复变函数公式及常用方法总结

合集下载

复变函数积分计算方法

复变函数积分计算方法

一.复变函数积分计算方法:
1. 线积分法,udy vdx i vdy udx z f c c c ++-=⎰⎰⎰
)( 2. 参数方程法,就是将积分线段分成几段,每一段尽可能简单,并且可以用一个参数式表达出来。

参考课本37页例3.1(2) 3. 原函数法,要用此方法必须保证函数f(z)在单连通区域D 内解析,求出f(z)的原函数G
(z ),则)z ()z ()(00G G dt t f z z -=⎰
4. 柯西积分公式,)z (2z -z z)(00
if dz f c π=⎰,用这种方法的关键是找出函数)z (f ,有时候要进行一些变形。

二.课本难点
课本47页例3.10(2) 他在解答过程中,有一步是令2)z ()z (i e f z +=,开始看的时候很难看明白是为什么,后来细心一想,原来他用了一个很巧妙的变换:
2
2222)()z /()])(z [()1z (111i z i e i z i e dz e z c z c z c -+=-+=+⎰⎰⎰ 这样就可以凑成柯西积分公式的形式,令2)z ()z (i e f z +=,就可以轻松使用柯西积分公式求出答案。

作业题很多都要用到这个技巧。

三.错误更正
课本55页作业6(3)的答案是i e π,课本答案e π是错误的。

四.规律总结
在做作业过程中,我找到以下两个公式:
ishz iz =sin
ithz iz =tan
特别是z=1的时候,有sini=ish1,tani=ith1
上面的公式根据定义就可以证明。

复变函数总结完整版

复变函数总结完整版

第一章复数1 i 2=-1 i = ∙, -1 欧拉公式z=x+iy实部Re Z 虚部Im Z2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2)乙Z2③=χ1 iy1 χ2 iy2X1X2iχ1y2iχ2y1- y1y2=X1X2 -y』2 i χ1y2 χ2y1④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y22 2 2 2Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2⑤z = X - iy 共轭复数z z =(x+iy I x — iy )=χ2+ y2共轭技巧运算律P1页3代数,几何表示^X iy Z与平面点χ,y-------- 对应,与向量--- 对应辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3…把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz04如何寻找arg Zπ例:z=1-i4πz=i2πz=1+i4z=-1 π5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin利用欧拉公式e i 71 =COS71 i Sin71例2 f Z = C 时有(C )=0可得到z=re°Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方n n in 「nZ Z Z Z ............ z=re r COS 1 Sin nv凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z☆当丄二f Z o时,连续例1 证明f Z =Z在每一点都连续证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续3导数f Z o Jm fZ一f zoz-⅛z°Z-Z o,2n第二章解析函数1极限2函数极限①复变函数对于任一Z- D都有W FP与其对应川=f Z注:与实际情况相比,定义域,值域变化例f z = zZ—Z o 称f Z当Z-:Z o时以A为极限df(z lZ=Zo1例2 f Z = C 时有(C )=0根据C-R 条件可得2x =0,2y = 所以该函数在Z =O 处可导4解析若f z 在Z 00= X = 0,^0的一个邻域内都可导,此时称用C-R 条件必须明确u,v 四则运算 f 一 g =「- g rkf =kf f g = f g f gf Z 在Z 0处解析。

复变函数-公式集合-完美版

复变函数-公式集合-完美版
(17)伯努利概型
我们作了次试验,且满足
u每次试验只有两种可能结果,发生或不发生;
u次试验是重复进行的,即发生的概率每次均一样;
u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。
这种试验称为伯努利概型,或称为重伯努利试验。
用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,
,ቤተ መጻሕፍቲ ባይዱ
Z=max,min(X1,X2,…Xn)
若相互独立,其分布函数分别为,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和
的分布密度为
我们称随机变量W服从自由度为n的分布,记为W~,其中
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
a≤x≤b
其他,
则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间()内的概率为

指数分布
,
0, ,
其中,则称随机变量X服从参数为的指数分布。
X的分布函数为
,
x<0。
记住积分公式:
正态分布
设随机变量的密度函数为
-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率:,
(7)概率的公理化定义

复变函数积分方法总结()

复变函数积分方法总结()
f(z),= 则有Res[f(z), ]=-c-1
4.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)设为z1,z2,…,zn 则f(z)在各奇点的留数总和为零,即
+Res[f(z), ]=0;
4.4.2Res[f(z), ]=-Res[f( ) ,0]
例题:求下列Res[f(z), ]的值
复变函数积分方法总结
经营教育
乐享
[选取日期]
复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i²=-1,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ₁θ₁称为主值-π<θ₁≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z=rcosθ+irsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ。
∑1= (zk-zk-1)
有可设k=zk,则
∑2= (zk-zk-1)
因为Sn的极限存在,且应与∑1及∑2极限相等。所以
Sn= (∑1+∑2)= =b2-a2
∴ =b2-a2
1.2定义衍生1:参数法:
f(z)=u(x,y)+iv(x,y), z=x+iy带入 得:
= - vdy + i + udy
再设z(t)=x(t)+iy(t) ( ≤t≤ )
= +
=
= + + +
=0+2πi+2πi+0

复变函数求导公式

复变函数求导公式

复变函数求导公式复变函数指的是定义域和值域都是复数的函数。

求导是找出函数的导数或微商的过程。

对于复变函数,我们也可以进行求导运算,但与实变函数不同的是,这里需要将导数定义用复数形式表示出来。

复变函数的求导公式可以通过复数微分法来得到。

在这篇文章中,我们将介绍复变函数的求导公式,并给出一些具体的例子来帮助读者理解。

首先,我们先来回顾一下实变函数的求导公式。

对于实变函数f(x),我们有以下求导法则:1. 常数求导法则:如果c是一个常数,那么d/dx(c) = 0,即常数函数的导数为0。

2. 幂函数求导法则:d/dx(x^n) = nx^(n-1)。

即幂函数的导数等于指数乘以底数的指数减1次方。

3. 指数函数求导法则:d/dx(e^x) = e^x。

即指数函数的导数等于自身。

4. 对数函数求导法则:d/dx(ln,x,) = 1/x。

即自然对数函数的导数等于1除以自变量。

5. 三角函数求导法则:d/dx(sin(x)) = cos(x),d/dx(cos(x)) = -sin(x),d/dx(tan(x)) = sec^2(x)。

即三角函数的导数等于其对应的导函数。

现在我们来看复变函数的求导公式。

设f(z) = u(x, y) + iv(x, y)是一个复变函数,其中u(x, y)和v(x, y)都是实变函数,而z = x + iy是复变量。

求导的时候,我们要注意以下两种情况:情况一:如果f(z)在一些复数z0处连续且可微分,那么它在z0处的导数f'(z0)可以用u和v的偏导数表示:f'(z0)=∂u/∂x,z0+i∂v/∂x,z0=∂v/∂y,z0-i∂u/∂y,z0情况二:如果f(z)在一些区域内连续且处处可导,那么它在该区域内的导数f'(z)满足柯西-黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x下面我们通过一些例子来说明复变函数的求导公式:例一:设f(z)=z^2+2z+1,求f'(z)。

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

.复变函数复习重点 (一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示 1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx 之间的关系如下:当0,x >arg arctany z x =;当0,arg arctan 0,0,arg arctan yy z x x y y z x ππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法: 1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x i y x i y z x i y x x y y y x y x i z x i y x i y x i y x y x y+-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数总结

复变函数总结
u v , u v . x y y x
若函数 f (z) u( x, y) iv( x, y) 在点 z x yi 处 可导,则其导数公式:
定理2 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.

w1 z
1 x iy
x iy x2 y2
1 ( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
26
(2) x 2. 解 因为 z x iy 2 iy
1 (1 2
3i ),
z2
sin
3
i
cos
, 3

z1
z2

z1 z2
.

因为
z1
cos
3
i sin
3
,
z2
cos
6
i
sin
6
,
所以
z1
z2
cos
3
6
i sin
3
6
i,
z1 z2
cos
3
6
i
sin
3
6
3 1i. 22
19
例 计算 3 1 i 的值.
解 因为 n 1 所以 1 2 n1 1 n 0. 1
8


z1
5 5i,
z2
3 4i,
求 z1 z2

z1 z2

复变函数与积分变换重点公式归纳

复变函数与积分变换重点公式归纳

复变函数与积分变换第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。

二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。

掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。

1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。

4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数)1(1sin 2z iz Ln iz Arc w -+== 反余弦函数 )1(1cos 2-+==z z Ln iz Arc w性质与对数函数的性质相同。

(完整版)复变函数积分方法总结

(完整版)复变函数积分方法总结

复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。

就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。

arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。

利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。

z=re i θ。

1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。

(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。

复变函数积分计算公式

复变函数积分计算公式

复变函数积分计算公式复变函数积分计算是复变函数理论中的重要内容之一,是对复变函数在给定路径上的定积分进行求解的过程。

复变函数的积分计算公式可以通过两种方式得到:一是基于实变函数定积分的工具,如Cauchy-Riemann方程等,通过对实变函数的求解来得到复变函数的积分计算公式;二是利用复平面上的路径积分来进行计算和推导,通过考虑路径的参数化来得到计算公式。

下面将详细介绍这两种方式。

一、基于实变函数的工具1. Cauchy-Riemann方程:设复变函数f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)为实部和虚部,z=x+iy是复变量。

如果f(z)在其中一点满足Cauchy-Riemann方程,即u和v满足以下偏导数关系:∂u/∂x=∂v/∂y∂u/∂y=-∂v/∂x那么f(z)在该点处解析,且在该点处的积分计算公式为:∫ f(z) dz = ∫ (u(x,y)+iv(x,y)) (dx+idy) = ∫ (udx - vdy) + i∫ (vdx + udy)。

2.基于保守场的路径积分:设f(z)是复平面上的解析函数,且存在实部u(x,y)和虚部v(x,y),则对于f(z)满足的路径积分公式:∫ f(z) dz = ∫ (udx - vdy) + i∫ (vdx + udy)其中路径积分沿着点A到点B的路径P进行计算,路径P上的起点为z1,终点为z2二、利用复平面上的路径积分1. 曲线的参数化:考虑路径积分时,首先需要对路径进行参数化。

一般来说,可以将路径P表示为z(t)=x(t)+iy(t),其中x(t)和y(t)分别是t的函数,而t属于一些区间[a,b]。

这样,路径P上的积分计算问题就转化为对参数t的积分计算问题。

2.几种常见路径的积分公式:(1)闭合路径上的积分:如果路径P是一个闭合路径,且f(z)在P内解析,那么闭合路径上的积分计算公式为:∮ f(z) dz = 0其中∮表示对路径P上的积分。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。

本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。

1. 复数与复变函数。

复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。

复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。

复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。

2. 复变函数的导数与解析函数。

与实变函数类似,复变函数也有导数的概念,称为复导数。

如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。

解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。

3. 共轭与调和函数。

对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。

对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。

4. 柯西-黎曼方程与全纯函数。

柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。

柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。

满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。

5. 柯西积分定理与留数定理。

柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。

留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。

6. 应用领域。

复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。

复变函数公式及常用方法总结

复变函数公式及常用方法总结

复变函数公式及常用方法总结复变函数公式及常用方法总结扩展阅读:复变函数总结完整版第一章复数1i2=-1i1欧拉公式z=x+iy实部Rez虚部Imz2运算①z1z2Rez1Rez2Imz1Imz2②z1z2Rez1z2Imz1z2Rez1Rez2Imz1Imz2z1z2③x1iy1x2iy2x1x2ix1y2ix2y1y1y2x1x2y1y2ix1y2x2y1④z1z1z2x1iy1x2iy2x1x2y1y2y1x2x1y2i2222z2z2z2x2iy2x2iy2x2y2x2y2⑤zxi y共轭复数zzxiyxiyx2y2共轭技巧运算律P1页3代数,几何表示zxiyz与平面点x,y一一对应,与向量一一对应辐角当z≠0时,向量z和x轴正向之间的夹角θ,记作θ=Argz=02kk=±1±2±3…把位于-π<0≤π的0叫做Argz辐角主值记作0=argz04如何寻找argz例:z=1-iz=i42z=1+i4z=-1π5极坐标:xrcos,yrsinzxiyrcosisini利用欧拉公式ecosisin可得到zreiz1z2r1ei1r2ei2r1r2ei1ei2r1r2ei126高次幂及n次方znzzzzrneinrncosnisinn凡是满足方程z的ω值称为z的n次方根,记作nnzzrei2kn即rn2knr2kn1n第二章解析函数1极限2函数极限①复变函数对于任一ZD都有W与其对应fz注:与实际情况相比,定义域,值域变化例fzz②limfzzz0称fz当zz0时以A为极限zz0☆当fz0时,连续例1证明fzz在每一点都连续证:fzfz0zz0zz00zz0所以fzz在每一点都连续3导数fz0limzz0fzfz0dfzzz0zzz0"例2fzC时有C证:对z有limz0fzzfzCClim0所以C"0z0zz例3证明fzz不可导解:令zz0fzfz0zz0zz0xiyzz0zz0zz0xiy当0时,不存在,所以不可导。

复变函数与积分变换重要知识点

复变函数与积分变换重要知识点
在复数范围内不在成立。另外,在复数范围内凡涉及到比较大小的问题均不成立。所以,
sin2 z 0, cos2 z 0 在复数中均不成立。
3
复变函数与积分变换复习要点
2013 年 11 月中旬至 12 月中旬
shz ez ez , chz ez ez
双曲函数
2
2;
shz 奇函数, chz 是偶函数。 shz, chz 在 z 平面内解析,且 shz chz,chz shz
6 辐角:Argz 1 2k k为任意整数,其中把满足- 0 的0称为Argz的主值,
记作,0 = arg z. z 0 辐角的主值
arg
z


arctan
π, 2
arctan
y x
y
, x 0, x 0, y 0,
π, x 0, y
3! 5!
zn n!
zn (R ) n0 n!
(1)n z2n1 (2n 1)!
, (R )
cos z 1 z2 z4 (1)n z2n
2! 4!
(2n)!
1 1 z z2 (1)n zn ,| z | 1 1 z
如果我们定义
zn

1 zn
,
那么当
n
为负整数时,
上式仍成立.
棣莫佛公式:当 z 的模 r 1, 即 z cos i sin,
(cos i sin )n cos n i sin n.
方程 wn

z
的根:
w

n
z

1
rn

cos

复变函数-总结

复变函数-总结
(sec z )′ = tan z sec z
18
例2 问 f (z) = x +2yi 是否可导?
f (z +∆z) − f (z) 解:这里 lim ∆z→0 ∆z ( x + ∆x) + 2( y + ∆y )i − x − 2 yi ∆x + 2∆yi = lim = lim ∆z → 0 ∆x + ∆yi ∆z → 0 ∆x + ∆yi
∂u ∂v ∂v ∂u = , =− ∂x ∂y ∂x ∂y
解析 ( 可导) ⇔ u , v 可微且满足C-R方程
若 推论 : u, v在( x, y )处一阶偏导数连续且满足C − R
方程,则f ( z ) = u + iv在 z = x + iy 处可导.
22
§2.2 解析函数与调和函数的关系
y
由 C − R 方程知:
u x = v y = − 2 y u y = − v x = −2 x
u( x 1 y ) =
0
( x, y )
(x,0)
x

( x, y)
∆x + 2∆yi ∆x = lim =1. 取∆z = ∆x → 0 , lim ∆z→0 ∆ +∆ x yi ∆z→0 ∆x ∆x + 2∆yi 2∆y 取∆z = i∆y → 0, lim = lim = 2. ∆z→0 ∆ +∆ x yi ∆z→0 ∆y 所以 f (z) = x + 2yi 的导数不存在.
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 , 则
lim u(x, y) = u0 x→x0 y→y0 lim f (z) = A ⇔ . z→z0 lim x→x0 v(x, y) = v0 y→y0 运算性质:

复变函数积分计算公式

复变函数积分计算公式

复变函数积分计算公式柯西定理是复变函数的一个基本定理,它与实分析中的格林定理相对应。

它的表述如下:设f(z)是C上的连续函数,在C的内部点a处可导,则对于C上的任意闭合路径L,有积分公式:∮L f(z)dz = 0其中∮代表沿曲线的积分。

柯西定理揭示了一个重要性质,即在曲线内部的积分和沿曲线上的积分是等值的。

这个公式的实际应用是在计算闭合曲线围成的域内的积分时,可以通过计算沿曲线的积分来得到结果。

柯西-黎曼公式是复分析中的一个重要公式,它是柯西定理在复平面上的推广。

其表述如下:设f(z)=u(x,y)+iv(x,y)是定义在单连通域D上的全纯函数,则对于D上的任意简单闭合曲线L,有积分公式:∮L [u(x, y)dx - v(x, y)dy] + i∮L [v(x, y)dx + u(x, y)dy]=其中i是虚数单位。

柯西-黎曼公式是柯西定理在复平面上的推广,它关联了函数的实部和虚部,揭示了全纯函数在实轴和虚轴上的性质,是复变函数积分计算的基础。

在计算复变函数积分时,需要将积分路径表示为参数方程形式,并根据具体问题选择合适的计算方法。

常用的计算方法包括直接计算、换元法、分部积分法、留数法等。

直接计算方法是将积分路径表示为参数方程形式,然后将积分公式代入进行计算。

这种方法在积分路径较简单且函数形式简化时适用。

换元法是将积分路径用新的参数方程表示,通过变量替换将复变函数积分转化为实变函数积分。

这种方法主要用于积分路径的形式复杂且可以找到合适的变换。

分部积分法是将复变函数积分转化为求导和积分的组合运算,通过重复应用分部积分法,可以将复杂的函数逐步简化。

留数法是一种特殊的计算方法,适用于计算含有奇点的函数的积分。

留数法利用了复变函数在奇点处的局部性质,通过计算奇点处的留数来求解积分。

总之,复变函数积分的计算公式主要有柯西定理和柯西-黎曼公式,并且还需要根据具体问题选择合适的计算方法进行计算。

复变函数总结汇总

复变函数总结汇总

第一章复数与复变函数、复数几种表示(1)代数表示z =x • yi(2)几何表示:用复平面上点表示(复数z、点z、向量z视为同一概念)(3)三角式:z = r(cosv isi nr)(4)指数式:z = re iT1辐角Argz =arg z 2k 二|zh ,x2y2yarctan丄,x》0,xyarcta n丄+兀,x<0,y〉0xargz={ yarcta n± - x,x<0,yc0x兀/2, x = 0, y:>0-■: /2, x =0,y : 0z - z2i、乘幕与方根(1)乘幕:(2)方根:re i-____ 2k n/t argz.R'z=n:|z|e n , k= 0,1,2,…n—1第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似注:(1)点解析=点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 W = f (z)=u • iv在Z o可导二u,v在Z o可微,满足C-R方程定理2 w二f⑵二u • iv在区域D内解析(可导)二u,v在区域D内可微,满足C-R方程讨论1 u,v在区域D内4个偏导数存在且连续,满足C-R方程=w = f (z)二u iv在区域D内解析(可导)三、解析函数和调和函数的关系1、定义1调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。

定义2设(x,y)^ (x, y)是区域D内调和函数,且满足C-R方程, xx,则称是「的共轭调和函数。

2、定理1解析函数的虚部与实部都是调和函数。

定理2函数在D内解析二虚部是实部的共轭调和函数。

3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。

(2)实部与虚部满足C-R方程。

求解方法:(例如已知v)(1)偏积分法:先求u x,u y,再求u = udx (y),得出(y)(2)利用曲线积分:求u x,u y,du,再u = u x dx u y dy c(x o,y o)(3)直接凑全微分:求u x,u y,du,再du四、初等函数1、 指数函数 w=e z =e x e iy =e x (cosy i sin y )性质:(1) e z 是单值函数,(2) e z 除无穷远点外处处有定义(3) e z = 0(4) e z 处处解析,(e z )'eZ(5) e z1 Z2 =e Zl e Z2(6) e z 是周期函数,周期是2k 「:i2、 对数函数w =Lnz =ln |z| i argz i2k 二 (多值函数)主值(枝)ln z=l n | z| iargz (单值函数)性质:(1)定义域是z = 0,(2) 多值函数(3) 除去原点和负实轴的平面内连续(5) Ln(wz 2) = Lnz j Lnz 2 Ln 三二 Ln^ - Lnz 2J3、幕函数w = z ,e-Lnz (z = 0「是复常数)(1) 为正整数,函数单值、处处解析,(2) 〉为负整数,函数单值、除去z = 0及其负实轴处处解析,4、三角函数欧拉公式 e i = c 0'S i s i n(4)除去原点和负实轴的平面内解析,1 1(Lnz) (In z): z ,z或 eJe 乂cos , s i n 二 2 2iiz _iz iz _iz定义: e +e . e -e cosz , sin z 二 2 2itan z=sin z/cosz, cot z = cosz/sin zsecz =1/cosz, cscz =1/sin z性质: 周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注: sin z, cosz 的有界性 保护成立。

复变函数总结

复变函数总结

复变函数总结复变函数总结Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章复数与复变函数一、复数几种表示(1)代数表示 yi x z +=(2)几何表示:用复平面上点表示(复数z 、点z 、向量z 视为同一概念)(3)三角式:)sin (cos θθi r z +=(4)指数式:θi re z =辐角πk z Argz 2arg +=二、乘幂与方根(1)乘幂:θi re z =,θin n n e r z =(2)方根: 1,2,1,0,||arg 2-==+n k e z z i n z k n n π第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似函数点解析的定义:函数在一点及其点的邻域内处处可导注:(1)点解析?点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 iv u z f w +==)(在0z 可导?v u ,在0z 可微,满足C-R 方程定理2 iv u z f w +==)(在区域D 内解析(可导)v u ,在区域D 内可微,满足C-R 方程讨论1 v u ,在区域D 内4个偏导数存在且连续,满足C-R 方程iv u z f w +==)(在区域D 内解析(可导)三、解析函数和调和函数的关系1、定义1 调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。

定义2 设),(),,(y x y x ψ?是区域D 内调和函数,且满足C-R 方程,x y y x ψ?ψ?-==,,则称ψ是?的共轭调和函数。

2、定理1 解析函数的虚部与实部都是调和函数。

定理2 函数在D 内解析?虚部是实部的共轭调和函数。

3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。

(2)实部与虚部满足C-R 方程。

求解方法:(例如已知v )(1)偏积分法:先求y x u u ,,再求)(y dx u u x ?+=?,得出)(y ?(2)利用曲线积分:求du u u y x ,,,再c dy u dx u u y x y x y x ++=?),(),(00(3)直接凑全微分:求du u u y x ,,,再du四、初等函数1、指数函数)sin (cos y i y e e e e w x iy x z +===性质:(1)z e 是单值函数,(2)z e 除无穷远点外处处有定义(3)0≠z e(4)z e 处处解析,z z e e =')((5)2121z z z z e e e =+ (6)z e 是周期函数,周期是i k π22、对数函数πk i z i z Lnz w 2arg ||ln ++== (多值函数)主值(枝)z i z z arg ||ln ln += (单值函数)性质:(1)定义域是0≠z ,(2)多值函数(3)除去原点和负实轴的平面内连续(4)除去原点和负实轴的平面内解析,z Lnz 1)(=',z z 1)(ln =',(5)3、幂函数ααα,0(≠==z e z w Lnz 是复常数)(1)α为正整数,函数单值、处处解析,(2)α为负整数,函数单值、除去0=z 及其负实轴处处解析,4、三角函数欧拉公式θθθsin cos i e i +=或 ie e e e i i i i 2sin ,2cos θθθθθθ---=+= 定义:i e e z e e z iziz iz iz 2sin ,2cos ---=+= 性质:周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注:z z cos ,sin 的有界性保护成立。

复变函数总结可修改文字

复变函数总结可修改文字
(6) sin z , cos z can be greater than 1
tan z sin z , cot z cos z ,
cos z
sin z
sec z 1 , csc z 1 ,
cos z
sin z
4. 双曲函数
ez ez
ez ez
sinhz
, cosh z
,
2
2
tanh z sinh z , coth z cosh z ,
k 0
称为以 b 为展开中心的幂级数。其中 ak 为复常数。
幂级数的收敛圆及其收敛半径
k
对于幂级数 ak (z b)k ,必定存在一以 b 为圆心,R 为
k 0
半径的圆,在圆内该级数绝对收敛(而且在较小的圆内 一致收敛),而在圆外发散。这个圆称为该幂级数的收敛 圆,R 称为它的收敛半径。
确定幂级数的收敛半径
z rei
(1.2.14)
复数的乘幂与方根
zn z z z
zn rn (cos n i sin n )
wk
n
i 2kπ
re n
n
r [cos(
2kπ ) i sin(
n
2kπ )], n
(k 0,1, 2,, n 1)
区域
z0的去心邻域 : 点集 z 0 z z0
复变函数总结
复数的表示
1.2.1 复数的几何表示
y
P y
r
x
o
图 1.1
x
y
0
x
2kπ 0
图 1.2
复数的指数表示
定义 1.2.6 复数的指数表示 利用欧拉(Euler)公式
ei cos i sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数公式及常用方法总结
复变函数是指在复平面上定义域为复数集的函数。

复变函数与实变函
数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质
来研究这类函数。

复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。

1.复变函数的定义与性质:
复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中
z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。

复变函数的
一些性质如下:
(1)复变函数可以进行加减、乘法和除法运算;
(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚
部在该点均连续;
(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;
(4)复变函数的实部和虚部都满足拉普拉斯方程式:
∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。

2.常用的复变函数:
(1)幂函数:f(z)=z^n,其中n为整数;
(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);
(3) 对数函数:f(z) = ln(z);
(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;
(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)
= cosh(z),双曲正切函数f(z) = tanh(z)等。

3.复变函数的常用方法:
(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:
z=r*e^(iθ)。

在极坐标下,复变函数的运算更加方便,例如可以用欧拉
公式将指数函数表示为e^(iθ)的形式。

(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即
f'(z) = lim(h→0) [f(z+h) - f(z)] / h。

通常使用实部和虚部的偏导
数来计算复变函数的导数,例如u(x, y)和v(x, y)的偏导数分别为∂u/∂x、∂u/∂y、∂v/∂x和∂v/∂y。

(3) 积分与留数定理:复变函数的积分可以用路径积分的形式表示,
即∮f(z)dz。

根据留数定理,如果复变函数在有界的区域内解析,那么它
在这个区域内的积分只与边界的形状有关,而与区域内部的形状无关。

(4)序列、级数和收敛性:类似于实变函数,复变函数也可以用级数
的形式表示,即f(z)=Σ(a_nz^n),其中a_n是复系数。

可以利用序列的
收敛性来研究复变函数的性质。

(5)特殊函数的应用:特殊函数是指在数学和物理中出现频率较高的
一类函数,如伽玛函数、贝塞尔函数、赫尔米特多项式等。

这些函数在复
变函数的研究以及物理和工程学的应用中起着重要的作用。

综上所述,复变函数是在复平面上定义域为复数集的函数。

复变函数
有着特殊的性质和公式,例如实部和虚部的导数满足拉普拉斯方程式,复
变函数可以进行加减乘除运算等。

在复变函数的研究和应用中,常常使用极坐标表示法、导数、积分和留数定理、级数和收敛性以及特殊函数等方法来分析和计算复变函数的性质。

复变函数在数学、物理和工程学等领域有着广泛的应用。

相关文档
最新文档