离散时间系统的时域特性分析实验报告
系统的时域实验报告
系统的时域实验报告系统的时域实验报告一、引言时域实验是系统动态特性研究中的重要手段之一。
通过对系统的输入和输出信号进行时域分析,可以揭示系统的动态响应规律,并对系统进行性能评估和优化设计。
本实验旨在通过对某一系统的时域实验研究,探索系统的动态特性和性能指标。
二、实验目的1. 了解时域分析的基本原理和方法;2. 掌握系统的时域响应测量技术;3. 研究系统的动态特性和性能指标。
三、实验装置与方法1. 实验装置:系统输入信号发生器、系统输出信号采集器、计算机数据处理软件等;2. 实验方法:根据实验要求,设置系统的输入信号,采集系统的输出信号,并通过计算机软件进行数据处理和分析。
四、实验步骤1. 系统建模:根据实际情况,对系统进行数学建模,得到系统的传递函数或状态空间模型;2. 实验准备:将系统输入信号发生器与系统输出信号采集器连接,设置合适的参数;3. 实验测量:根据实验要求,设置不同的输入信号,采集系统的输出信号;4. 数据处理:将采集到的数据导入计算机软件中,进行时域分析和性能指标计算;5. 结果分析:根据实验结果,分析系统的动态特性和性能指标,得出结论。
五、实验结果与分析根据实验所得数据,通过计算机软件进行时域分析和性能指标计算,得到系统的动态响应曲线和相关参数。
通过对曲线的观察和分析,可以得出以下结论:1. 系统的时间常数:通过观察系统的动态响应曲线,可以确定系统的时间常数,即系统从初始状态到达稳定状态所需的时间。
时间常数越小,系统的响应速度越快。
2. 系统的超调量:超调量是指系统响应的最大偏离量与稳态值之间的差值。
通过观察系统的动态响应曲线,可以测量出系统的超调量。
超调量越小,系统的稳定性越好。
3. 系统的峰值时间:峰值时间是指系统响应曲线达到最大值所需的时间。
通过观察系统的动态响应曲线,可以测量出系统的峰值时间。
峰值时间越小,系统的响应速度越快。
4. 系统的上升时间:上升时间是指系统响应曲线从初始状态到达稳定状态所需的时间。
离散时间系统时域特性分析实验总结报告(信号及系统)
南昌大学实验报告(信号与系统)学生姓名:学号:专业班级:通信实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:离散时间系统的时域特性分析一、实验项目名称: 离散时间系统的时域特性分析二、实验目的:线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应系统的线性和时不变特性的理解。
三、实验基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
若以T[·]表示这种运算,则一个离散时间系统可由图1-1来表示,即x(n) T[·] y(n)图1-1离散时间系统离散时间系统最重要的,最常用的是“线性时不变系统”。
1.线性系统4. 实验用matlab语言工具函数简介(1)产生N个元素矢量函数x=zeros(1,N)(2)计算系统的单位冲激响应h(n)的两种函数y=impz(b,a,N)功能:计算系统的激励响应序列的前N个取样点y=filter(b,a,x)功能:系统对输入进行滤波,如果输入为单位冲激序列δ(n),则输出y即为系统的单位冲激响应h(n).四、实验说明例1.1产生一个N=100的单位冲激序列。
>> N=100;>> u=[1 zeros(1,N-1)];>> Stem(0:N-1,u)>>例1.2产生一个长度为N=-100的单位阶跃响应>> N=100;>> s=[ones(1,N)];>> Stem(0:99,s);>> axis([0 100 0 2])例1.3产生一个正弦序列>> n=0:40;>> f=0.1;>> phase=0;>> A=1.5;>> arg=2*pi*f*n-phase; >> x=A*cos(arg);>> stem(n,x);>> axis([0 40 -2 2]); >> grid例1.4产生一个复指数序列>> c=-(1/12)+(pi/6)*i; >> k=2;>> n=0:40;>> x=k*exp(c*n);>> subplot(2,1,1);>> stem(n,imag(x)); >> subplot(2,1,2);>> stem(n,imag(x)); >> xlabel('时间序列n'); >> ylabel('信号幅度'); >> title('虚部');例1.5假设系统为y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列x1(n),x2(n)和x9n)=ax1(n)+bx2(n),求y1(n),y2(n)和y(n),并判断此系统是否为线性系统。
系统时域分析实验报告
系统时域分析实验报告系统时域分析实验报告一、引言时域分析是电子工程中的重要内容之一,它通过对系统在时间上的响应进行观察和分析,可以帮助我们了解系统的动态特性。
本实验旨在通过对不同系统的时域分析,探讨系统的稳定性、阶数、零极点等特性。
二、实验目的1. 了解时域分析的基本概念和方法;2. 掌握系统的稳定性判断方法;3. 学习如何通过时域分析确定系统的阶数;4. 理解系统的零极点对系统响应的影响。
三、实验原理1. 系统的稳定性判断系统的稳定性是指当输入信号有限时,系统输出是否有界。
常用的判断方法有零极点判断法和频率响应判断法。
2. 系统的阶数确定系统的阶数是指系统传递函数中最高次幂的阶数。
通过观察系统的单位阶跃响应或单位冲激响应,可以确定系统的阶数。
3. 零极点对系统响应的影响系统的零点和极点决定了系统的传递特性。
零点是使系统增益为零的点,极点是使系统增益无穷大的点。
零点和极点的位置和数量决定了系统的稳定性、阶数和频率响应。
四、实验步骤1. 确定实验所用系统的传递函数;2. 绘制系统的单位阶跃响应曲线;3. 通过观察单位阶跃响应曲线,判断系统的稳定性;4. 根据单位阶跃响应曲线的特点,确定系统的阶数;5. 分析系统的零极点位置和数量对系统响应的影响。
五、实验结果与分析以某一系统为例,实验得到其单位阶跃响应曲线如下图所示。
[插入实验结果图]通过观察单位阶跃响应曲线,我们可以看到系统的输出在一定时间后趋于稳定,且没有出现振荡现象。
因此,可以判断该系统是稳定的。
根据单位阶跃响应曲线的特点,我们可以看到系统的输出在一定时间后达到了稳态值,并且没有超过该稳态值。
根据阶跃响应曲线的形状,我们可以判断该系统的阶数为一阶。
通过对系统的传递函数进行分析,我们可以确定系统的零点和极点的位置和数量。
进一步分析可以得出,系统的零点和极点的位置和数量对系统的稳定性、阶数和频率响应都有重要影响。
六、实验总结通过本次实验,我们了解了时域分析的基本概念和方法,掌握了系统的稳定性判断方法和阶数确定方法。
数字信号处理 实验作业:离散LSI系统的时域分析
实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。
2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。
3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。
二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。
例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。
解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。
实验二离散时间系统的时域分析
武汉工程大学信号分析与处理实验一专业:通信02班学生姓名:李瑶华学号:1304200113完成时间:2021年7月27日实验二: 离散时间系统的时域分析一、实验目的1.在时域中仿真离散时间系统,进而理解离散时间系统对输入信号或延迟信号进行简单运算处理,生成具有所需特性的输出信号的方法。
2.仿真并理解线性与非线性、时变与时不变等离散时间系统。
3.掌握线性时不变系统的冲激响应的计算,并用计算机仿真实现。
4.仿真并理解线性时不变系统的级联、验证线性时不变系统的稳定特性。
二、实验设备计算机,MATLAB 语言环境。
三、实验基础理论1.系统的线性性质线性性质表现为系统满足线性叠加原理:若某一输入是由N 个信号的加权和组成的,则输出就是系统对这N 个信号中每一个的响应的相应加权和组成的。
设)(1n x 和)(2n x 分别作为系统的输入序列,其输出分别用)(1n y 和)(2n y 表示,即)]([)(,)]([)(2211n x T n y n x T n y ==若满足)()()]()([22112211n y a n y a n x a n x a T +=+则该系统服从线性叠加原理,或者称该系统为线性系统。
2.系统的时不变特性若系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,则称该系统为时不变系统(或称为移不变系统)。
对时不变系统,若)]([)(n x T n y =,则)()]([m n y m n x T -=- 3.系统的因果性系统的因果性即系统的可实现性。
如果系统时刻的输出取决于时刻及时刻以前的输入,而和时刻以后的输入无关,则该系统是可实现的,是因果系统。
系统具有因果性的充分必要条件为0,0)(<=n n h4.系统的稳定性稳定系统是指有界输入产生有界输出(BIBO )的系统。
如果对于输入序列,存在一个不变的正有限值,对于所有值满足∞<≤M n x |)(|则称该输入序列是有界的。
离散时间系统的时域分析实验报告
3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;
四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);
时域离散信号实验报告(3篇)
第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
数字信号处理实验报告一二
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
北京理工大学信号与系统实验报告6离散时间系统的z域分析
北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。
2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。
3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。
F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。
此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。
硕士信号处理实验报告(3篇)
第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。
本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。
二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握常用信号处理算法的MATLAB实现。
3. 培养分析和解决实际问题的能力。
三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。
(2)实验步骤:- 使用MATLAB生成两个离散时间信号。
- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。
- 观察并分析操作结果。
2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。
(2)实验步骤:- 使用MATLAB设计一个离散时间系统。
- 计算系统的单位脉冲响应、零状态响应和零输入响应。
- 分析系统特性。
(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。
(2)实验步骤:- 使用MATLAB生成一个离散时间信号。
- 对信号进行FFT和DFT变换。
- 分析信号频谱。
4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
(2)实验步骤:- 使用MATLAB设计一个低通滤波器。
- 使用窗函数法实现滤波器。
- 对滤波器进行性能分析。
5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。
(2)实验步骤:- 选择一个信号处理应用案例。
- 分析案例中使用的信号处理方法。
- 总结案例中的经验和教训。
四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。
系统的时域实验报告
系统的时域实验报告系统的时域实验报告引言:时域实验是一种常用的实验方法,通过对系统在时间上的响应进行观察和分析,可以了解系统的动态特性和行为。
本实验旨在通过对某一系统的时域响应进行测量和分析,探究系统的特性,并验证理论模型的准确性。
一、实验目的本实验的主要目的是:1. 通过测量系统的时域响应,了解系统的动态特性,如阶数、阻尼比等。
2. 验证理论模型的准确性,比较实验结果与理论计算结果的差异。
3. 掌握时域实验的基本方法和步骤,培养实验操作和数据处理的能力。
二、实验原理1. 系统的时域响应系统的时域响应是指系统在时间上的输出响应,可以通过对系统输入信号和输出信号进行测量和分析来得到。
常见的系统响应包括阶跃响应、脉冲响应和正弦响应等。
2. 系统的传递函数系统的传递函数是描述系统输入输出关系的数学模型,可以通过理论推导或实验测量得到。
传递函数可以用于预测系统的响应,并与实验结果进行对比,从而验证模型的准确性。
三、实验步骤1. 搭建实验装置根据实验要求,搭建合适的实验装置,包括信号发生器、滤波器、放大器等。
确保实验装置的稳定性和准确性。
2. 设计输入信号根据实验要求,设计合适的输入信号,如阶跃信号、脉冲信号或正弦信号等。
输入信号的幅值、频率和周期等参数需要根据实验要求进行调整。
3. 测量系统的时域响应将输入信号输入系统,通过合适的测量设备测量系统的输出信号。
可以使用示波器等设备进行测量,并记录下系统的输出信号随时间的变化。
4. 数据处理和分析将测得的数据进行处理和分析,得到系统的时域响应曲线。
可以通过绘制波形图、计算阶数和阻尼比等指标来分析系统的特性。
5. 与理论模型对比将实验结果与理论模型进行对比,比较实验结果与理论计算结果的差异。
可以计算误差或绘制对比图表来评估模型的准确性。
四、实验结果与讨论根据实验步骤和数据处理,得到了系统的时域响应曲线。
通过与理论模型进行对比,发现实验结果与理论计算结果较为接近,验证了理论模型的准确性。
离散时间信号的时域分析
实验二离散时间信号的时域分析1.实验目的(1)学习MATLAB软件及其在信号处理中的应用,加深对常用离散时间信号的理解。
(2)利用MATLAB产生常见离散时间信号及其图形的显示,进行简单运算。
(3)熟悉MATLAB对离散信号的处理及其应用。
2.实验原理离散时间信号是时间为离散变量的信号。
其函数值在时间上是不连续的“序列”。
(1)单位抽样序列如果序列在时间轴上面有K个单位的延迟,则可以得到,即:该序列可以用MATLAB中的zeros函数来实现。
(2)正弦序列可以利用sin函数来产生。
(3)指数序列在MATLAB中通过:和来实现。
3.实验内容及其步骤(1)复习有关离散时间信号的有关内容。
(2)通过程序实现上述几种信号的产生,并进行简单的运算操作。
单位抽样序列参考:% Generation of a Unit Sample Sequenceclf;% Generate a vector from -10 to 20n = -10:20;% Generate the unit sample sequenceu = [zeros(1,10) 1 zeros(1,20)];% Plot the unit sample sequencestem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);如果序列在时间轴上面有K个单位的延迟,则可以得到,即:,通过程序来实现如下所示结果。
正弦序列参考:% Generation of a sinusoidal sequencen = 0:40; f = 0.1;phase = 0; A = 1.5;arg = 2*pi*f*n - phase; x = A*cos(arg);clf; % Clear old graphstem(n,x); % Plot the generated sequenceaxis([0 40 -2 2]); grid;title('Sinusoidal Sequence'); xlabel('Time index n');ylabel('Amplitude'); axis;指数序列参考:% Generation of a real exponential sequenceclf; n = 0:35; a = 1.2; K = 0.2;x = K*a.^n; stem(n,x);xlabel('Time index n'); ylabel('Amplitude');(3)加深对离散时间信号及其特性的理解,对于离散信号能进行基本的运算(例如信号加、乘、延迟等等),并且绘出其图形。
离散系统的时域分析实验报告
实验2 离散系统的时域分析一、实验目的1、熟悉并掌握离散系统的差分方程表示法;2、加深对冲激响应和卷积分析方法的理解。
二、实验原理在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:其输入、输出关系可用以下差分方程描述:输入信号分解为冲激信号,记系统单位冲激响应,则系统响应为如下的卷积计算式:当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。
三、实验内容1、用MATLAB求系统响应1)卷积的实现线性移不变系统可由它的单位脉冲响应来表征。
若已知了单位脉冲响应和系统激励就可通过卷积运算来求取系统响应,即程序:x=input(‘Type in the input sequence=’); %输入xh=input(‘Type in the impulse response sequence=’); %输入hy=conv(x,h); % 对x,h进行卷积N=length(y)-1; %求出N的值n=0:1:N; %n从0开始,间隔为1的取值取到N为止disp(‘output sequence=’); disp(y); %输出ystem(n,y); %画出n为横轴,y为纵轴的离散图xlabel(‘Time index n’); ylable(‘Amplitude’); % 规定x轴y 轴的标签输入为:x=[-2 0 1 -1 3]h=[1 2 0 -1]图形:2)单位脉冲响应的求取线性时不变因果系统可用MATLAB的函数filter来仿真y=filter(b,a,x);其中,x和y是长度相等的两个矢量。
矢量x表示激励,矢量a,b 表示系统函数形式滤波器的分子和分母系数,得到的响应为矢量y。
例如计算以下系统的单位脉冲响应y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)程序:N=input(‘Desired impuse response length=’);b=input(‘Type in the vector b=’);a=input(‘Type in the vector a=’);x=[1 zeros(1,N-1)];y=filter(b,a,x);k=0:1:N-1;stem(k,y);xlabel(’Time index n’); ylable(‘Amplitude’);输入:N=41b=[0.8 -0.44 0.36 0.02]a=[1 0.7 -0.45 -0.6]图形:2、以下程序中分别使用conv和filter函数计算h和x的卷积y和y1,运行程序,并分析y和y1是否有差别,为什么要使用x[n]补零后的x1来产生y1;具体分析当h[n]有i个值,x[n]有j个值,使用filter完成卷积功能,需要如何补零?程序:clf;h = [3 2 1 -2 1 0 -4 0 3]; %impulse responsex = [1 -2 3 -4 3 2 1]; %input sequencey = conv(h,x);n = 0:14;subplot(2,1,1);stem(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output Obtained by Convolution'); grid;x1 = [x zeros(1,8)];y1 = filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('Time index n'); ylabel('Amplitude');title('Output Generated by Filtering'); grid;图形:因为在y=filter(b,a,x)中,利用给定矢量a和b对x中的数据进行滤波,结果放入y矢量中,y与x长度要相等,所以要使用x[n]补零后的x1来产生y1。
实验报告实验3离散时间系统的时域分析
数字信号处理实验三离散时间系统的时域分析学院:信息与通信学院专业:电子信息工程学号:**********姓名:***1.实验目的(1)理解离散时间信号的系统及其特性。
(2)对简单的离散时间系统进行分析,研究其时域特性。
(3)利用MATLAB 对离散时间系统进行仿真,观察结果,理解其时域特性。
2.实验原理离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示:(1)线性系统 当该系统的输入信号为12()()ax n bx n +时,其中a,b 为任意常数,输出为121212[()()][()][()]()()T a x n b x n a T x n b T x n a y n b y n+=+=+ (2)时不变系统若()[()]y n T x n =,则[()]()T x n k y n k -=-。
3.实验内容及其步骤(1)复习离散时间系统的主要性质,掌握其原理和意义。
(2)一个简单的非线性离散时间系统的仿真在MATLAB 中输入:n = 0:200; x = cos(2*pi*0.05*n); x1 = [x 0 0]; x2 = [0 x 0]; x3 =[0 0 x]; y = x2.*x2-x1.*x3; y = y(2:202); subplot(2,1,1); plot(n, x); xlabel('Time index n'); ylabel('Amplitude');title('Input Signal');subplot(2,1,2);plot(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output signal');结果如下:(3)线性与非线性系统的仿真在MATLAB中输入:n = 0:40; a = 2; b = -3;x1 = cos(2*pi*0.1*n); x2 = cos(2*pi*0.4*n);x = a*x1 + b*x2;num = [2.2403 2.4908 2.2403];den = [1 -0.4 0.75];ic = [0 0]; y1 = filter(num,den,x1,ic);y2 = filter(num,den,x2,ic); y = filter(num,den,x,ic);yt = a*y1 + b*y2; d = y - yt; subplot(3,1,1);stem(n,y); ylabel('Amplitude');title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]');subplot(3,1,2);stem(n,yt); ylabel('Amplitude');title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]');subplot(3,1,3);stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal');结果如下:(4)时不变与时变系统的仿真在MA TLAB中输入:% Generate the input sequencesclf; n = 0:40; D = 10; a = 3.0; b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);xd = [zeros(1,D) x]; num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];ic = [0 0]; % Set initial conditions% Compute the output y[n]y = filter(num,den,x,ic);% Compute the output yd[n]yd = filter(num,den,xd,ic);% Compute the difference output d[n]d = y - yd(1+D:41+D);subplot(3,1,1); stem(n,y); ylabel('Amplitude'); title('Output y[n]'); grid;subplot(3,1,2); stem(n,yd(1:41)); ylabel('Amplitude');title(['Output due to Delayed Input x[n - ', num2str(D),']']); grid;subplot(3,1,3); stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal'); grid;结果如下:4.思考题(1)离散时间系统有何特点。
数字信号处理实验指导
实验一 离散时间信号与系统的时域分析(基础验证型)1.实验目的(1)熟悉离散时间信号的产生与基本运算。
(2)熟悉离散时间系统的时域特性。
(3)利用卷积方法观察分析系统的时域特性。
2.实验原理(1)典型离散时间信号单位样本序列(通常称为离散时间冲激或单位冲激)用[]n δ表示,其定义为1,0[]0,0n n n δ=⎧=⎨≠⎩(1.1) 单位阶跃序列用[]n μ表示,其定义为1,0[]0,0n n n μ≥⎧=⎨<⎩ (1.2) 指数序列由 []n x n A α= (1.3)给定。
其中A 和α可以是任意实数或任意复数,表示为00(),j j e A A e σωφα+==式(1.3)可改写为 0000()00[]cos()sin()n j n n n x n A e A e n j A e n σωφσσωφωφ++==+++ (1.4) 带有常数振幅的实正弦序列形如0[]cos()x n A n ωφ=+ (1.5)其中A ,0ω和φ是实数。
在式(1.4)和(1.5)中,参数A ,0ω和φ分别称为正弦序列[]x n 的振幅、角频率和初始相位。
002f ωπ=称为频率。
(2)序列的基本运算长度N 的两个序列[]x n 和[]h n 的乘积,产生长度也为N 的序列[]y n[][][]y n x n h n =⋅ (1.6)长度为N 的两个序列[]x n 和[]h n 相加,产生长度也为N 的序列[]y n[][][]y n x n h n =+ (1.7)用标量A 与长度为N 的序列[]x n 相乘,得到长度为N 的序列[]y n[][]y n A x n =⋅ (1.8)无限长序列[]x n 通过时间反转,可得到无限长序列[]y n[][]y n x n =- (1.9)无限长序列[]x n 通过M 延时,可得到无限长序列[]y n[][]y n x n M =- (1.10)若M 是一个负数,式(1.10)运算得到序列[]x n 的超前。
数字信号处理实验报告
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析
姓名:
学号:
班级:
专业:
一.实验目的
线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。
本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。
二.基本原理
一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统中最重要、最常用的是“线性时不变系统”。
1.线性系统
满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即
那么当且仅当系统同时满足
和
时,系统是线性的。
在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。
2.时不变系统
系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即
则
满足以上关系的系统称为时不变系统。
3.常系数线性差分方程
线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:
当输入为单位冲激序列时,输出即为系统的单位冲激响应。
当时,是
有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。
三.实验内容及实验结果
1.实验内容
考虑如下差分方程描述的两个离散时间系统:
系统1:
系统2:
输入:
(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出波形。
(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?
2.实验结果
(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。
clf;
n=0:300;
x=cos((20*pi*n)/256)+cos((200*pi*n)/256);
num1=[0.5 0.27 0.77];
den1=[1];
num2=[0.45 0.5 0.45];
den2=[1 -0.53 0.46];
y1=filter(num1,den1,x);
y2=filter(num2,den2,x);
subplot(3,1,1);
stem(n,x);
xlabel('时间信号');
ylabel('信号幅度');
title('输入信号');
subplot(3,1,2);
stem(y1);
xlabel('时间信号n');
ylabel('信号幅度');
title('输出信号');
subplot(3,1,3);
stem(y2);
xlabel('时间序号n ');
ylabel('信号幅度');
title('冲激响应序列');
(2)
N=40;
num1=[0.5 0.27 0.77];
den1=[1];
num2=[0.45 0.5 0.45];
den2=[1 -0.53 0.46];
y1=impz(num1,den1,N);
y2=impz(num2,den2,N);
subplot(2,1,1);
stem(y1);
xlabel('时间信号n ');
ylabel('信号幅度');
title('³冲激响应');
subplot(2,1,2);
stem(y2);
xlabel('时间信号n ');
ylabel('信号幅度');
title('³冲激响应');
1.应用叠加原理验证系统2是否为线性系统:
clear all
clc
n = 0 : 1 : 299;
x1 = cos(20 * pi * n / 256);
x2 = cos(200 * pi * n / 256);
x = x1 + x2;
num = [0.45 0.5 0.45];
den = [1 -0.53 0.46];
y1 = filter(num, den, x1);
y2 = filter(num, den, x2);
y= filter(num, den, x);
yt = y1 + y2;
figure
subplot(2, 1, 1);
stem(n, y, 'g');
xlabel('时间信号n');
ylabel('信号幅度');
axis([0 100 -2 2]);
grid;
subplot(2, 1, 2);
stem(n, yt, 'r');
xlabel('时间信号n');
ylabel('信号幅度');
axis([0 100 -2 2]);
grid;
2.应用时延差值来判断系统2是否为时不变系统。
clear all
clc
n = 0 : 299;
D = 10;
x = cos(20 * pi * n / 256) + cos(200 * pi * n / 256);
xd = [zeros(1, D) x]; %生成新序列xd = x(n - D),延时D个单位num = [0.45 0.5 0.45];
den = [1 -0.53 0.46];
ic = [0 0]; %初始化
y = filter(num, den, x, ic);
yd = filter(num, den, xd, ic);
N = length(y);
d = y-yd(1+D : N+D);
figure
subplot(3, 1, 1);
stem(n, y);
ylabel('信号幅度');
title('输出y[n]');
grid;
subplot(3, 1, 2);
stem(n, yd(1 : length(yd) - D));
ylabel('信号幅度');
title('由于输入延时而产生的输出yd[n]');
grid;
subplot(3, 1, 3);
stem(n, d);
xlabel('时间序号n');
ylabel('信号幅度');
title('差值信号');
grid;
实验总结
通过本次实验,我对于利用matlab来求解关于离散时间系统的方法有了初步的掌握。
不仅如此,我清楚的认识到了线性时不变系统的性质:线性性和时不变性。
在学会使用matlab展现系统的性质后,我对以后学习离散时间系统有了更多的信心。