x >. (8)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于max min [()][()]f x g x >.(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max [()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.(10)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于()f x 的值域与()g x 的值域交集不为∅.(11)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x k +≥(k 是常数)成立等价于min max [()][()]f x g x k +≥.(12)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≤(k 是常数)成立等价于max min [()][()]g x f x k-≤且.max min [()][()]f x g x k -≤. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≤(k 是常数)成立等价于max min ()()f x f x k -≤.(13)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≥(k 是常数)成立等价于min max [()][()]g x f x k-≥或.min max [()][()]f x g x k -≥. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≥(k 是常数)成立等价于min max ()()f x f x k -≥.(14)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min max [()][()]g x f x k-≤且.min max [()][()]f x g x k -≤. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≤(k 是常数)成立等价于min max ()()f x f x k -≤.(15)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max min [()][()]g x f x k-≥或.max min [()][()]f x g x k -≥. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≥(k 是常数)成立等价于max min ()()f x f x k -≥.(16)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min min [()][()]g x f x k-≤且.max max [()][()]f x g x k -≤. (17)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max max [()][()]g x f x k-≥或.min min [()][()]f x g x k -≥. 【评注】(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max[()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.()y g x =所在区域能包含()y f x =所在区域时,满足条件.∀⊆∃.题目中有时会这样表述:对任意的1[,]x a b ∈,都有2[,]x a b ∈,使得12()()f x g x =成立,(9)的表达的意思完全相同.所以大家要深入理解定理中的“任意的”、“都有”的内涵:即当1[,]x a b ∈时,()f x 的值域不过是()g x 的子集.【例1】(1)(2010•山东•理14)若对任意0x >,231xa x x ++恒成立,则a 的取值范围是 . (2)现已知函数2()41f x x x =-+,且设12314n x x x x <<<⋯<,若有12231|()()||()()||()()|n n f x f x f x f x f x f x M --+-+⋯+-,则M 的最小值为( )A .3B .4C .5D .6(3)已知21()lg(31)()()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 .(4)已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[2,2]x ∈-,总存在2x R ∈,使得12()()f x g x =成立,则实数m 的取值范围是( ) A .1[,1]9B .(,1]-∞C .(,1][4,)-∞+∞D .(,1][3,)-∞+∞(5)已知函数2()1f x x x =-+,[1,2]x ∈,函数()1g x ax =-,[1,1]x ∈-,对于任意1[1,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,4]-∞- B .[4,)+∞C .(,4][4,)-∞-+∞D .(,4)(4,)-∞-+∞(6)(2008•天津•文10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) A .{|12}a a <B .{|2}a aC .{|23}a aD .{2,3}(7)(2008•天津•理15)设1a >,若仅有一个常数c 使得对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log a a x y c +=,这时a 的取值的集合为 .)0x >,12x∴(当且仅当112353=+15,故答案为:1[,)5+∞.2()x x =-的图象是开口向上,过的抛物线,由图象可知,函数在上单调递减,在上单调递增,12314n x x x x <<<⋯<,(1)2f ∴=-,(2)f =-对应的函数值(2()41f x x x =-+图象上的点的纵坐标)之差的绝对值,结合231)||()()||()()|n n f x f x f x f x -+-+⋯+-表示函数max M ,||(1)(2)f f -5M ,故上单调递增,)法一:()2(2f x x ==-+2,2]时,x 2()3f x ,(f x ∴12)(22)2x x +=--<+,令f 单调递增,当(1,2]x ∈-,也是最大值;又(2)f 22[52m m --∈--,对于任意的的值域的子集,22m ,1m 或4m ,故选:)因为2()f x x x =-0时,()g x 在[1-[1,1]B a a =---,由题意可得,1113-,解得4a ;0时,()g x 在[1-的值域为[1,1]a a ---, 1113-,解得4a -,4][4,)+∞.故选:C .)3xy =,得,在[,2a a 上单调递减,所以2a ,即2a 故选:B .)log log a x c +,log a xy c ∴=,cxy a ∴=c a1122a a -⇒223a c log c +⎧⎨⎩的取值的集合为{2}.故答案为:【评注】深入理解(6)题题干中的“任意的”、“都有”的内涵:即当[,2]x a a ∈时,()f x 的值域M 不过是2[,]a a 的子集.值得关注的是:“[,2]x a a ∈”是指每一个这样的x ,2[,]y a a ∈是指存在这样的y ,理解到由函数的定义域导出值域M 是2[,]a a 的子集,由此才有:222[,][,]2a a a a ⊆.(6)与(7)唯一的差别就是:(7)中要求时唯一的,如何转化“唯一”这个条件是本题的关键,与函数的单调性联系起来来进行解答,需要有较强的转化问题的能力. 【例2】已知函数2()[2sin()sin ]cos ,3f x x x x x x R π=++∈.(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求m 的取值范围. ))x .存在【例3】已知实数0a >,且满足以下条件:①x R ∃∈,|sin |x a >有解;②3[,]44x ππ∀∈,2sin sin 10x a x +-; 求实数a 的取值范围.【解析】实数10得:1sin sin a x-2[,1]2t ∈时,2()2f t f =1sin sin ax -22a ;综上,a 的取值范围是2{1}a a <.【例4】(1)已知函数2()2f x k x k =+,[0,1]x ∈,函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x <成立.求k 的取值范围.(min min ()()g x f x <)(2)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()f x 的值域是()g x 的值域的子集即可.) (3)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.存在1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()g x 的值域与()f x 的值域的交集非空.)5k ,解得5k ,则求5k .,当[0,1]x ∈时,函数单调递增,2[,2k k k +2)[5,2210]k k ∈++,[0,1],存在210]k +,即225222k k k k k ⎧⎨++⎩,解得5k ,则求5k . 时,函数单调递增,2,2]k k +,1)k x +++10]+,由对存,存在2x 1()f x =成2][5,2k +,即252k k +且22210k k k +,解得4114k-或1414k --.【例5】已知(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 取值范围.,即2()(log )2log f t t =-)(log 2log x x =-+【例6】(1)已知函数1()f x e =-,3(4)g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,(2)已知函数()1x f x e =-,2()44g x x x =-+-.若有()()f a g b =,则b 的取值范围为( ) A.[2-+ B.(2-+ C .[1,3]D .(1,3))()f x e =【例7】(1)(2014•江苏•10)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+都有()0f x <,则实数m 的取值范围为 .(2)已知函数2()(f x x bx c b =++、)c R ∈且当1x时,()0f x ,当13x 时,()0f x 恒成立. (ⅰ)求b ,c 之间的关系式;(ⅱ)当3c 时,是否存在实数m 使得2()()g x f x m x =-在区间(0,)+∞上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.(3)(2017•天津•理8)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[-D .39[]16- (4)已知定义域为R 的函数()f x 满足22(())()f f x x x f x x x -+=-+. (①)若(2)3f =,求(1)f ;又若(0)f a =,求()f a ;(①)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.【解析】(1)二次函数2()1f x x mx =+-的图象开口向上,对于任意[,1]x m m ∈+,都有()0f x <成立,∴(1)0与(1)0f 同时成立,则必有m ,使满足题设的(g 22()()g x f x b m x c =+-+开口向上,且在0b .20b m ∴.3c ,1)4b ∴=-.这与上式矛盾,从而能满足题设的实数【评注】本题主要考查一元二次函数的图象与性质.一元二次函数的对称性、最值、单调性是每年高考必考内容,要引起重视.)法一:当1x 时,关于x 的不等式)||2x x a +在R 2332x a x x +-+,2133322x a x x +--+,由132y x =+-的对称轴为14处取得最大值-3的对称轴为334x =处取得最小值47391616a① 时,关于x 的不等式)||2x x a +在R 上恒成立,即为22)2x a x x++, 22)2x a x +,由3232()22322x x x x =-+-=-(当且仅当21)3x =>取得最大值212222x x x =(当且仅当21)x =>取得最小值2.则32a ①由①①可得,47216a . ()x 的图象和折线||2xa =+,1x 时,y =11145x解得4716a =-;1x >时,y 解得2a =.由图象平移可得,47216a .故选:法三:根据题意,作出的大致图象,如图所示.【例8】(2012•陕西•理21第2问•文21第3问)设函数2()f x x bx c =++,若对任意1x ,2[1,1]x ∈-,有12|()()|4f x f x -,求b 的取值范围.|4, 4M ,即min 4M . 2b <-时,min )|(1)f =-102b -<时,即2b 时,24M 恒成立,所以2b ;012b- 时,即20b 时,21)4M 恒成立,所以20b ;综上可得,22b -,即b 的取值范围是。

恒成立与存在性问题课件

恒成立与存在性问题课件

数列极限问题例题
要点一
总结词
数列极限问题例题是恒成立与存在性问题中另一类常见的 题目,主要考察学生对数列极限的定义和求解能力。
要点二
详细描述
数列极限问题例题通常包括给定数列的通项公式,求数列 的极限值,或者在一定条件下判断数列的收敛性等问题。 在解题时,学生需要熟练掌握极限的定义和求解方法,以 及数列的通项公式和收敛性的判断等知识。
总结词
对于连续函数,极值点通常在导数为零 的点处取得。
VS
详细描述
对于一元函数,我们可以通过求解导数为 零的点来找到极值点。而对于多元函数, 我们需要求解偏导数为零的点,这些点通 常被称为驻点。
数列中项问题
总结词
详细描述
总结词
详细描述
数列中项问题是探求数列中 某一项的值小于或大于该项 前面的所有项和该项后面的 所有项。
02
反证法
反证法是一种间接证明存在性命题的方法。它通过假设命题不成立,然
后推出矛盾,从而证明命题的正确性。
03
排除法
排除法是一种通过排除不可能的情况来证明存在性命题的方法。它通过
列出所有不可能的情况,然后证明其中至少有一种情况是成立的,从而
证明命题的正确性。
03
恒成立问题的应用
函数最值问题
总结词
函数最值问题是恒成立问题的一个重要应用,通过求解函数的最值,可以解决许 多实际生活中的问题。
详细描述
函数最值问题主要研究一个或多个自变量取值时,函数所取得的最大或最小值。 在解决函数最值问题时,通常需要考虑函数的单调性、极值、导数等性质,以及 可能涉及的几何意义等。
数列极限问题
总结词
数列极限问题是数学中的一个经典问题,主要研究当数列的 项数趋于无穷时,数列的项的值是如何变化的。

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题思路一:(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。

例题1:已知函数.ln )(x x x f =(1)求函数.ln )(x x x f =的最小值;(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。

答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞变式:设函数)1ln(2)1()(2x x x f +-+=(1)求函数)(x f 的单调区间;(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取值范围。

答案:(1)递增区间是),0(+∞;递减区间是)0,1(-(2)22->e m(3))3ln 23,2ln 22(--思路二(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:不等式a x f >)(在区间D 上有解max )(x f a <⇔;不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;不等式a x f <)(在区间D 上有解min )(x f a >⇔;不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。

关于高考数学中的恒成立问题与存在性问题

关于高考数学中的恒成立问题与存在性问题

关于高考数学中的恒成立问题与存在性问题 Last revised by LE LE in 2021“恒成立问题”的解法常用方法:①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。

一、函数性质法1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函数的图象(直线)可得上述结论等价于⎩⎨⎧>)(0)(n f m f ;同理,若在[m,n]内恒有()0f x <,则有⎩⎨⎧((n f m f 例1.p ,求使不等式2x x 的取值范围。

略解:不等式即为2(1)210x p x x -+-+>,设2()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f ,即⎪⎩⎪⎨⎧>->+-0103422x x x 3111x x x x ><⎧⇒⎨><-⎩或或13x x ⇒<->或.2.二次函数:①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或0a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。

例2.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)选B 。

例3.设2()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。

方法技巧专题16 函数中恒成立与存在性问题(解析版)

方法技巧专题16 函数中恒成立与存在性问题(解析版)

函数中恒成立与存在性问题二、函数中恒成立问题【例1】不等式3ln 1xx e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-【解析】3ln 1x a x x e x -≤--对()1,x ∀∈+∞恒成立,即31ln x x e x a x ---≤对()1,x ∀∈+∞恒成立,从而求31ln x x e x y x ---=,()1,x ∈+∞的最小值,而33ln 3ln 3ln 1x x x x x x e e e e x x ---==≥-+故313ln 113ln x x e x x x x x ---≥-+--=-即313ln 3ln ln x x e x xx x----≥=-当3ln 0x x -=时,等号成立,方程3ln 0x x -=在()1,+∞内有根,故3min13ln x x e x x -⎛⎫--=- ⎪⎝⎭,所以3a ≤-,故选D.【例2】已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围. 【解析】(1)∵()ln f x ax x x =+,∵'()ln 1f x a x =++, 又∵()f x 的图象在点e x =处的切线的斜率为3,∵'(e)3f =, 即lne 13a ++=,∵1a =; (2)由(1)知,()ln f x x x x =+, ∵2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x ⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∵()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∵()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∵1k ≥即为所求. 2.巩固提升综合练习【练习1】已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈. (1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞. 【解析】(1)∵4t =,∵24(1)()()()2log (22)log log a a a x F x g x f x x x x+=-=+-=1log 4(2)a x x=++ 易证1()4(2)h x x x =++在1[,1]4上单调递减,在[1,2]上单调递增,且1()(2)4h h >,∵min ()(1)16h x h ==,max 1()()254h x h ==,∵当1a >时,min ()log 16a F x =,由log 162a =-,解得14a =(舍去)当01a <<时,min ()log 25a F x =,由log 252a =-,解得15a =. 综上知实数a 的值是15. (2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∵1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈22x t ≤+-,22t x ≥-+∵恒成立,∵max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∵max 2y =.故实数t 的取值范围为[2,)+∞.【练习2】若(0,)x ∈+∞,1ln x e x x a x-≥-+恒成立,则a 的最大值为( )A .1B .1eC .0D .e -【答案】C【解析】设x x t ln -=,则11x t e e x--=,原不等式等价于1t e t a --≥恒成立,设1ln ,1y x x y x-='=-是单调递增的,零点为1x =,函数y 的最小值为1,故1t ≥,()()11,1t t f t e t f t e --'=-=-,零点是1t = ()f t 在[)1,+∞上单调递增,故()min 0f t =,故0a ≤.故选C.【练习3】已知a R ∈,设函数⎩⎨⎧>-≤+-=1,ln 1,22)(2x x a x x a ax x x f 若关于x 的不等式0)(≥x f 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C 【解析】∵(0)0f ≥,即0a ≥,当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.1.例题【例1】定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( )A .[]2,3B .[]1,3C .[]1,4D .[]2,4【答案】B【解析】因为当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,所以()2min 142m f x m ≥-+,当[)[)4,2,40,2x x ∈--+∈时,()()()112424f x f x f x =+=+ ()()[)[)2342144,40,1411,41,242x x x x x +-⎧⎡⎤+-++∈⎪⎣⎦⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩当[)40,1x +∈时,()()()211114444416f x x x ⎡⎤=+-+≥-⨯=-⎣⎦,当[)41,2x +∈时,()342111424x f x +-⎛⎫=-≥- ⎪⎝⎭,因此当[)4,2x ∈--时,()2min1113442m f x m m =-≥-+∴≤≤,选B.【例2】若对I x ∀,()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的取值范围是( )注:( e 为自然对数的底数,即 2.71828e =…) A .1,e ⎡⎫+∞⎪⎢⎣⎭B .[),e +∞C .[)1,+∞D .[)1,-+∞ 【答案】C【解析】因为对于()ln f x x =,定义域为()0,∞+ ,所以120x x << 当满足120x x <<时,122121ln ln 1x x x x x x -<-成立化简可得122121ln ln x x x x x x -<-,移项合并后可得121221ln ln x x x x x x +<+,即()()1221ln 11ln x x x x +<+因为120x x <<,所以可等价于()()2121ln 1ln 1x x x x ++<即满足()ln 1x g x x +=为减函数,()221ln 1ln 'x xg x x x ---==, 因为()ln 1x g x x +=为减函数,所以()'0g x ≤,即2ln 0xx -≤, 则1x ≥ ,因为对1x ∀,()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-所以1m ≥ ,即m 的取值范围为[)1,+∞,故选C. 【例3】已知函数21ln 21)(2-+-=x x a x x f ,对任意x ∈[1,+∞),当mx x f ≥)(恒成立时实数m 的最 大值为1,则实数a 的取值范围是 .【解析】对任意x ∈[1,+∞),有f(x)≥mx恒成立,即()f x m x ≥恒成立,即min()f x m x ⎡⎤≤⎢⎥⎣⎦,又当f(x)≥mx 恒成立时实数m 的最大值为1,所以min()1f x x ⎡⎤=⎢⎥⎣⎦.因为(1)11f = 所以问题等价转化为()1f x x≥在[1,)+∞上恒成立,即()0f x x -≥在[1,)+∞上恒成立. 设()()g x f x x =-211ln 22x a x =--(1x ≥),2()x ag x x-'=①当1a ≤时,因为1x ≥,所以2()0x ag x x-'=≥,因此()g x 在[1,)+∞上是单调递增函数,所以()(1)0g x g ≥=,即()0f x x -≥在[1,)+∞上恒成立;②当1a >时,在上,有()0g x '<;在)+∞上,有()0g x '>, 所以()g x 在上为单调递减函数,在)+∞上为单调递增函数. 当(1,)x a ∈,有()(1)0g x g <=,即()0f x x -≥在[1,)+∞上不恒成立. 综合①②得:实数a 的取值范围是(,1]-∞.2.巩固提升综合练习 【练习1】已知函数,,当时,不等式恒成立,则实数的取值范围为( )A .(]e ,∞-B .),(e ∞-C .),(2-e∞ D .⎥⎦⎤ ⎝⎛∞2-e , 【答案】D【解析】因为所以即,即当时,恒成立,所以在内是一个增函数,设,则有即 ,设则有, 当时,即,当时,即所以当时,最小,即 ,故选D.【练习2】已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式2(ln 1)(ln 1)f ax x f ax x -+++--()31f ≥对[]1,3x ∈恒成立,则实数a 的取值范围是( )A .[]2,e B .1[,)e+∞C .1[,]e eD .12ln 3[,]3e +【答案】D【解析】由题设可得(ln 1)(ln 1)f ax x f ax x -++=--,则原不等式可化为(ln 1)(1)f ax x f -++≥, 即ln 11ax x --≤,也即ln 20ax x --≤在[1,3]上恒成立,由于0x >,因此2ln xa x+≤, 令2ln ()x h x x +=,则/2212ln 1ln ()x x h x x x --+==-,所以当1ln 1x x e >-⇒>时,/()0h x <,函数2ln ()x h x x+=单调递减,因11e <,故函数2ln ()x h x x+=在[1,3]上单调递减, 故min max 2ln13ln 3()2,()13h x h x ++===, 当11x e e -==时,函数1min 12ln ()e h x e e --+==,所以a e ≤,应选答案D.【练习3】若,满足恒成立,则实数的取值范围为__________.【答案】【解析】(1),显然成立;(2)时,由 ,由在为增在恒成立,由在为增,,,综上,,故答案为.【三】数形结合法1.例题【例1】已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围.【解析】令()()222F x f x k x kx k=-=-+-,则()0F x ≥对[)1,x ∈-+∞恒成立,而()F x 是开口向上的抛物线.当图象与x 轴无交点满足0∆<,即()24220k k ∆=--<,解得21k -<<.当图象与x 轴有交点,且在[)1,x ∈-+∞时()0F x ≥,则由二次函数根与系数的分布知识及图象可得: ()010212F k ⎧⎪∆≥⎪⎪-≥⎨⎪-⎪-≤-⎪⎩,解得32k -≤≤-,故由①②知31k -≤<.【例2】已知函数f (x )=⎩⎨⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________. 【答案】[1e,1]【解析】令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1), 令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y 极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y =x 3-2x 2+x 在原点处的切线斜率k 2=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.2.巩固提升综合练习【练习1】已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C. ()),0-∞⋃+∞ D .(),-∞⋃+∞【答案】A【解析】当0x <时,()33()()()()f x f x x f x x x R f x =--=⇒=∈⇒在R 上是增函数242t m mt ⇒->+对任意实数t 恒成立2442t mt t m ⇒->++对任意实数t 恒成立,结合二次函数图象可得201680m m m <⎧⇒⇒∈⎨∆-<⎩(,-∞,故选A.【练习2】若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,实数x 的取值范围是 .12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m 是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. 【练习3】已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( ) A .13,3e ⎡⎤-⎢⎥⎣⎦B .[3,3ln 5]+C .[3,4ln 2]+D .13,5e⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x ax a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a ,①当2ax ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相 切,此时2()46,1f x x x x =-+>,()2,2a g x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;②同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +,可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+,综上所述可得342a In ≤≤+,故选C.1.例题【例1】 已知函数f (x )=x ||x 2-a ,若存在x ∈[]1,2,使得f (x )<2,则实数a 的取值范围是________. 【答案】 (-1,5)【解析】解法1 当x ∈[1,2]时,f (x )<2,等价于|x 3-ax |<2,即-2<x 3-ax <2,即x 3-2<ax <x 3+2,得到x 2-2x <a <x 2+2x,即⎝⎛⎭⎫x 2-2x min <a <⎝⎛⎭⎫x 2+2x max ,得到-1<a <5. 解法2 原问题可转化为先求:对任意x ∈[1,2],使得f (x )≥2时,实数a 的取值范围. 则有x |x 2-a |≥2,即|a -x 2|≥2x.(1) 当a ≥4时,a ≥x 2+2x ≥22+22=5,得到a ≥5.(2) 当a ≤1时,x 2-a ≥2x ,有a ≤x 2-2x ≤1-21=-1,得到a ≤-1.(3) 当1<a <4时,|a -x 2|≥0,与2x >0矛盾.那么有a ≤-1或a ≥5,故原题答案为-1<a <5. 【例2】已知=)(x f x x +221,=)(x g a x -+)1ln(,若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;【答案】()4,-+∞【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .实数a 的取值围是()4,-+∞.AB ≠∅.(【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【答案】[]4,ln3-【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=. 若存在21,x x 使得)()(21x g x f =,则A B ≠∅,∵4a -≤且ln30a -≥,∵实数a 的取值围是[]4,ln3-.2.巩固提升综合练习【练习1】已知函数22()()()xaf x x a e e=+++,若存在0x ,使得024()1f x e ≤+,则实数a 的值为______. 【答案】2211e e -+ 【解析】函数f (x )=(x+a )2+(e x +a e)2, 函数f (x )可以看作是动点M (x ,e x )与动点N (-a ,-ae)之间距离的平方, 动点M 在函数y=e x 的图象上,N 在直线y=1e x 的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=e x 得,y′=e x =1e,解得x=-1,所以曲线上点M (-1,1e )到直线y=1e x 的距离最小,最小距离则f (x )≥241e +, 根据题意,要使f (x 0)≤241e +,则f (x 0)=241e +, 此时N 恰好为垂足,由K MN =-e ,解得a=2211e e -+ . 故答案为:2211e e -+.【练习2】已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1x ∃、2R x ∈,12x x ≠,使得12()()f x f x =成立,则a的取值范围是( ). A .2a > B .2a <C .22a -<<D .2a <-或2a >【答案】B【解析】当2a <时,12a <,函数()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上递增,在,12a ⎛⎫⎪⎝⎭上递减,则:1x ∃、2R x ∈,12x x ≠,使得12()()f x f x =成立.当2a ≥时,12a≥,函数()f x 在(),1-∞上递增,在()1,+∞也递增, 又21111a a -+⨯=⨯-,所以函数()f x 在R 上单调递增,此时一定不存在1x 、2R x ∈,12x x ≠,使得12()()f x f x =成立.故选B.【练习3】已知函数24,0(),0x x x f x e e x x⎧+-≤⎪=⎨->⎪⎩,2()314g x x x =--,若存在实数x ,使得()()18g m f x -=成立,则实数m 的取值范围为( ) A .)7,4(- B .[4,7]-C .(,4)(7,)-∞-+∞D .(,4][7,)-∞-+∞【答案】D【解析】由题意,当0x ≤时,()|2|44f x x =+-≥-,当且仅当2x =-时取“=”,当0x >时,函数()x e f x e x =-,则2(1)'()xx e f x x-=, 当(0,1)x ∈时,()0f x '<,当时,()0f x '>,所以函数()f x 在区间(0,1)上单调递减,在区间(1,)+∞上单调增, 所以()(1)0f x f ≥=,综上可得()4f x ≥-,因为存在实数x ,使得()()18g m f x -=成立,则()()1841814g m f x =+≥-+=, 即231414m m --≥,即23280m m --≥,解得或4m ≤-,故实数m 的取值范围为(,4][7,)-∞-+∞,故选D. 【练习4】已知函数()ln f x x =,()()h x a x a R =∈.(1)函数()f x 的图象与()h x 的图象无公共点,求实数a 的取值范围;(2)是否存在实数m ,使得对任意的1(,)2x ∈+∞,都有函数()m y f x x =+的图象在()x e g x x =的图象的下方?若存在,请求出整数m 的最大值;若不存在,请说理由.(参考数据:ln 20.6931=,ln3 1.0986=1.3956==). 【解析】(1)函数()f x 与()h x 无公共点,等价于方程ln xa x=在(0,)+∞无解 令ln ()x t x=,则21ln '(),xt x -=令'()0,t x =得x e =因为x e =是唯一的极大值点,故max ()t t e e==……………4分 故要使方程ln xa x =在(0,)+∞无解, 当且仅当1a e >,故实数a 的取值范围为1(,)e +∞(2)假设存在实数m 满足题意,则不等式ln x m e x x x +<对1(,)2x ∈+∞恒成立.即ln x m e x x <-对1(,)2x ∈+∞恒成立.令()ln xr x e x x =-,则'()ln 1xr x e x =--,令()ln 1xx e x ϕ=--,则1'()x x e x ϕ=-,∵'()x ϕ在1(,)2+∞上单调递增,121'()202e ϕ=-<,'(1)10e ϕ=->,且'()x ϕ的图象在1(,1)2上连续,∵存在01(,1)2x ∈,使得0'()0x ϕ=,即0010xe x -=,则00ln x x =-,∵ 当01(,)2x x∈时,()x ϕ单调递减;当0(,)x x ∈+∞时,()x ϕ单调递增,则()x ϕ取到最小值000001()ln 11xx e x x x ϕ=--=+-110≥=>, ∵ '()0r x >,即()r x 在区间1(,)2+∞内单调递增. 11221111()ln ln 2 1.995252222m r e e ≤=-=+=,∵存在实数m 满足题意,且最大整数m 的值为1.【例1】已知函数[]()2(),2,2f x x x =∈-,2()sin(2)3,0,62g x a x a x ππ⎡⎤=++∈⎢⎥⎣⎦,[]12,2x ∀∈-,总00,2x π⎡⎤∃∈⎢⎥⎣⎦,使得()()01g x f x =成立,则实数a 的取值范围是____________.【答案】(][),46,-∞-+∞【解析】∵[2,2]x ∈-,∵2()[0,4]f x x =∈∵0,2x π⎡⎤∈⎢⎥⎣⎦,∵72666x πππ≤+≤,∵1sin(2)126x π-≤+≤ ∵221()[3,3]2g x a a a a ∈-++ 要使[]12,2x ∀∈-,总00,2x π⎡⎤∃∈⎢⎥⎣⎦,使得()()01g x f x =成立, 则需满足:221[0,4][3,3]2a a a a ⊆-++ ∵22130234a a a a ⎧-+≤⎪⎨⎪+≥⎩,解得4a ≤-或6a ≥ ∵a 的取值范围是(,4][6,)-∞-⋃+∞.【例2】已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意[]2,1∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(2) 对任意[]2,11∈x ,任意[]4,22∈x ,都有)()(21x g x f >恒成立,求实数a 的取值范围; (3) 对任意[]2,11∈x ,存在[]4,22∈x ,使)()(21x g x f >成立,求实数a 的取值范围; (4) 存在[]2,11∈x ,任意[]4,22∈x ,使)()(21x g x f >成立,求实数a 的取值范围. 【解答】(1) 因为对任意x ∈[1,2],都有f (x )>g (x )恒成立,即对任意x ∈[1,2],x 2-2ax +1>ax恒成立,所以a <x 3+x2x 2+1在x ∈[1,2]上恒成立.令φ(x )=x 3+x 2x 2+1,则φ′(x )=2x 4+x 2+1(2x 2+1)2>0,所以φ(x )min =φ(1)=23,所以a <23.又因为a >0,所以实数a 的取值范围是⎝⎛⎭⎫0,23. (2)函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最小值有以下三种情况:①当0<a ≤1时,f (x )min =f (1)=2-2a ;②当1<a <2时,f (x )min =f (a )=a 2-2a 2+1=1-a 2; ③当a ≥2时,f (x )min =f (2)=5-4a . 函数g (x )的最大值为a2.当0<a ≤1时,由f (x )min >a 2,即2-2a >a 2,解得0<a <45;当1<a <2时,由f (x )min =1-a 2>a2,无解;当a ≥2时,f (x )min =5-4a >a2,无解.综上可知,实数a 的取值范围是⎝⎛⎭⎫0,45. (3)函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最小值有以下三种情况:①当0<a ≤1时,f (x )min =f (1)=2-2a ;②当1<a <2时, f (x )min =f (a )=a 2-2a 2+1=1-a 2; ③当a ≥2时,f (x )min =f (2)=5-4a . 函数g (x )的最小值为4a当0<a ≤1时,由f (x )min >4a ,即2-2a >4a ,解得0<a <98;当1<a <2时,由f (x )min =1-a 2>4a,无解; 当a ≥2时,f (x )min =5-4a >4a,无解. 综上可知,实数a 的取值范围是⎪⎭⎫ ⎝⎛980,. (4)函数g (x )的最大值为a2.函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最大值有以下三种情况: ①当0<a ≤23时,245)2()(max a a f x f >-==,解得0<a <910; ②当23>a 时,222)1()(max aa f x f >-==,无解.综上可知,实数a 的取值范围是⎪⎭⎫ ⎝⎛9100,. 2. 巩固提升综合练习【练习1】已知二次函数 f (x )=ax 2+bx +c (a >0) 的图象过点 (1,0)若对任意的 x 1∈[0,2],存在 x 2∈[0,2],使得 f (x 1)+f (x 2)>32a ,求 ba 的取值范围.【解析】 由题意,对任意的 x 1∈[0,2],存在 x 2∈[0,2],使得 f (x 1)+f (x 2)>32a . 所以 f min (x )+f max (x )>32a .因为 a +b +c =0 ,所以 f (x )=ax 2+bx −a −b ,其对称轴为 x =−b2a . ①当 −b2a <0 即 ba >0 时,f (x ) 在 [0,2] 上单调递增,所以 f min (x )+f max (x )=f (0)+f (2)=−a −b +3a +b =2a >32a .所以b a>0 符合题意.②当 0≤−b2a <1 即 −2<ba ≤0 时,f (x ) 在 [0,−b2a ] 上递减,在 [−b2a ,2] 上递增且 f (0)<f (2) . 所以 f min (x )+f max (x )=f (−b2a)+f (2)=−b 24a −a −b +3a +b =−b 24a +2a . 所以由 −b 24a +2a >32a 得:−√2<ba ≤0 符合题意. ③当 1≤−b2a <2 即 −4<ba ≤−2 时, f (x ) 在 [0,−b 2a ] 上递减,在 [−b 2a,2] 上递增且 f (0)≥f (2) .所以 f min (x )+f max (x )=f (−b2a )+f (0)=−b 24a −a −b −a −b =−b 24a −2a −2b . 所以由 −b 24a −2a −2b >32a 得:−4−√2<ba <−4+√2. 所以 −4<b a <−4+√2 符合题意.④当 −b 2a≥2 即 b a≤−4 时,f (x ) 在 [0,2] 上单调递减,所以 f min (x )+f max (x )=f (2)+f (0)=3a +b −a −b =2a >32a . 所以 ba ≤−4 符合题意.综上所述:所以 ba <−4+√2 或 ba >−√2 .【练习2】 已知函数 f (x )=12ax 2−(2a +1)x +2lnx (a ∈R ).(1)若曲线 y =f (x ) 在 x =1 和 x =3 处的切线互相平行,求 a 的值; (2)求 f (x ) 的单调区间;(3)设 g (x )=x 2−2x ,若对 x 1∈(0,2],均存在 x 2∈(0,2],使得 f (x 1)<g (x 2),求 a 的取值范围 【解析】(1) fʹ(x )=ax −(2a +1)+2x (x >0). 由题意知 fʹ(1)=fʹ(3),即 a −(2a +1)+2=3a −(2a +1)+23,解得 a =23. (2) fʹ(x )=(ax−1)(x−2)x(x >0).① 当 a ≤0 时,因为 x >0,所以 ax −1<0,在区间 (0,2) 上,fʹ(x )>0, 在区间 (2,+∞) 上,fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,2),单调递减区间是 (2,+∞).②当 0<a <12 时,1a >2,在区间 (0,2) 和 (1a ,+∞) 上,fʹ(x )>0, 在区间 (2,1a ) 上 fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,2) 和 (1a ,+∞),单调递减区间是 (2,1a ). ③当 a =12 时,fʹ(x )=(x−2)22x≥0,故 f (x ) 的单调递增区间是 (0,+∞).④当 a >12 时,0<1a <2,在区间 (0,1a ) 和 (2,+∞) 上,fʹ(x )>0, 在区间 (1a ,2) 上,fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,1a ) 和 (2,+∞),单调递减区间是 (1a ,2).(3) 由题意知,在 (0,2] 上有 f (x )max <g (x )max . 由已知得 g (x )max =0,由(2)可知,①当 a ≤12时,f (x ) 在 (0,2] 上单调递增,故 f (x )max =f (2)=2a −2(2a +1)+2ln2=−2a −2+2ln2, 所以 −2a −2+2ln2<0,解得 a >ln2−1, 故 ln2−1<a ≤12.②当 a >12 时,f (x ) 在 (0,1a ) 上单调递增; 在 [1a ,2] 上单调递减,故 f (x )max =f (1a )=−2−12a −2lna .由 a >12 可知 lna >ln 12>ln 1e =−1,所以 2lna >−2,即 −2lna <2,所以 −2−2lna <0, 所以 f (x )max <0,符合. 综上所述,a >ln2−1. 1.已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围.(2)由(1)知,()ln f x x x x =+, ∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.2.已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈. (1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞.(2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∴1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈,22x t ≤+-,22t x ≥-+∴max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∴max2y=.故实数t 的取值范围为[2,)+∞.3.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】令()()()21,xg x ex h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()'21x g x e x =+,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12m e ⎡⎫∈⎪⎢⎣⎭.4.已知函数f (x )=x 3-ax 2+10,若在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.5.若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,求实数x 的取值范围.12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m 是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. 6.若不等式()()21313ln1ln33x xa x ++-⋅≥-⋅对任意的(],1x ∈-∞恒成立,则a 的取值范围是( )A. 10,3⎛⎤-∞ ⎥⎝⎦ B. 10,3⎡⎫+∞⎪⎢⎣⎭C. [)2,+∞D. (],2-∞ 【答案】D【解析】由题意结合对数的运算法则有: ()213133lnln 33x xxa ++-⋅≥,由对数函数的单调性有:()21313333x xxa ++-⋅≥,整理可得: 2133x x a +≤,由恒成立的条件有: 2min133x xa ⎛⎫+≤ ⎪⎝⎭,其中21313233xx xxy +⎛⎫==+≥ ⎪⎝⎭,当且仅当0x =时等号成立.即0x =时,函数2133x x y +=取得最小值2.综上可得: 2a ≤.本题选择D 选项.7.已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于的不等式()()20f x af x ⎡⎤+<⎣⎦恰有个整数解,则实数的最大值是( ) A.B.C. 5D.【答案】D8.已知函数()1x f x x e=+,若对任意x R ∈, ()f x ax >恒成立,则实数a 的取值范围是( ) A. (),1e -∞- B. (]1,1e - C. [)1,1e - D. ()1,e -+∞ 【答案】B【解析】函数()1x f x x e =+,对任意x R ∈, ()f x ax >恒成立,∴1x x ax e +>恒成立,即()11xa x e >-x 恒成立;设()()()1,1x g x h x a x e==-,x ∈R ;在同一坐标系内画出两个函数的图象,如图所示;则满足不等式恒成立的是h (x )的图象在g (x )图象下方,求()g x 的导数()'xg x e -=-,且过()g x 图象上点()00,x y 的切线方程为()000x y y e x x --=--,且该切线方程过原点(0,0),则000x y ex -=-⋅,即000x x e e x --=-⋅,解得01x =-;∴切线斜率为0x k e e -=-=-,∴应满足a −1>−e ,即a >1−e ;又a −1⩽0,∴a ⩽1,∴实数a 的取值范围是(1−e ,1].故选B.9.已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( )A. ()ln3,2B. [)2ln3,2-C. (]0,2ln3- D. ()0,2ln3- 【答案】C【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>, ()22ln 40ax a x x a ∴->-->,设()()2ln 4,2g x x x h x ax a =--=-,由()121'2x g x x x -=-=,可知()2ln 4g x x x =--,在10,2⎛⎫⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,则()()()(){11 33a h g h g >>≤,即0{2 23a a a ln >->-≤-,解得02ln3a <≤-,故选C.10.已知对任意的,总存在唯一的,使得成立(为自然对数的底数),则实数的取值范围是( ) A . B .C .D .【答案】D 【解析】。

恒成立存在性问题课件

恒成立存在性问题课件

详细描述
不等式证明问题是数学中常见的问题类型,这类问题 通常涉及到比较两个数或两个函数的大小。通过证明 不等式,我们可以找到满足某些条件的参数或函数的 取值范围,从而解决恒成立存在性问题。
导数综合问题变式
总结词
利用导数性质和函数单调性,解决恒成立存在性问题。
详细描述
导数综合问题涉及到导数的计算、单调性判断以及极值 和最值的求解等知识点。通过利用导数的性质和函数的 单调性,我们可以找到满足某些条件的参数或函数的取 值范围,从而解决恒成立存在性问题。
转化与化归法
总结词
将问题转化为已知的问题或简单的问题,从而解决问题。
详细描述
转化与化归法是一种常用的解题策略,通过将复杂的问题转化为已知的问题或简单的问题,可以降低问题的难度 。在处理恒成立问题时,可以将问题转化为求最值问题、不等式问题等已知的问题类型,从而利用已知的解题方 法来解决该问题。
03
THANKS
感谢观看
常见错误反思
忽视定义域
在解决恒成立存在性问题时,容易忽 视函数的定义域,导致解题错误。
混淆最值与恒成立
在处理最值问题时,容易将最值与恒 成立混淆,导致解题思路出现偏差。
忽视参数的取值范围
在确定参数的取值范围时,容易忽视 参数的实际取值范围,导致答案不准 确。
缺乏对题目的深入理解
在解题过程中,容易缺乏对题目的深 入理解,导致解题思路不清晰,答案 不完整。
06
总结与反思
解题思路总结
转化思想
将恒成立存在性问题转化为最 值问题,通过求最值来确定参
数的取值范围。
数形结合
利用数形结合的方法,将问题 转化为几何图形,通过观察图 形的性质和变化规律来解决问 题。

函数的恒成立与存在性问题讲解

函数的恒成立与存在性问题讲解

函数的恒成立与存在性问题设D 为给定的区间:函数的恒成立问题;(1)若D x ∈∀,都有()a x f >成立,则()a x f >min ;(2)若D x ∈∀,都有()a x f <成立,则()a x f <max .函数的存在性问题:(1)若D x ∈∃,使得()b x f >成立,则()b x f >max ;(2)若D x ∈∃,使得()b x f <成立,则()b x f <min .不管是函数的恒成立问题,还是存在性问题,问题的解决都要将问题转化为函数的最值问题.下面以与指数函数有关的函数为研究对象各举一例进行说明.例1. 已知函数()xx f 2=,∈x R . (1)当m 取何值时,方程()m x f =-2有一个解?有两个解?(2)若不等式()[]()02>-+m x f x f 在R 上恒成立,求实数m 的取值范围. 关键词 数形结合思想 函数与方程思想分析: 在第(1)问中,设()()2-=x f x g ,()m x h =,则()()x h x g =,这样,就把方程()m x f =-2的解的情况转化为了两个函数()x g 与()x h 的图象的相交情况,在画出两个函数大致图象的情况下,根据数形结合方法确定m 的取值.其中函数()x g 的图象可由指数函数()x x f 2=的图象经过一系列的图象变换得到,函数()x h 为常数函数,其图象为一条平行于x 轴的直线(在R 上).解:(1)设()()222-=-=x x f x g ,()m x h =,在同一平面直角坐标系中画出函数()x g 与()x h 的大致图象如下页图所示.由图象可知,当0=m 或m ≥2时,两个函数的图象只有一个交点,所以此时方程()m x f =-2有一个解;当20<<m 时,两个函数的图象有两个不同的交点,所以此时方程()m x f =-2有两个解.) = m(2)∵()[]()02>-+m x f x f 在R 上恒成立 ∴()0222>-+m x x 在R 上恒成立 整理得:()x x m 222+< 在R 上恒成立 设x t 2=,则()+∞∈,0t ,t t m +<2在()+∞∈,0t 上恒成立设()412122-⎪⎭⎫ ⎝⎛+=+=t t t t g ,∵()t g 在⎪⎭⎫⎢⎣⎡+∞-,21上为增函数 ∴当()+∞∈,0t 时,()()00=>g t g∵()t g m <在()+∞∈,0t 上恒成立∴m ≤0,即实数m 的取值范围为(]0,∞-.例2. 已知()122+-=x x a x f (∈a R )的图象关于原点对称. (1)求a 的值;(2)若存在[]1,0∈x ,使不等式()0122<+-+x x b x f 成立,求实数b 的取值范围. 解:(1)由题意可知,函数()x f 为R 上的奇函数 ∴()00=f ,∴021=-a ,解之得:1=a ; (2)由(1)可知:()1212+-=x x x f .∵()0122<+-+x xb x f ,且[]1,0∈x ,∴01221212<+-++-x x x x b . ∵112>+x ,∴022122<-++-b x x x 整理得:12222-⋅+>x x b 令x t 2=,则()211222-+=-+>t t t b ,∵[]1,0∈x ,∴[]2,1∈t 设()()212-+=t t h ,则()()21min ==h t h ,只需()min t h b >即可. ∴2>b ,即实数b 的取值范围为()+∞,2.。

专题16 破解恒成立问题【原卷版】

专题16  破解恒成立问题【原卷版】

专题16 破解恒成立问题【热点聚焦】从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:,等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论(三)数形结合法1.函数的不等关系与图象特征:()21log a x x -<111ax x e x-+>-(1)若,均有的图象始终在的下方(2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义(3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围.热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠.(1)讨论()f x 的单调性; x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x(2)当0x >时,不等式()()22cos ea x x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可.热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【典例6】(2015·全国·高考真题(理))设函数()(21)x f x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ).A .211[)e e ,B .221[)32e e ,C .212[)e e ,D .221[)3e e, 【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a 的取值范围是( )A .[)3,+∞B .()3,+∞C .[)9,+∞D .()9,+∞2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x =-,满足() f x a x ≥-恒成立,则a 的最大值为( )A .3B .4C .3ln 2-D .3ln 2+3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2x f x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .12⎛ ⎝B .)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭ 5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( )A .0B .1eC .1D .e二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈B .()f x 在()2022,2024上的最大值为2025C .()f x 有且只有2个零点D .()f x x ≥恒成立.三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________. 8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()e e ln m x mx m x x mx x x +≤+-恒成立,则实数m 的最小值为________9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________.10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x x f x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++.(1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围.15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R.(I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()x f x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).16.(2020·河南开封市·高三一模(理))已知函数()()ln 0a f x ax x a =>. (1)当1a =时,求曲线()y f x =在x e =处的切线方程;(2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值. 17.(2022·广东·高三阶段练习)已知函数()ln(1)1,f x x =+-(1)求证:(1)3f x -≤;(2)设函数21()(1)()12=+-+g x x f x ax ,若()g x 在(0,)+∞上存在最大值,求实数a 的取值范围.18.(2022·浙江嘉兴·模拟预测)已知函数.(注:是自然对数的底数)(1)当时,求曲线在点处的切线方程;(2)若只有一个极值点,求实数a 的取值范围;(3)若存在,对与任意的,使得恒成立,求的最小值. 2()e e,x f x ax a =+-∈R e 2.71828=1a =()y f x =(1,(1))f ()f x b ∈R x ∈R ()f x b ≥-a b。

方法技巧专题16 函数中恒成立与存在性问题(原卷版)

方法技巧专题16 函数中恒成立与存在性问题(原卷版)

2.巩固提升综合练习
【练习 1】已知函数 f (x) loga x , g(x) 2 loga (2x t 2) ,其中 a 0 且 a 1, t R .
(1)若 t 4 ,且 x [1 , 2] 时, F (x) g(x) f (x) 的最小值是-2,求实数 a 的值; 4
(2)若 0 a 1,且 x [1 , 2] 时,有 f (x) g(x) 恒成立,求实数 t 的取值范围. 4
2 f (ax ln x 1) f (ax ln x 1) 3 f 1 对 x 1,3恒成立,则实数 a 的取值范围是( )
A. 2, e
B.[1 , ) e
C. [1 , e] e
D.[1 , 2 ln 3] e3
【练习 3】若
,满足
恒成立,则实数 的取值范围为__________.
【三】数形结合法
u ,使得
,求 t 的取值范围
五 、课后自我检测
1.已知函数 f (x) ax x ln x 的图象在点 x e ( e 为自然对数的底数)处的切线的斜率为 3 . (1)求实数 a 的值; (2)若 f (x) kx2 对任意 x 0 成立,求实数 k 的取值范围.
007 2.已的知函数 界
【例 2】若对 xI , x2
m,
,且
x1
x2
,都有
x1lnx2 x2
x2lnx1 x1
1,则 m 的取值范围是(
( e 为自然对数的底数,即 e 2.71828 …)
A.
1 e
,
B.e,
C.1,
D.1,
)注:
【例 3】已知函数 f (x) 1 x2 a ln x x 1 ,对任意 x∈[1,+∞),当 f (x) mx 恒成立时实数 m 的最

函数恒成立存在性问题

函数恒成立存在性问题

函数恒成立存在性问题f X 恒成立af X max ;af x恒成立af x mnf X能成立af X m in ;a f x 能成立a f x max另一转化方法:W x D,f(x) A 在D 上恰成立,等价于 f(x)在D 上的最小值f m in (x) x D, f(x) B 在D 上恰成立,则等价于 f(x)在D 上的最大值f max (x) B .5、设函数 f x 、g x ,对任意的 x 1a ,b ,存在 x 2c ,d ,使得 f x i g x 2 ,则 f max x g max x6、设函数 f x 、g x ,存在 x i a , b ,存在 x 2 c, d ,使得 f x i g x 2 ,则 f max x g min x7、设函数 f x 、g x ,存在 x ia ,b ,存在 x 2c, d ,使得f x ig x 2 ,则 f min x g max x 8、若不等式f x g x 在区间D 上包成立,则等价于在区间 D 上函数y f x 和图象在函数 y g x 图象上方; 9、若不等式f x g x 在区间D 上包成立,则等价于在区间D 上函数yf x 和图象在函数y g x 图象下方;例题讲解:题型一 I 、常见方法i 、已知函数 f (x) x 2 2ax i , g(x)-,其中 a 0 , x 0 . xi )对任意x [i,2],都有f (x) g(x)恒成立,求实数a 的取值范围;2 )对任意x i [i,2],x 2 [2,4],都有f(x i ) g(x 2)恒成立,求实数a 的取值范围;a . i ..一 i2、设函数h(x) — x b,对任意a [―,2],都有h(x) io 在x [—,i]恒成立,求实数b 的取值范围.x 2 4xi3、已知两函数f(x) x , g(x) - m,对任息x i0,2 ,存在x 2 i,2 ,使得f(x i ) g x 2,则实数m 的取值范围为 _____________题型二、十参换位法(已知某个参数的范围,整理成关于这个参数的函数)... (2)_i 、对于满足 p 2的所有头数p,求使不等式x px i p 2x 恒成立的x 的取值范围。

高中数学恒成立与存在性问题

高中数学恒成立与存在性问题

恒成立与存在性问题1.单变量型恒成立问题方法一:参变量分离法解恒成立问题例1.已知函数f(x)=lnx+ax+1,若f(x)<0恒成立,求a的取值范围.解:∵f(x)=lnx+ax+1<0在(0,+∞)上恒成立,∴a<-lnx-1x,x∈(0,+∞),即a<(-lnx-1x)min令H(x)=-lnx-1x,x∈(0,+∞),H′(x)=lnxx²当x∈(0,1)时,H′(x)<0,H(x)在(0,1)上单调递减当x∈(1,+∞)时,H′(x)>0,H(x)在(1,+∞)上单调递增∴H(x)min=H(1)=-1∴a<-1例2.已知函数f(x)=1xlnx(x>0,x≠1),求函数f(x)单调区间,解:f(x)=1xlnx的定义域为(0,1)∪(1,+∞),f′(x)=-(lnx+1)(xlnx)²令f′(x)>0,则0<x<1e;令f′(x)<0,则1e<x<1或x>1∴f(x)的增区间为(0,1e),减区间为(1e,1)和(1,+∞)例3.已知22x>xa对任意x∈(0,1)成立,求a的取值范围.解:两边取自然对数:1xln2>alnx,即1xlnx<aln2,x∈(0,1)∴aln2>(1xlnx)max,x∈(0,1)∵f(x)在(0,1e)上单调递增,在(1e,1)上单调递减,∴f(x)max=f(1e)=-e∴aln2>-e,即a>-eln2必背结论一:恒成立问题与函数最值的相互转化若函数f(x)在区间D上存在最小值f(x)min和最大值f(x)max.⑴∀x∈D,都有f(x)>M⇔f(x)min>M⑵∀x∈D,都有f(x)≥M⇔f(x)min≥M⑶∀x∈D,都有f(x)<M⇔f(x)min<M⑷∀x∈D,都有f(x)≤M⇔f(x)min≤M若函数f(x)在区间D上不存在最大(小)值,且值域为(m,n),则⑴∀x∈D,都有f(x)>M⇔m≥M⑵∀x∈D,都有f(x)≥M⇔m≥M⑶∀x∈D,都有f(x)<M⇔n≤M⑷∀x∈D,都有f(x)≤M⇔n≤M方法二:分类讨论法解决恒成立问题例1.已知函数f(x)=lnx+ax+1,若f(x)<0恒成立,求a取值范围.解:∵f(x)=lnx+ax+1∴f′(x)=1x+a=1x-(-a)①当-a≤0,即a≥0时,f′(x)>0,即f(x)在(0,+∞)上单调递增∵f(1)=a+1>0,这与f(x)<0矛盾,∴a≥0不合题意.②当-a>0,即a<0时,令f′(x)>0,则0<x<-1a;令f′(x)<0,则x>-1a∴f(x)在(0,-1a)上单调递增,在(-1a,+∞)上单调递减∴f(x)max=f(-1a)=ln(-1a)<0=ln1∴-1a<1,即a<-1例2.【2017年全国3卷】已知函数f(x)=x-1-alnx,若f(x)≥0恒成立,求a的值.解:f(x)的定义域为(0,+∞),①若a≤0,因为=-12+aln2<0,所以不满足题意;②若a>0,由f′(x)=1-ax=x-ax知,当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,故x=a是f(x)在x∈(0,+∞)上的唯一极小值点也是最小值点.由于f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.例3.【2015年全国2卷】已知函数f(x)=e mx+x²-mx⑴证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;⑵若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.解:⑴∵f(x)=e mx+x²-mx,∴f′(x)=me mx+2x-mf′′(x)=m²e mx+2≥0在R上恒成立,∴f′(x)=me mx+2x-m在R上单调递增而f′(0)=0,∴x>0时,f′(x)>0;x<0时,f′(x)<0∴f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;⑵由⑴知f(x)min=f(0)=1当m=0时,f(x)=1+x²,此时f(x)在[-1,1]上的最大值是2∴此时|f(x1)-f(x2)|≤e-1成立当m≠0时,f(1)=e m+1-m,f(-1)=e-m+1+m令g(m)=f(1)-f(-1)=e m-e-m-2m,在R上单调递增而g(0)=0,∴m>0时,g(m)>0,即f(1)>f(-1)∴m<0时,,g(m)<0,即f(1)<f(-1)当m>0时,|f(x1)-f(x2)|≤f(1)-1=e m-m≤e-1,即0<m<1当m<0时,|f(x1)-f(x2)|≤f(-1)-1=e-m+m=e-m-(-m)≤e-1,即-1<m<0综上所述:m∈(-1,1)方法三:“端点值代入型”恒成立问题例1.【2006全国2卷理20】设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求a的取值范围.解:令g(x)=(x+1)ln(x+1)-ax,则g′(x)=ln(x+1)+1-a令g′(x)=0,即x=e a-1-1当a≤1时,对所有的x>0都有g′(x)>0,∴g(x)在[0,+∞)上为单调增函数,又g(0)=0,∴当x≥0时,有g(x)≥g(0),即当a≤1时都有f(x)≥ax,∴a≤1成立当a>1时,对于0<x<e a-1-1时,g′(x)<0∴g(x)在(0,e a-1-1)上为单调减函数,又g(0)=0,∴对于0<x<e a-1-1时,有g(x)<g(0),即f(x)<ax,∴当a>1时,f(x)≥ax不一定成立综上所述:a∈(-∞,1]例2.【2007全国1卷理20⑵】设函数f(x)=e x-e-x.若对所有的x≥0,都有f(x)≥ax 成立,求a的取值范围.解:f′(x)=e x+e-x,由于e x+e-x≥2e x·e-x=2,故f′(x)≥2令g(x)=f(x)-ax,g′(x)=e x+e-x-a⑴若a≤2,当x>0时,g′(x)=e x+e-x-a>2-a≥0∴g(x)在(0,+∞)上为增函数,∴x≥0,g(x)≥g(0),即f(x)≥ax⑵当a>2,方程g′(x)=0的正根为x1=ln a+a²-42此时,若x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上所述:a∈(-∞,2].例3.【2008全国2卷理22⑵】设函数f(x)=sinx 2+cosx.⑴求f (x )的单调区间;⑵若对所有的x ≥0,都有f (x )≤ax 成立,求a 的取值范围.解:⑴f ′(x )=(2+cosx )cosx -sinx (-sinx )(2+cosx )²=2cosx +1(2+cosx )²当2k π-2π3<x <2k π+2π3(k ∈Z )时,cosx >-12,即f ′(x )>0;当2k π+2π3<x <2k π+4π3(k ∈Z )时,cosx <-12,即f ′(x )<0;因此f (x )在每一个区间(2kπ-2π3,2kπ+2π3)(k ∈Z )是增函数,f (x )在每一个区间(2kπ+2π3,2kπ+4π3)(k ∈Z )是减函数,⑵令g (x )=ax -f (x ),则g ′(x )=a -2cosx +1(2+cosx )²=a -22+cosx +3(2+cosx )²=3(12+cosx -13)²+a -13故当a ≥13时,g ′(x )≥0.又g (0)=0,所以当x ≥0时,g (x )≥g (0)=0,即f (x )≤ax .当0<a <13时,令h (x )=sinx -3ax ,则h ′(x )=cosx -3a .故当x ∈[0,arccos 3a )时,h ′(x )>0,因此h (x )在[0,arccos 3a )上单调递增.故当x ∈(0,arccos 3a )时,h (x )>h (0)=0,sinx >3ax .于是,当x ∈(0,arccos 3a )时,f (x )=sinx 2+cosx >sinx 3>ax .当a ≤0时,有f (π2)=12>0≥a ·π2综上所述:a ∈[13,+∞)例4.【2014全国2卷理21】已知函数f (x )=e x -e -x -2x .设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b max .解:由f (x )得f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,即f ′(x )≥0,当且仅当e x =e -x ,即x =0时,f ′(x )=0,∴函数f (x )在R 上为增函数;g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,则g '(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2[(e x +e -x )2-2b (e x +e -x )+(4b -4)]=2(e x +e -x -2)(e x +e -x -2b +2).①∵e x +e -x ≥2,e x +e -x +2≥4,∴当2b ≤4,即b ≤2时,g '(x )≥0,当且仅当x =0时取等号,从而g (x )在R 上为增函数,而g (0)=0,∴x >0时,g (x )>0,符合题意.②当b >2时,若x 满足2<e x +e -x <2b -2即0<x <ln (b -1+b ²-2b )时,g '(x )<0,又由g (0)=0知,当0<x ≤ln (b -1+b ²-2b )时,g (x )<0,不符合题意.综合①、②知,b ≤2,得b 的最大值为2.2.单变量型存在性问题例1.f (x )=xlnx ,g (x )=-x ²+ax -3.若存在x ∈[1e ,e ],使得2f (x )>g (x )成立,求a 的取值范围.解:由2f (x )>g (x )得,2xlnx >-x ²+ax -3∴a <2xlnx +x ²+3x=2lnx +x +3x ∴a <(2lnx +x +3x )max ,x ∈[1e,e ],令H (x )=2lnx +x +3x ,x ∈[1e ,e ],则H ′(x )=2x +1-3x ²=(x +3)(x -1)x ²当x ∈[1e ,1]时,H ′(x )<0,则H (x )在[1e,1]上单调递减当x ∈(1,e ]时,H ′(x )>0,则H (x )在(1,e ]上单调递增∵H (1e )-H (e )=(-2+1e +3e )-(2+e +3e )=2e -2e -4>0∴H (1e )>H (e ),∴a <H (1e )=3e +1e-2例2.已知函数f (x )=x -alnx ,g (x )=-a +1x(a ∈R ).若存在[1,e ]上存在一点x 0,使得f (x 0)<g (x 0)成立,求a 的取值范围.解:令H (x )=f (x )-g (x )=x -alnx +a +1x,x ∈[1,e ]H ′(x )=1-a x -a +1x ²=(x +1)[x -(a +1)]x ²,由题意知∃x ∈[1,e ],使得H (x )<0,∴H (x )min <0当a +1≥e ,即a ≥e -1时,H ′(x )<0,H (x )在[1,e ]上单调递减∴H (x )min =H (e )=e -a +a +1e <0,∴a >e ²+1e -1当a +1≤1,即a ≤0时,H (x )在[1,e ]上单调递增∴H (x )min =H (1)=a +2<0∴a <-2当1<a +1<e 时,H (x )在[1,a +1)上递减,在(a +1,e ]上递增,∴H (x )min =H (a +1)=a +2-aln (a +1)<0令a +1=x ,则φ(x )=x +1-(x -1)lnx ,x ∈(1,e )φ′(x )=1-lnx -x -1x=1x -lnx ,令φ′(x )=0,设其解为x 0∴则φ(x )在(1,x 0)上递增,在(x 0,e )上递减φ(x )min =(φ(1),φ(e ))min =2,即H (x )min =2这与H (x )min <0相矛盾,与题意不合,综上所述:a ∈(-∞,-2)∪(e ²+1e -1,+∞)必背结论二:存在性问题与函数最值的相互转化若函数f (x )在区间D 上存在最小值f (x )min 和最大值f (x )max ,则⑴∃x ∈D ,使得f (x )>M ⇔f (x )max >M⑵∃x ∈D ,使得f (x )≥M ⇔f (x )max ≥M⑶∃x ∈D ,使得f (x )<M ⇔f (x )min <M⑷∃x ∈D ,使得f (x )≤M ⇔f (x )min ≤M若函数f (x )在区间D 上不存在最大(小)值,且值域为(m ,n ),则⑴∃x ∈D ,使得f (x )>M ⇔n >M⑵∃x ∈D ,使得f (x )≥M ⇔n >M⑶∃x ∈D ,使得f (x )<M ⇔m <M⑷∃x ∈D ,使得f (x )≤M ⇔m <M3.双变量型的恒成立与存在性问题必背结论三存在性问题与函数最值的相互转化⑴∀x 1∈[a ,b ],总∃x 2∈[m ,n ],使得f (x 1)≤g (x 2)⇔f (x 1)max ≤g (x 2)max ;⑵∀x 1∈[a ,b ],总∃x 2∈[m ,n ],使得f (x 1)≥g (x 2)⇔f (x 1)min ≥g (x 2)min ;⑶∃x 1∈[a ,b ],∀x 2∈[m ,n ],使得f (x 1)≤g (x 2)⇔f (x 1)min ≤g (x 2)min ;⑷∃x 1∈[a ,b ],∀x 2∈[m ,n ],使得f (x 1)≥g (x 2)⇔f (x 1)max ≤g (x 2)max ;⑸∀x 1∈[a ,b ],x 2∈[m ,n ],使得f (x 1)≤g (x 2)⇔f (x 1)max ≤g (x 2)min ;⑹∀x 1∈[a ,b ],x 2∈[m ,n ],使得f (x 1)≥g (x 2)⇔f (x 1)min ≤g (x 2)max ;⑺∃x 1∈[a ,b ],总∃x 2∈[m ,n ],使得f (x 1)≤g (x 2)⇔f (x 1)min ≤g (x 2)max ;⑻∃x 1∈[a ,b ],总∃x 2∈[m ,n ],使得f (x 1)≥g (x 2)⇔f (x 1)max ≤g (x 2)min ;例1.f (x )=lnx -x 4+34x -1.设g (x )=x ²-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2),求实数b 的取值范围.解:f (x )=lnx -x 4+34x -1,x ∈(0,2),f ′(x )=1x -14-34x ²=-(x -1)(x -3)4x ²当x ∈(0,1)时,f ′(x )<0,f (x )在(0,1)上递减当x ∈(1,2)时,f ′(x )>0,f (x )在(1,2)上递增∴f (x )min =f (1)=-12由题意知,f (x )min ≥g (x ),∃x ∈[1,2]∴∃x ∈[1,2],使得x ²-2bx +4≤-12,即b ≥12(x +92x )∴[12(x +92x )]min ≤b ,x ∈[1,2],即b ≥178例2.已知函数f (x )=12ax ²-(2a +1)x +2lnx .设g (x )=x ²-2x ,若对于任意的x 1∈(0,2],存在x 2∈(0,2],使得f (x 1)<g (x 2),求实数a 的取值范围.解:由g (x )=x ²-2x ,x ∈(0,2]知,g (x )max =0由题意知,∀x ∈(0,2),12ax ²-(2a +1)x +2lnx <0f ′(x )=ax -(2a +1)+2x =ax ²-(2a +1)x +2x =(x -2)(ax -1)x(注:此处主导函数为-ax +1)⑴当a ≤0时,f ′(x )>0,f (x )在(0,2]上单调递增,f (x )max =f (2)=-2a -2+2ln 2<0∴a >-1+ln 2⑵当a >0时,①若1a ≥2,即0<a ≤12,f (x )在(0,2]上单调递增,f (x )max =f (2)=-2a -2+2ln 2<0,∴-1+ln 2<a ≤12②若1a <2时,f (x )在(0,1a )上单调递增,在(1a ,2]上单调递减f (x )max =f (1a )=-12a-2-2lna <0恒成立综上所述:a ∈(-1+ln 2,+∞)4.等式型恒成立与存在性问题模型一:“任意=存在”型问题必背结论四:∀x 1∈A ,∃x 2∈B ,使得f (x 1)=g (x 2)⇔f (x )值域⊆g (x )值域例1.已知函数f (x )=x ²+2x +a 和函数g (x )=2x +x +1,对任意实数x 1,总存在实数x 2,使g (x 1)=f (x 2)成立,则实数a 的取值范围为.解:∵f (x )=x ²+2x +a 的最小值为f (-1)=a -1,∴f (x )的值域为[a -1,+∞),∵g (x )=2x +x +1在[-1,+∞)上单调递增,∴g (x )的值域为[-2,+∞)∵∀x 1,总∃x 2,使得g (x 1)=f (x 2)成立∴g (x )值域⊆f (x )值域,即[-2,+∞)⊆[a -1,+∞)∴a -1≤-2,即a ≤-1例2.函数f (x )=x ²-23ax 3(a >0),x ∈R .若对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.解:∀x 1∈(2,+∞),∃x 2∈(1,+∞),使得f (x 1)=1f (x 2)∴f (x )的值域⊆1f (x )的值域f (x )=x ²-23ax 3,f ′(x )=2x -2ax ²=2x (1-ax )①当32a >2即0<a <34时,0∈f (x )的值域,但是0不属于1f (x )的值域∴f (x )的值域⊆1f (x )的值域不成立②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0且此时f (x )在(2,+∞)上单调递减,故f (x )的值域是(-∞,f (2)),因而(-∞,f (2))⊆(-∞,0),由f (1)≥0,则f (x )在(1,+∞)上的取值范围包含(-∞,0),∴f (x )的值域⊆1f (x )的值域③当32a <1即a >32时,有f (1)<0且此时f (x )在(1,+∞)上单调递减,故1f (x )的值域时(1f (1),0),f (x )的值域是(-∞,f (2)),∴f (x )的值域⊆1f (x )的值域不成立综上所述:a ∈[34,32]模型二:“存在=存在”型问题必背结论五:∃x 1∈A ,∃x 2∈B ,使得f (x 1)=g (x 2)⇔f (x )值域∩g (x )值域≠∅例3.函数f (x )=e x -1,g (x )=-x ²+4x -3,若有f (a )=g (b ),则b 取值范围为.解:∵f (x )=e x -1>-1,∴f (x )的值域为(-1,+∞)∵g (x )=-x ²+4x -3≤1,∴g (x )的值域为(-∞,1]∴f (x )的值域∩g (x )的值域=(-1,1]∴g (b )=-b ²+4b -3∈(-1,1],即-1<-b ²+4b -3≤1解得:2-2<b <2+2例4.f (x )=x 3+(1-a )x ²-a (a +2)x (a ∈R ),g (x )=196x -13.是否存在实数a ,存在x 1∈[-1,1],x 2∈[0,2],使得f ′(x 1)+2ax 1=g (x 2)成立?解:令H (x )=f ′(x )+2ax =3x ²+2x -a (a +2)则H (x )的值域为[-13-a ²-2a ,5-a ²-2a ]∵g (x )=196x -13在[0,2]上单调递增∴g (x )的值域[-13,6]∵存在x 1∈[-1,1],存在x 2∈[0,2],使得f ′(x 1)+2ax 1=g (x 2)成立∴[-13-a ²-2a ,5-a ²-2a ]∩[-13,6]≠∅当[-13-a ²-2a ,5-a ²-2a ]∩[-13,6]=∅时,则5-a ²-2a <-13或-13-a ²-2a >6,即a <-1-573或a >-1+573∴a ∈[-1-573,-1+573]。

(高一用)函数中的恒成立存在性问题精品PPT课件

(高一用)函数中的恒成立存在性问题精品PPT课件
前一段时间和一位朋友聊天。他问我:“听说你这几年做投资,收益怎么?”我说:“这不才刚刚开始吗。”他一脸疑惑,问我:“这做投资就像做生意,你得定期盘盘库,明白自己到底是赚了,还是赔了。”
我回答说:“好像没这么简单,除非我从牌桌上下来,从此不再投资,才能真正算清是赚还是赔。”
我有个朋友,儿子几年前考取一所名牌大学。几天前路遇,见他愁眉不展,问他何故?他说:“孩子大学毕业后,已经在家里呆了大半年了。出去参加了几次招聘,大都是私营企业,工资太低,不怎么稳定,所以现在一直待在家里。”
请问,你怎么选择?真实情况是,好多人嘴上会说选A,但最终大都会选B。因为人们都认为自己是聪明人,当然选B,只有傻子才会选A。
谁愿意等那么长的时间?世界变化如此之快,到头来不知道会变成什么样子,这是大多数人内心的真实想法。似乎快速获取、及时行乐是人们的天性,人们的很多心理状态是由几万年基因的进化决定的。
迪士尼乐园,与我们成年人而言,它是一个守护了我们童年的港湾。 在这里的所有伙伴,不论男女老少,都能卸下自己的伪装和枷锁,尽情的享受一个美好的虚幻童话世界。
在这里,不会有人催你长大。 这里有关于梦想幻想的一切,你忘记烦恼,只为把快乐投入其中。
这是一个能让你变回孩子的地方,可以没有顾虑做回真实的自己。 这里虽然可爱却并不幼稚,你会惊叹于华特迪士尼的设计和想象力。 这里充满着无数的童年的回忆,有很多张笑脸,有很多意想不到的创意。 在这里我们得到的幸福不是痛苦或者失去头脑后的自我陶醉,而是我们人格完整的最好证明。
偶尔来给自己一点喘息的余地和放松的空间吧,只为回归纯粹。 于是,我选择了一个周五的傍晚,住进了“花筑”民宿,来到了位于迪士尼周边2km的小镇。
算是给自己放一个小假,只为圆一场童话梦。 穿梭回到童年,就为简单、不知所谓的快乐一番。

高一同步专题《函数中的“恒成立”问题与“存在性”问题》PDF

高一同步专题《函数中的“恒成立”问题与“存在性”问题》PDF
对任意 x1 D1 ,存在 x2 D2 ,满足 f x1 g x2 , f (x)max g(x)max ; (Ⅲ)存在 x1 D1 ,存在 x2 D2 ,使得 f x1 g x2 , f (x)max g(x)min ;
(Ⅳ)对任意 x1 D1 ,存在 x2 D2 ,使得 f x1 g x2 , f (x) x D1 g(x) x D2 ;
(二)“存在性”问题(“有解”问题):(分离参数,转化为函数的“最值”问题):
(Ⅰ)存在 x D ,使得 a f (x) 成立(即 a f (x) ( x D )有解) a f (x)min ; 存在 x D ,使得 a f (x) 成立 a f (x)min ;
1 2x 1
15,
1 3


2 2x 1

2, 3
2 5

1
2 2x 1
1 3
,
3 5

,即
m

log 2
1
2 2x 1

x
1,
2
的值域为
1 3
,
3 5

所以,
m
的取值范围为
1 3
,
3 5

①.求 a 的取值范围;
②.若对任意实数 m , f m 1 f m2 t 0 恒成立,求实数 t 的取值范围。
〖解〗(1)若 a 2 ,则当 x 0 时, f (x) x2 2x ,
x 0 时, x 0 , f x x2 2x ,
第4页共7页
《函数中的“恒成立”问题与“存在性”问题》

恒成立与存在性问题方法总结

恒成立与存在性问题方法总结

恒成立与存在性问题方法总结恒成立与存在性问题方法总结高三数学复习中的恒成立与存在性问题,涉及一次函数、二次函数等函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养学生思维的灵活性、创造性等方面起到了积极的作用,因此也成为历年高考的一个热点,恒成立与存在性问题的处理途径有多种,下面是小编整理的恒成立与存在性问题方法总结,欢迎来参考!一、构建函数构建适当的函数,将恒成立问题转化为能利用函数的性质来解决的问题。

1、构建一次函数众所周知,一次函数的图像是一条直线,要使一次函数在某一区间内恒大于(或小于)零,只需一次函数在某区间内的两个端点处恒大于(或小于)零即可。

例1:若x∈(-2,2),不等式kx+3k+1>0恒成立,求实数k 的取值范围。

解:构建函数f(x)= kx+3k+1,则原问题转化为f(x)在x∈(-2,2)内恒为正。

若k=0,则f(x)=1>0恒成立;若k≠0,则f (x)为一次函数,问题等价于f(-2)>0,f(2)>0,解之得k∈(- ,+∞)。

例2:对m≤2的一切实数m,求使不等式2x-1>m(x -1)都成立的x的取值范围。

解:原问题等价于不等式:(x -1)m-(2x-1)<0,设f(m)=(x -1)m-(2x-1),则原问题转化为求一次函数f(m)或常数函数在[-2,2]内恒为负值时x的取值范围。

(1)当x -1=0时,x=±1。

当x=1时,f(m)<0恒成立;当x=-1时,f(m)<0不成立。

(2)当x -1≠0时,由一次函数的单调性知:f(m)<0等价于f(-2)<0,且f(2)<0,即<x<;综上,所求的x∈()。

2、构建二次函数二次函数的图像和性质是中学数学中的重点内容,利用二次函数的图像特征及相关性质来解决恒成立问题,使原本复杂的问题变得容易解决。

例3:若x≥0,lg(ax +2x+1)∈R恒成立,求实数a的取值范围。

恒成立与存在性问题

恒成立与存在性问题

(x
x2 3 2)(x 1)2
,
令F′(x)>0,得单调增区间为 (2,和 3) ( 3,) 令F′(x)<0,得单调减区间为 ( 和3,1) (1, 3)
②不等式f(x+1)≤f(2x+1)-m2+3am+4化为:
ln(x+1)≤ln(2x+1)-m2+3am+4即 ln x≤13ma+4-m2.
2x 1
现在只需求y=ln x (x1∈[0,1])的最大值和
2x 1
y=3ma+4-m2(a∈[-1,1])的最小值.
因为 x 1 1 在[01 ,1]上单调递减,
2x 1 2 2(2x 1)
所以y=ln x (x1∈[0,1])的最大值为0,
2x 1
而y=3ma+4-m2(a∈[-1,1])是关于a的一次函数,
A.(1,1+ 2)
B.(1+ 2,+∞)
C.(1,3)
D.(3,+∞)
变式:
思考: 若目标函数取得最大值的点有无数个,则a 的取值范围
方法技巧 (1)平面区域:
用二元一次不等式(组)表示平面,即公共区域). (2)线性规划问题解题步骤: ①作图——画出可行域所确定的平面区域和目标函数所表示的 平行直线系中的一条 l; ②平移——将 l 平行移动,以确定最优解的对应点 A 的位置; ③求值——解有关方程组求出 A 点坐标(即最优解),代入目标 函数,求出目标函数的最值.
3.若有 f(a)=g(b),则 b 的取值范围为
[答案] B( )
A.[2- 2,2+ 2]
B.(2- 2,2+ 2)
C.[1,3]
D.(1,3)
[例 2] (2011·淄博模拟)若不等式(a-a2)(x2+1)+x≤0 对

恒成立与存在性问题

恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。

(高一用)函数中的恒成立存在性问题PPT 课件

(高一用)函数中的恒成立存在性问题PPT 课件
也就是说,从平均值看,名校毕业生的 收入就 已经遥 遥领先 好几倍 ,更不 用说那 些高薪 行业的 实际收 入差距 了。 好的大学,不一定保证每一个人都会有 高收入 ,但他 的确能 够为你 提供通 向高收 入的第 一块敲 门砖。 2 开学季前几天,老家的一个远房表兄传 来消息 ,刚满 17岁的 表侄小 立不愿 意再继 续读高 三,准 备辍学 去打工 。 表兄很是着急,把家族里学历比较高的 我也搬 了出来 ,希望 我能劝 劝小立 。 “我虽然这些年到处打工也挣了一些钱 ,但这 样挣钱 太辛苦 了,我 不希望 他重走 我的老 路,” 堂兄苦 口婆心 ,一再 强调, “你一 定要好 好劝劝 他:不 上学以 后没有 出路。 ” 刚开始我和这位00后表侄在微信上聊的 时候, 非常话 不投机 。 我问他:不想读书是不是觉得功课太难 了? 他答道:也没有多难,就是不想太累了 ,高考 复习很 无聊。 我劝他:再坚持几个月,苦一阵子熬一 熬就过 去了。 他回答得很干脆:太没劲!考上又能怎 么样? 现在我 家邻居x x大学 毕业上 班了, 挣的还 没我爸 高呢! 我再问他:你爸爸现在一身伤病常年要 吃药, 你不是 不知道 吧,还 有,你 爸爸为 了多挣 点钱, 一年到 头在外 面跑, 只有过 年才能 回家一 趟,这 些你也 很清楚 吧? 他无话可说了。 最后,我实在忍不住,不得不扎他一句 : “如果现在你连高考都比不过别人,凭 什么以 后你能 比别人 成功? ” 微信那头一阵静默。 后来,小立打消了退学的念头,告诉家 人他会 继续读 书,备 战高考 。 从十八线小城出身,依靠读书这条独木 桥,到 如今过 上在旁 人眼里 还不错 生活的 我,只 想用自 己的亲 身经历 ,告诉 小立这 样的年 轻人: 在本该吃点苦的年纪,千万不能选择安 逸,否 则只会 错过最 好的改 变命运 的机会 。 现在不读书,不吃苦,换来的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法技巧专题16函数中恒成立与存在性问题在数学中,函数是一种描述两个集合之间的对应关系的工具。

函数中的公式通常包含变量,通过给定变量的值,可以计算出函数的值。

然而,在函数的研究和应用中,我们会遇到一些函数恒成立与存在性的问题。

首先,函数中的恒成立问题是指函数中一些等式对于所有变量的取值都成立。

这意味着,无论我们取函数中的任意变量值,方程都会成立。

如果我们证明了一些等式在整个定义域上都成立,那么我们就称它为函数中的恒成立等式。

例如,对于任意实数x,函数f(x)=x^2-x+6中的等式f(x)=f(2)始终成立。

我们可以验证当x取任意实数时,等式都成立。

这说明f(x)=f(2)是这个函数中的恒成立等式。

其次,函数中的存在性问题是指函数是否存在合适的定义域和值域。

函数的定义域是指所有可能的输入值,而值域是指函数输出的所有值。

在研究函数时,有时候我们需要确定一个函数是否存在,并找到合适的定义域和值域。

例如,考虑函数f(x)=1/x,在x=0时,函数的定义域不存在,因为0作为除数是不合法的。

然而,在其他任意实数x上,函数都有定义,并且值域是实数集合。

因此,函数f(x)=1/x在定义域上存在,并且值域为实数。

解决函数中恒成立与存在性问题的方法和技巧如下:
1.使用代数方法:我们可以通过代数运算和等式推导来证明函数中的恒成立等式。

根据等式的性质和规律,我们可以对等式进行变形和化简,证明等式在所有变量取值下都成立。

2.使用图形方法:对于一些函数,我们可以通过绘制图形来分析函数的行为和性质。

通过观察函数的图形,我们可以判断函数是否存在,以及函数中是否存在一些等式。

3.使用定义和性质:函数的定义和性质是解决函数恒成立与存在性问题的重要依据。

我们可以运用函数的定义和性质,结合数学推理和逻辑推导,来证明函数中的恒成立等式和存在性问题。

4.使用反证法:当我们无法通过直接证明函数的恒成立等式或存在性问题时,可以尝试使用反证法。

假设恒成立等式不成立或函数不存在,然后推导出矛盾,从而证明原命题的正确性。

5.使用数学归纳法:对于一些函数中的恒成立等式,我们可以使用数学归纳法来证明。

通过证明等式在一些初始值上成立,然后根据等式的递推关系,证明等式在下一个值上也成立。

这样,我们可以通过递推关系扩展到整个定义域,从而证明等式在整个定义域上都成立。

总结起来,函数中的恒成立与存在性问题是数学中重要的研究内容。

我们可以通过代数方法、图形方法、定义和性质、反证法和数学归纳法等方法和技巧来解决这些问题。

通过深入研究和理解函数的性质和定义,我们可以更好地理解函数的特点和行为。

相关文档
最新文档