智能建筑研究的综述(中文翻译)

合集下载

建筑专业外文翻译--智能建筑

建筑专业外文翻译--智能建筑

附录二英文原文Intelligent Building1、GeneralAn Intelligent Building is one conceived and designed with an integrated flexible and modular communication cabling infrastructure capable of accommodating the needs of information intensive users for advanced information technology and services.Ever increasing occupation densities as well as the exponential development and quasi universal use of personal computers coupled to market globalization and communication capabilities, over the past 20 years, have rendered the Intelligent Building (IB) concept a priority consideration in the planning of new or upgradedOffice buildings.Evolution towards new social priorities, for the more educated office worker of today, has also led to substantial increases in environmental issue demands and standards. Social studies revealed a direct relationship between user satisfaction in the workplace and productivity. Individual control capability of ambient conditions, at each work station, was identified as a major element leading to user satisfaction.Technological developments and cost attenuations through technological development and product availability have now rendered the Intelligent Building a viable and a justifiable option from a strict cost to benefit aspect.2、OverviewDefinitions for the Intelligent Building concept still vary but the most accepted description is the one produced by the Barcelona-based Institut defons Cerdà:“A building which incorporates information systems that support the flow ofinformation throughout the building, offering advanced services of businessautomation and telecommunications, allowing furthermore automatic control,monitoring management and maintenance of the different subsystems or servicesof the building in an optimum and integrated way, local and/or remote, anddesigned with sufficient flexibility to make possible in a simple andeconomicalway the implementation of future systems.”To the uninitiated, the perception of a building’s degree of intelligence is too often correlated with the sophistication level of its Energy Management and Control System (EMCS) and its Communications system. However, to be effective, it must also encompass its mechanical and electrical systems order to minimize costs and maximize efficiency. There would be little point in developing ideal EMCS and its Communication systems for the occupants if HVAC, Lighting and other systems annot meet and satisfy the needs of the occupants.In a new IB installation we should expect the following features:• High- speed fibre optic communication network trunk for data, video and BAS.• Flexible HVAC system with modular distribution and 100% outdoor aircapability to take advantage of free cooling as well as to allow flushing ofthe building to dilute volatile off-gassing contaminants;• Advanced integrated Energy Management & Control System (EMCS)utilizing direct digital control technology for HVAC, Lighting, Fire Alarm and other building support systems;• Dedicated circuit power distribution network complete withUninterruptable Power Supply units;• Generous standby power generation;• High efficiency filtration, energy recuperation and/or thermal storagefeatures to improve indoor air quality and energy consumptionperformance;• Networked multi-user access incorporating structured passwordprotection;• Maximum transparency and communication capabilities between subsystems;• Electrical design features tailored to Intelligent Building;• Individually controll ed HVAC terminal units allowing occupant controlflexibility through Intelligent Terminals Controllers at each workstation.In retrofit buildings we would expect variations of the above features based on an owning and operating economical analysis taking into account the existing services and the benefits ensuing through their replacement and/or upgrade. Major retrofits, particularly those involving designs dating back 20 years or more, are generally dictated by acombination of the following:• New code req uirements,• Updated indoor air quality standards,• Revised energy efficiency guidelines,• Increased internal electrical requirements associated to the generalized use of PCs.• Revised building use.The average life cycle of most M&E installations is 20 years versus an average building life cycle of 50 years. These retrofits, therefore, often dictate a complete revamping of the existing M&E installations well before the building’s life cycle has expired. This frequently offers an opportunity to upgrade the building’s support systems to IB standards.3、HistoryThe IB concept surfaced in the early 80's and generally advocated extensive use of elaborate centralized electronic systems to facilitate control of building support and communication systems for voice and data. The initial concept promoted communication networks to allow centralized word processing services and limited interaction between individual occupants and the Building Automation Systems through touch tone phones to override local HVAC set points and lighting schedules.Builders and owners were pressured to develop intelligent buildings, in spite of the high premium costs, at that time, for prestige reasons and for enhanced rental potential.The Building Automation System and the Communication System industry as well as other specialized interest groups soon developed specific products and applications to meet and facilitate the implementation of the Intelligent Building concept. These developments coupled to the burgeoning Personal Computer market development have since reduced cost premiums drastically and greatly improved the ensuing benefits for Intelligent Buildings.The IB concept is now well accepted and applied in Europe, Asia and North America.4、Future trendsThe former Intelligent Building Institute (IBI) foundation advocated, a few years ago, a need to recognize, in future building designs, the transition from national economies to a combination of local and global economies and therefore the need to facilitate each employee’s access to global communication networks. They predicted that information technology access will provide the biggest single impetus for change in the office environment. This prediction has now become a reality.IBI also predicted that environmental issues and particularly Indoor Air Quality (IAQ) were becoming a primary concern in the design of the new office buildings. Improved air filtration and increased air change were pinpointed as major concerns in addition to flexible ambient room condition control.Other studies performed recently reveal that the use of Personal Environment Controllers formerly called Intelligent Terminal Controllers or has measurably increased occupant satisfaction in the workplace on a number of pilot project installations. PECs are a combination of mechanical, electrical and control devices developed for the work station environment control and conceived to provide the occupant with the means to define and interact on temperature set points, air flow volume and diffusion patterns as well as lighting levels affecting productivity and user satisfaction. These studies have associated improved production to the use of Intelligent Terminals Controllers.5、Intelligent Building ModelThe IB model structure has been subdivided into seven systems which may be interfaced to varying degrees. These systems are...·Heating Ventilating and Air Conditioning (HVAC) system;·Lighting System;·Electrical Power Distribution system;·Vertical Transport System;·Security System;·Life Safety System;·Communications System;The general objective of the Intelligent Building System is to regroup control of thesesubsystems and facilitate interchange between them to the maximum justifiable extent while maintaining maximal initial and future competitive bidding possibilities of each component as well as allowing dependent and timely upgrading of each system as new technologies evolve in its particular field.The IB concept also attempts to combine, wherever possible, the cabling networks for these subsystems in order to minimize costs and facilitate intercommunication or allow future upgrading.Efforts are being deployed between ASHRAE, IEEE, AEE and the computer industry to develop universal communication protocol standards. It is not expected, however, that universal standards will become a reality for another decade. The cabling structure must therefore be conceived to accommodate the foreseeable requirements with minimal disturbance and cost when and if universal standards materialize. The favoured backbone communication cabling technology at this time favors fibre optic technology, because of its high speed communication potential.6、Facilities Managementnumber of facility management programs are available on the market. They vary in complexity as well as in their ability to integrate complex systems such as:·CAD drawing records of floor and office layouts;·Furniture inventory;·Maintenance management programs for M&E equipment·Preventive maintenance of building structures;·Real time data acquisition on equipment run time;·Dynamic energy consumption totals per tenant;·Historical data storage;·Cost control and budgeting capabilities;·Analytical programs.The Intelligent Building’s role in this system is to allow communication between the overall facility management program and specialized management sub-programs such asthe EMCS, the M & E Maintenance Management or the Preventive Maintenance to gather data or convey user complaints.his communication flexibility in IB installations allows the allocation of specific management systems on the basis of areas of specialization, competencies or individual buildings of a complex while maintainingcapabilities for overall centralization of data and control.The IB communication capabilities can also facilitate interchange withaccounting or other Networks to import or export pertinent data whether inhouse or outsourced.7、ConclusionsThe Intelligent Building concept represents a new trend in office building planning and one more step towards the future through added flexibility and adaptation to market and communication globalization. This concept regroups worker and building management needs in a common and manageable communication infrastructure. The basic IB objective is improve worker satisfaction and productivity through enhanced work space environment and communication capabilities.Including the IB concept in the initial planning stages of the modern office building will provide substantial flexibility for the mid and long term life of the building particularly to communication intensive user clients. In most instances it will reduce tenant fit up costs down the road and provide enhanced flexibility and management capabilities while reducing energy consumption.Full implementation of all IB systems may not be necessary in the initial fit-up of a building. It is, however, mandatory to recognize the basic overall concept and implement a full communication cabling back bone structure from the onset in order to accommodate future user needs. The communication back bone must be distributed to strategically located communication rooms (Telco rooms) on each floor as part of the initialdesign.Subsequent floor distribution associated to any new or upgraded IB system could be achieved, via the suspended ceiling space with minimal cutting and patching. Justification for the IB concept must be analyzed independently for each building or fit-up and must take into account all derived benefits including increased productivity, flexibility, improved comfort and worker satisfaction as well as potential future savings over theprojected life cycle of the building. Application of the basic Intelligent Building concept in today’s modern office building should lead to positive Cost to Benefit evaluations when weighed in terms of increased user satisfaction and productivity and improved energy efficiency or flexibility.附录三中文译文智能建筑1、简介智能建筑是要求有一个综合布线和灵活模块化的通信基础设施,通过先进的信息技术和密集的信息服务用户来实现。

智能建筑英语作文

智能建筑英语作文

智能建筑英语作文English:Smart buildings, also known as intelligent buildings, are revolutionizing the way we live and work. These structures are equipped with a range of technologies that enable them to efficiently manage resources such as energy, water, and space. By incorporating sensors, automation systems, and data analytics, smart buildings can optimize energy consumption, improve indoor air quality, enhance security, and provide a comfortable and productive environment for occupants. Additionally, smart buildings can adapt to changing external factors such as weather conditions and occupancy patterns, further enhancing their efficiency and sustainability. With the rise of the Internet of Things (IoT) and advancements in artificial intelligence, the potential of smart buildings to transform our cities and communities is immense.中文翻译:智能建筑,又称为智能大楼,正在彻底改变我们生活和工作的方式。

人工智能建筑调研报告

人工智能建筑调研报告

人工智能建筑调研报告人工智能(Artificial Intelligence, AI)作为一种新兴技术,不仅在基于计算机的行业中迅速发展,也在建筑领域中逐渐找到了应用。

本调研报告旨在分析人工智能在建筑领域的应用现状及未来发展趋势。

一、引言人工智能是一种通过计算机模拟人类智能的技术,其应用已渗透到各个行业,包括建筑领域。

人工智能可以帮助建筑师、设计师和工程师提高效率、降低成本,并改进建筑设计和施工过程。

二、智能设计1. 建筑信息模型(Building Information Modeling, BIM)BIM是一种基于数字化模型的集成设计方法,通过整合建筑设计和信息管理,实现了各个环节的协同工作。

人工智能可以应用于BIM中,通过学习和分析海量的建筑数据,提供自动化的设计优化和决策支持。

2. 建筑设计生成人工智能可应用于建筑设计生成过程中的参数优化、造型探索和空间布局,从而快速生成满足需求的设计方案。

神经网络和遗传算法等技术可以模拟人类设计思维,提供多样化且符合功能性和美学要求的设计解决方案。

三、智能施工1. 智能预制装配人工智能可以优化预制装配建筑的生产和施工流程。

通过图像识别和机器学习技术,可以实现自动化的构件分类、质量检测和装配过程控制,提高施工效率和质量。

2. 智能机器人人工智能的机器人技术可以应用于建筑施工过程中的一系列任务,如搬运、砌筑、焊接等。

机器人可以通过深度学习和感知技术实现自主导航和避障,减少人力投入和提高工作安全性。

四、智能运维1. 智能监控通过物联网和人工智能技术,可以实现建筑设备的智能监控和故障预警。

传感器和数据分析算法可以实时监测建筑设备的状态和性能,提高维护效率和设备可靠性。

2. 智能能源管理利用人工智能的能源管理系统,可以分析建筑能源数据并提供优化的能源使用策略。

通过学习建筑的能耗模式和用户行为,系统可以自动调整设备运行模式,降低能源消耗。

五、发展趋势1. 数据驱动的决策未来建筑领域将更加注重数据的收集与分析,建立起完整的建筑生命周期数据系统,并通过人工智能技术,实现数据驱动的决策和管理。

建筑业的智能建筑技术研究

建筑业的智能建筑技术研究

建筑业的智能建筑技术研究智能建筑技术正逐渐成为建筑业的新趋势。

它不仅提供了更高效、更环保的建筑解决方案,还带来了更智能化、更舒适的居住和工作环境。

本文将探讨建筑业智能建筑技术的研究进展及其影响。

一、智能建筑的概念与特点智能建筑利用先进的信息技术,通过感知、联网、控制等手段,使建筑具备自主智能判断和响应能力。

它通过对建筑环境、设备、系统进行感知和监控,实现智能调节和控制,从而提供更高质量的室内环境,并实现能源的高效利用。

智能建筑的特点包括:1. 自动化控制:智能建筑利用自动化系统对灯光、空调、通风等设备进行灵活调节和控制,以提供舒适的室内环境。

2. 能源管理:智能建筑通过能源监控与管理系统,实现对能源的有效利用和节约,为可持续发展提供支持。

3. 安全保障:智能建筑通过安全监测系统,对建筑内外的安全状况进行实时监控和预警,确保人员和财产的安全。

4. 科技创新:智能建筑将信息技术与建筑结构、设备紧密结合,促进了建筑业的科技创新和发展。

二、智能建筑技术应用领域智能建筑技术在建筑业的应用领域广泛,包括住宅、商业、办公、医疗、教育等多个领域。

以下是其中几个典型的应用领域:1. 智能家居:通过智能控制系统,居民可以轻松实现对家庭设备的远程控制,提高生活的便利性和舒适度。

2. 商业建筑:智能建筑技术在商业建筑中的应用包括智能照明、智能空调、智能门禁等,大大提高了商业建筑的舒适度和能源的利用效率。

3. 办公楼宇:智能楼宇管理系统可以实现对办公楼宇各种设备的远程控制和监控,提高办公效率和员工的工作舒适度。

4. 医疗建筑:智能建筑技术在医疗建筑中的应用可以实现对病房、手术室等环境参数的智能控制,提高医疗服务质量和医护人员的工作效率。

三、智能建筑技术的研究进展智能建筑技术的研究进展主要集中在以下几个方面:1. 可穿戴技术:可穿戴设备的兴起为智能建筑技术的发展带来了新的机遇。

通过可穿戴设备与建筑系统的互联互通,可以实现对个人健康、行为等信息的实时监测和分析。

智能建筑技术综述

智能建筑技术综述

智能建筑技术综述黄君军 2220103481信息科学技术学院软件工程10级3班摘要:智能建筑是一个大概念。

它包括信息设施系统、信息化应用系统、建筑设备管理系统、公共安全系统和机房工程。

原来的安防、消防、楼宇自控、电话/电视/计算机、网络统统收入囊中,包括信息通信、计算机、自动化控制、建筑电气等技术领域,涵盖新建、扩建和改建的办公、商业、文化、媒体、体育、医院、学校、交通和住宅等民用工业建筑等智能化系统的工程设计。

关键字:智能楼宇自动化系统一、何为智能建筑1、根据国家标准《智能建筑设计标准》(GB/T50314-2006),智能建筑为“以建筑物为平台,兼备信息设施系统、信息化应用系统、建筑设备管理系统、公共安全系统等,集结构、系统、服务、管理及其优化组合为一体,向人们提供安全、高效、便捷、节能、环保、健康的建筑环境”。

2、智能建筑主要由三部分组成,即:楼宇自动化系统(BAS)、通信网络系统(CNS)和办公自动化系统(OAS)。

○1楼宇自动化系统(BAS)楼宇自动化系统实现建筑物(群)内的各种机电设备的自动控制,包括供暖、通风、空气调节、给排水、供配电、照明、电梯、消防、保安、车库管理等。

通过信息网络组成分散控制、集中监视与管理的监控管理一体化系统,实时检测、显示设备运行参数;监视、控制设备运行状态;根据外界条件、环境因素、负载变化情况自动调节各种设备,使其始终运行于最佳状态;自动实现对电力、供热、供水等能源的调节与管理;提供一个安全、舒适、高效而且节能的工作环境。

○2通信网络系统(CNS)通信网络系统用来保证建筑物(群)内、外各种通信联系畅通无阻,并提供网络支持能力。

实现对话音、数据、文本、图像、电视及控制信号的收集、传输、控制、处理与利用。

通信网络包括:以数字程控交换机(PABX)为核心的、以话音为主,兼有数据与传真通信的电话网,连接各种告诉数据处理设备的计算机局域网(LAN)、计算机广域网(WAN)、传真网、公用数据网、卫星通信网、无线电话网和综合业务数字网(ISDN)等。

智能建筑调查报告

智能建筑调查报告

智能建筑调查报告智能建筑调查报告近年来,随着科技的飞速发展,智能建筑成为了建筑行业的一个热门话题。

智能建筑以其高效、节能、环保等特点,吸引了越来越多的关注和投资。

本文将对智能建筑进行调查研究,探讨其发展现状、优势和未来趋势。

一、智能建筑的定义和特点智能建筑是指通过先进的技术手段,将建筑与信息技术、自动化技术等结合,实现对建筑内部环境、能源消耗等方面的智能管理和控制。

智能建筑具有以下几个特点:1. 自动化控制:智能建筑通过自动化控制系统,实现对建筑内部各项设备的智能控制,提高了建筑的运行效率和舒适度。

2. 节能环保:智能建筑通过智能化的能源管理系统,实现对能源的有效利用和节约,减少了能源的浪费和环境污染。

3. 人性化设计:智能建筑注重人性化设计,通过智能化的设备和服务,提供更加舒适、便捷的居住和工作环境。

二、智能建筑的发展现状目前,智能建筑已经在全球范围内得到了广泛应用。

在发达国家如美国、日本等,智能建筑已经成为主流趋势。

而在中国,智能建筑的发展也取得了显著的成果。

1. 应用领域:智能建筑广泛应用于商业办公楼、住宅小区、医院、学校等领域。

其中,商业办公楼是智能建筑的主要应用领域,因其对办公环境的舒适度和办公效率的要求较高。

2. 技术应用:智能建筑应用了众多的先进技术,如物联网技术、人工智能、大数据等。

这些技术的应用,使得智能建筑能够实现对建筑内部环境、能源消耗等方面的智能管理和控制。

3. 政策支持:为了推动智能建筑的发展,中国政府出台了一系列的政策措施,如加大对智能建筑科研和示范项目的资金支持,制定智能建筑标准等。

这些政策的推动,为智能建筑的发展提供了有力的支持。

三、智能建筑的优势智能建筑相比传统建筑具有许多明显的优势,主要体现在以下几个方面:1. 节能环保:智能建筑通过智能化的能源管理系统,实现对能源的有效利用和节约,减少了能源的浪费和环境污染。

2. 提高舒适度:智能建筑通过智能化的设备和服务,提供更加舒适、便捷的居住和工作环境,提高了人们的生活质量。

智能建筑技术及其应用研究

智能建筑技术及其应用研究

智能建筑技术及其应用研究智能建筑,是一种充分利用新兴高科技手段,通过现代化智能化装配技术,实现集成化、个性化、快速化、节能化、环保化多种优势于一身的建筑形态。

智能建筑技术的出现对于建筑行业来说,实质上是一种技术革命,充分颠覆了传统建筑行业的一些固有观念和思路,不仅推动了建筑行业的发展和升级,同时也为人类带来了更美好的生活。

智能建筑技术主要包括一些以下方面:1. 智能造型设计:智能建筑技术能够通过计算机图形及数学算法,自动生成多变的建筑形式,如人工智能,VR技术等,这种技术可以在建筑设计中,实时地模拟各种天气状况下的建筑效果,尽可能地降低建筑的能耗,从而达到智能、环保的目的。

2. 智能仿真技术:智能建筑能够通过仿真技术,可以让样板间的实际需求最大化,得到更好的使用效果。

与此同时,智能仿真技术还能够沉淀大量的数据,通过数据的分析和处理,精准的把握住用户需求,使得在真正进行建筑设计和施工时,能够顺应需求,调整加以改进,从而使得智能建筑具有能力接受用户的反馈,自我完善,提高工作的效率。

3. 智能自动化系统:智能建筑利用各种传感器相关技术,实现楼宇系统自主化,通过智能化系统减少人力资源的使用,使得整个今后的运作可以自动化,模式化,从而使得整个系统更稳定、高效、放心。

4. 智能环保技术:智能建筑在建筑材料、建筑造型、建筑设计中,都注重环保性,充分发挥新型材料的优势,减少建筑垃圾,将建筑设计与材料生产相结合,给予材料更多环保因素,从而做到节能、高效、环保。

智能建筑技术在全球范围内被广泛的应用,是建筑行业技术升级和发展的必然趋势。

在我国的智能建筑发展中,可以借鉴其他国家的实践和经验,并加以推进和发展,实现智能建筑技术更广泛的应用。

智能建筑技术带来的对于建筑行业的积极影响和变革,也在我们的生活中反应出来。

比如,可以通过智能家居系统,实现远程开启空调、电视、音响等设备,不仅是方便了家居生活,同时也提高了家居的智能化程度,优化了生活质量。

智能建筑调研报告

智能建筑调研报告

智能建筑调研报告智能建筑调研报告一、调研背景随着科技的不断发展,智能建筑在现代社会中逐渐成为一种新趋势。

智能建筑利用先进的信息技术,通过网络来实现对建筑内外的各种系统和设备进行集成和控制,以提高建筑的舒适度、安全性和能源效率。

本次调研旨在了解智能建筑的发展现状及其对社会和环境的影响。

二、智能建筑的发展现状1.应用范围扩大:智能建筑已应用于商业、住宅、办公等各个领域,并逐渐向农业、工业和公共设施等领域拓展。

2.技术成熟度提高:随着科技的快速发展,智能建筑所需的各种技术已趋于成熟,如物联网、人工智能、大数据等。

3.节能环保效果显著:智能建筑能够通过智能控制系统实现对能源的有效利用和节约,从而大大降低能耗和排放。

三、智能建筑的影响1.提高舒适度:智能建筑能够通过智能化的设备和系统,实现对室内温度、湿度、空气质量等因素的智能控制,提高居住和工作环境的舒适度。

2.增强安全性:智能建筑通过安全监控、智能门禁、火灾报警等系统,提高了建筑的安全性,减少了安全事故的发生。

3.降低能耗:智能建筑通过智能化的能源管理系统和设备,实现对能耗的监控和调控,减少能源的浪费,降低能耗和能源排放。

4.提高生产效率:智能建筑能够通过自动化、智能化的设备和系统,提高生产效率,降低生产成本,提升企业竞争力。

四、智能建筑面临的挑战1.技术标准化问题:由于智能建筑涉及多个领域的技术,各种设备和系统之间的兼容性和标准化问题仍然存在,这限制了智能建筑的发展。

2.隐私和数据安全问题:智能建筑通过各种传感器和设备收集大量的数据,如何保护用户的隐私和数据安全成为一个挑战。

3.成本问题:智能建筑的建设和维护成本较高,对于一些中小型企业和个人用户来说,可能难以承担。

五、智能建筑的未来发展趋势1.智能家居的普及化:随着智能化技术的成熟和智能设备的普及,智能家居将逐渐成为智能建筑的重要组成部分。

2.人工智能的广泛应用:人工智能技术的发展将进一步推动智能建筑的发展,实现更智能、更自动化的控制和管理。

智能建筑调研报告

智能建筑调研报告

智能建筑调研报告智能建筑调研报告一、概述智能建筑是指通过使用先进的技术和系统,将建筑物与智能化设备、网络和云服务相连接,实现自主、高效、舒适和可持续的智能化管理和控制。

智能建筑的出现,为人们的生活环境带来了巨大的改善和便利。

本报告主要对智能建筑的发展现状、应用场景和未来发展趋势进行了调研。

二、发展现状智能建筑的发展已经取得了巨大的成就。

目前,全球主要城市已经开始大规模应用智能建筑技术,比如新加坡、迪拜等。

智能建筑技术的应用领域也非常广泛,包括住宅、商务办公楼、医疗机构和教育机构等。

在技术方面,智能建筑主要应用了物联网、云计算、人工智能和大数据等技术。

三、应用场景智能建筑的应用场景非常多样化。

在住宅领域,智能家居系统可以实现家电设备的远程控制、家庭安防监控和能源管理等功能。

在商务办公楼领域,智能楼宇系统可以实现灯光、空调、电梯等设备的自动化控制和运维管理。

在医疗机构和教育机构领域,智能建筑可以实现病房和教室环境的智能化管理,提高患者和学生的生活和学习体验。

四、未来发展趋势智能建筑技术在未来的发展将呈现以下趋势:1. 智能化程度的进一步提高:随着物联网、人工智能和大数据等技术的不断发展,智能建筑将会更加智能化,实现更高效、舒适和可持续的管理和控制。

2. 智能安防系统的发展:智能建筑的安全性是非常重要的,未来智能建筑将会引入更先进的智能安防系统,提供更加安全可靠的环境。

3. 能源管理的优化:智能建筑能源管理系统将进一步优化能源的使用和消耗,提高节能效果,实现可持续发展。

五、结论智能建筑是未来建筑发展的趋势,它能够为人们带来更加舒适和便捷的居住和工作环境。

随着智能技术和系统的不断发展,智能建筑将会实现更高效、智能化和可持续的管理和控制。

我们应该积极推广和应用智能建筑技术,以提升建筑的品质和人民的生活质量。

智能建筑简介(2014-2)

智能建筑简介(2014-2)

(3) 办公自动化系统(OA)
办公自动化系统是把计算机技术、通信技术、 系统科学及行为科学,应用于传统的数据处理技术 所难以处理的、数量庞大且结构不明确的业务上。 1) 办公自动化系统的任务 • 事务处理(EDP) • 信息管理(MIS)
• 辅助决策(DDS)
OA系统功能示意图
2)
• 声音:其中有电话、语言输入/输出、声音
智能化建筑的特点
1) 发展迅速、内涵容量大。
2) 灵活性大,适应变化能力强。
3) 能源利用率高,能运行在最经济、可靠的状态。 4) 由于3A系统相互配合而产生许多新功能,包括: (1)建筑物管理系统与远程通讯系统的配合; (2)建筑物管理系统与办公自动化系统的配合; (3)远程通讯系统与办公自动化系统的配合。
智能建筑简介
1 智能建筑概念 2 智能建筑的组成和功能 3 智能建筑的3A系统
1 智能建筑概念
智能建筑(Intelligent Building)——将结构、 系统、服务、管理进行优化组合,获得高效率、 高功能与高舒适性的大楼,从而为人们提供一个 高效和具有经济效益的工作环境(美国智能型 办公楼学会定义)。 智能化建筑是建筑艺术与计算机和信息技术有机 结合的产物,是适应社会信息化与经济国际化的 需要,随着全球性信息高速公路的推进,发展智
• 磁卡电话磁卡电话是本世纪7年代后期开始使
用的新型公用电话。它主要解决了电话自动收 费问题。磁卡电话集中了计算机、通信、电磁 学的先进技术,具有使用方便、灵活,易于 集 中维护管理,更改费率方便,保密防伪造,可 靠耐用等优点。
2) 卫星通信
它利用装有微波转发器的同步人造地球卫星 作中继站,把地球上若干信号接收站构成通信 网,转接通信信号,实现长距离大容量的区域 通信,乃至全球通信。

智能建筑综述形式3000字

智能建筑综述形式3000字

智能建筑综述形式3000字英文回答:Intelligent Building: A Comprehensive Overview.In the rapidly evolving technological landscape, intelligent buildings have emerged as a modern marvel, seamlessly integrating advanced systems and technologies to create a highly efficient, sustainable, and occupants-centric environment. By harnessing the power of data, automation, and connectivity, intelligent buildings are transforming the way we live, work, and interact with our physical spaces. This comprehensive overview delves into the multifaceted aspects of intelligent buildings, exploring their components, applications, benefits, and future prospects.Components of an Intelligent Building.The cornerstone of an intelligent building lies in itsintricate network of interconnected systems that work in harmony to optimize the building's performance. These systems primarily include:Building Automation System (BAS): The central nervous system of the building, the BAS integrates and controls various subsystems, including HVAC, lighting, security, and energy management, ensuring their efficient operation.Sensors and Actuators: Scattered throughout the building, sensors gather real-time data on temperature, occupancy, air quality, and other parameters, while actuators respond to sensor inputs by adjusting building systems accordingly.Data Analytics Platform: The intelligence behind an intelligent building, the data analytics platform collects and analyzes data from sensors to identify trends, optimize performance, and predict future needs.User Interface: An intuitive interface allows occupants to interact with the building's systems, adjust settings,and receive notifications, enhancing their comfort and productivity.Applications of Intelligent Buildings.Intelligent buildings find widespread applications across various sectors, including:Commercial Buildings: Office buildings, shopping malls, and hospitals leverage intelligent systems to reduce energy consumption, improve occupant comfort, and streamline operations.Residential Buildings: Smart homes and apartments provide homeowners with convenience, security, and energy savings through automated lighting, remote access, and personalized climate control.Industrial Facilities: Factories and warehouses utilize intelligent systems to optimize production processes, improve worker safety, and minimize downtime.Benefits of Intelligent Buildings.The adoption of intelligent building technologiesoffers a multitude of benefits:Energy Efficiency: By monitoring and adjusting energy consumption in real-time, intelligent buildingssignificantly reduce utility costs and environmental impact.Enhanced Comfort and Productivity: Automated systems ensure optimal temperature, lighting, and air quality, creating a comfortable and productive work environment for occupants.Improved Security: Integrated security systems provide real-time monitoring, access control, and intrusion detection, enhancing building safety and peace of mind.Reduced Maintenance Costs: Predictive maintenance capabilities identify potential issues before they escalate, minimizing unplanned downtime and maintenance expenses.Future Prospects of Intelligent Buildings.As technology continues to advance, the future of intelligent buildings holds exciting prospects:Integration of Artificial Intelligence (AI): AI willplay a pivotal role in decision-making, pattern recognition, and predictive analytics, further enhancing building efficiency and occupant satisfaction.Internet of Things (IoT) Expansion: The proliferationof IoT devices will connect more building components, enabling real-time monitoring, remote control, and personalized experiences.Sustainability Focus: Intelligent buildings will increasingly prioritize sustainable practices, such as rainwater harvesting, solar energy utilization, and green building materials.Human-Centric Design: The well-being and comfort of occupants will remain a driving force in the design andoperation of intelligent buildings.中文回答:智能建筑综合综述。

智能建筑调研报告

智能建筑调研报告

智能建筑调研报告智能建筑是一种应用先进的技术和系统集成,通过对建筑物进行智能化设计和管理,以达到节能、环保、舒适、安全等目标的建筑形式。

智能建筑通过利用传感器、物联网技术、大数据分析等手段,实现对建筑内外环境的监测、控制和优化,提高建筑的能效和人居环境质量。

智能建筑在能源管理方面具有显著效果。

传感器监测建筑内外环境的温度、湿度、光照等参数,并将数据传输至中央系统进行分析和决策,通过控制系统实现对空调、照明、通风等设备的智能控制,最大限度地减少能源的消耗。

智能建筑还可以根据建筑内部环境和人员的需求进行灵活调整,提高建筑的能源利用效率。

此外,智能建筑在舒适性方面也表现出色。

通过智能控制系统,居住者可以通过手机或其他设备调整室内温度、光照等参数,实现个性化的舒适体验。

智能建筑还可以自动感知人员的存在,根据人员的需求自动调整室内环境,提供更加舒适的居住体验。

智能建筑在安全性方面也有重要作用。

通过智能摄像头监测建筑内外的安全状况,并将数据传输至监控中心进行实时监测和处理。

智能建筑还可以通过智能门禁系统,实现对进出人员的识别和管理,提高建筑的安全性和管理效率。

尽管智能建筑在很多方面具有优势,但是在实际应用中还面临一些挑战。

首先,智能建筑的设备和系统需要有高度的互操作性和兼容性,以便实现数据的集中管理和分析。

其次,智能建筑需要建立完善的网络安全措施,防止黑客攻击和数据泄露等安全风险。

此外,智能建筑的成本较高,并且需要配备专业的运维团队进行维护和管理。

总的来说,智能建筑是未来建筑发展的重要方向。

通过应用先进的技术和系统集成,智能建筑可以实现节能、环保、舒适、安全等目标,提高建筑的能效和居住体验。

虽然智能建筑还面临一些挑战,但相信随着技术的不断进步和应用的推广,智能建筑的发展前景必将更加广阔。

智能建筑信息技术研究

智能建筑信息技术研究

智能建筑信息技术研究智能建筑是一种具有自主思考和决策能力的建筑,可以通过集成各种高科技设备来提供更加智能化、高效化和便利化的服务。

随着信息技术的发展和应用,智能建筑已经成为建筑行业的一种新趋势。

本文将从智能建筑信息技术的背景、研究内容、发展现状、应用前景等方面进行探讨。

一、智能建筑信息技术的背景智能建筑信息技术的出现是由于当今社会对“智能化”和“节能环保”等要求越来越高。

随着科技的迅猛发展,人们的生活方式也在不断变化。

传统建筑并不能满足人们对高效、智能和环保的需求。

而智能建筑正是满足了这些需求,使建筑更加适应时代的发展。

现在,世界各地的智能建筑都在应用智能建筑信息技术,成为建筑行业的新趋势。

二、智能建筑信息技术的研究内容智能建筑信息技术是以人为中心,以信息技术为手段,以建筑智能化为目标的建筑科技。

它主要的研究内容包括以下方面:1.智能化控制系统的研究:智能化控制系统是智能建筑信息技术的核心,它能够对建筑内部的各个设备进行自主控制,实现建筑的智能化管理。

2.建筑节能技术的研究:智能建筑信息技术还要在建筑节能方面做出贡献。

通过通过科学、合理的节能手段,进一步减少能源消耗,推动可持续发展。

3.智能化监测技术的研究:智能化监测技术包括对建筑内部各个设备运行状况的实时监测,通过数据处理算法对建筑内部环境、人员动态等进行全面,精准的监测和数据采集。

三、智能建筑信息技术的发展现状智能建筑信息技术是建筑行业的一项坚实技术基础,已经在工业、商业地产等领域得到广泛应用。

以工业建筑为例,智能化控制系统的应用可以对生产设施进行实时监测和自动控制,精准地调节生产过程。

在商业地产领域,智能化技术也已经得到广泛应用。

例如,使用智能化的门禁系统、安保系统和消防系统可以更好地保障商业地产的安全性。

四、智能建筑信息技术的应用前景随着信息技术和智能科技的不断发展,智能建筑信息技术的应用前景将会非常广阔。

在未来,智能建筑会逐渐升级,向着更加智能化、可视化、分布化的方向发展。

智能建筑外文翻译中英文2018

智能建筑外文翻译中英文2018

外文文献翻译原文及译文(节选重点翻译)智能建筑外文文献翻译中英文文献出处:期刊:Alexandria Engineering Journal,第57卷,第4期。

2018,页码:2903-2910.译文字数:4800多字原文Intelligent building, definitions, factors and evaluation criteria ofselectionOsama OmarAbstractIntelligent building design is the future of building industries. Most modern public and residential buildings are planned with the objective of decreasing expenses by reducing energy consumption. Enhancing energy preservation strategies and using sustainable design approaches are necessary factors in developing this field. However, many definitions of 'intelligent buildings' are vague and don't mirror all the parameters. Because of the lack of practical context inclusive of the factors that regard the design of such systems, a comprehensive framework containing the convoluted criteria is demanded as a decision-making tool. In this research, a multi-criteria framework composed of sixty-eight sub factors on the core level is proposed as a comprehensive tool for the selective categorization of intelligent buildings. On the secondary level, eight quality condition components are considered as primary factors alongside the factors of energy and environment, space flexibility, cost-effectiveness, client comfort, working efficiency, safety, culture, and technology. By the end of this research, the final findings will endorse the usage of intelligent buildings from two points of view: The first includesa multi-criteria model used to define all factors involved in the design process, and the second proposes a conceptual model which aids in reducing the carbon dioxide emissions.Keywords:Smart cities,Sustainability,Energy consumption,Intelligent buildings1. IntroductionUpon research, it is recognised that buildings documented an astonishingly high of 41% of energy consumption in the United States [2]. However, in 2004, in EU, it is recognized that building consumption was documented as 37% of final energy, which on its own is larger than that documented for industrial sectors (28%) and that of transport reaching (32%). Also, the amount of energy usage in buildings of the United Kingdom rises faintly higher than that of the European figure (39%) [5]. Still, there remains effective and eye-catching chances to lessen the energy use of buildings’ while being cost effective and having noticeable returns than those of other sectors. Consequently, these reductions aided in achieving the International Energy Agency’s (IEA), which is summarized in reaching 77% reduction of the carbon footprint on earth in comparison to the baseline provided in 2050 and are considered to be essential factors in reaching this goal. This meets the target of the Intergovernmental Panel on Climate Change (IPCC) which is to reach stabilized CO2 levels. Furthermore, in an investigationconducted by World Business Council for Sustainable Development (WBCSD) in 2009, it was demonstrated that the energy consumed by buildings can be minimized radically, which will lead to saving energyequivalent to the entire transport sector today [7].In order to help address climate change, grid electricity can be depended on more since it originates from non-fossil sources (such as solar and wind) in order to make a difference. Also, there are numerous significant benefits to lessening energy consumption as it helps to preserve limited resources while also lessening the costs for both benefitting businesses and consumers in a short amount of time. Furthermore, the demand for non-carbon sources is probable to be minimized for years to come. Therefore, in order to transfer into the direction of a low carbon economy, it is fundamental to make “m ore intelligent” use of energy in buildings which will significantly affect the numbers on energy usage and cost savings. This is why ‘Energy intelligent buildings’ are becoming the next hype in modern day commercial building designs which target enabling intelligent control of the building [7]. The one factor that has clear and large effect on space heating, cooling and ventilation demand, is the occupant presence and his behaviour within buildings which are directly related to energy consumption by daily usage of lighting and space appliances as well as building controls [3]. As shown in many cases, carelessness andignorance may add one-third cost over the costs of designing appropriate energy performance in buildings, whereas an aware and wise behaviour can save the amount. [8], see Fig. 1.Countries, such as Lebanon, which have profuse natural energy resources, like as oil and gas for instance, still have energy issues. Yet in similar matters, according to the International Energy Agency statistics, Lebanon is not accountable for the energy produced or its use.However, some consequences may include the decrease of proper wellbeing and comfort of users which will therefore affect their productivity and satisfaction. This is why the efficient management of energy supplies through organizing the use of available resources, as well as using methods that optimize energy consumption while retaining high level of living standards is the core focus of numerous researches [5].The increasing demand for sustainable designs and green architecture has directed the industry towards the development of a fresh concept; Intelligent Buildings (IBs). This concept basically entails a continuous process of corresponding any environmental, social, and economic sustainability features to building designs. By depending on this design, building inhabitants and occupants will have more flexibility and comfort as well as maintaining the cost effectiveness of the building energy features. Moreover, the user’s safety will be taken int o regard aswell as achieving better and advanced environmental performance standards [4].A profound survey that integrates all the factors of people, product, and performances is critical because sustainable development combines them. The factor of People would include owners, users, occupants, and inhabitants, while the factor of Products would include equipment, materials, and facilities. Last but not least, the factor of Processes would contain maintenance, facilities management, as well as performance evaluation without any disconcert to the relationships between them [4].However, an examination into the origins of IBs in literature reveals that there is not a commonly acknowledged definition for it. This is a result of the overall lack of agreement on the selection factors as well as the criteria specific for the assortment and evaluation of proper building control systems. Seemingly, an inclusive definition that covers all parameters is vital for the decision-making procedure because without an accurate and common understanding, developing smart buildings that encompass the most efficient blend of social, environmental, and economic principles seems far from reach [4].1.1. Definition of intelligent buildingsConferring to the research conducted by Wigginton and Harris, ‘there exists more than 30 separate definitions of the term ‘intelligence’when it is relative to buildings’ [12]. Another research done on Intelligent Building Automation in Construction [13] states the most common theoretical and prac tical definitions of the term ‘intelligent building’ such as “Intelligent building is any building that provides a responsive, effective and supportive environment within which the organization can achieve its business objectives” [11]. Still, the IBI, which is also known as the Intelligent Building Institute (IBI) of the United States, as well as the UK-based European Intelligent Building Group (EIBG), proposed that the most accepted definitions of the term can be summarized as: “one which provides a productive and cost-effective environment through optimization of its four basic elements including structures, systems, services and management and the interrelationships between them” [12]. Another mentioned definition would be: “one that creates an environme nt which take full advantage of the efficiency of the building’s occupants, while at the same time enabling competent management of resources with the least possible life-time costs of hardware and facilities” [12]. The former definition, belonging to the IBI, stresses the advantages that the owners get and sheds light on their commonly preferred indoor environment. On the other hand, the latter definition stated by the EIBG focusses specifically on the benefit of the users and the production of necessary and adequate indoor environment for occupants. Nonetheless, both definitions are devoted to put the benefit of the managers in thespotlight as well as bringing the environmental and economic effect of fashioning favoured indoor environment to center stage [7].The UTBS Corporation, which is also known as the United Technology Building Systems Corporation of the USA, initially used the term ‘intelligent building’ back in 1981. In the couple of years to come, their efforts paid off as the City Place Building in Hartford Connecticut, USA, became known to the world as the first intelligent building to be completed. Since then, several definitions have been proposed for defining IBs by several reliable sources. Unfortunately, the initial definitions did not consider user requirements nor technological aspects in the definition process. This changed as recent definitions began to take into account occupant’s interactions with the internal space as their surrounding environment. In 1983, Cardin defined IB as “a buil ding which is equipped with fully automated building service control systems” (ASHRAE, 1989). However, this definition did not stand and was developed in 1988 by the Intelligent Building Institution in Washington as “one which integrates various systems to effectively manage resources in a coordinated mode to maximize: technical performance, investmentand operating cost savings, flexibility” (ASHRAE, 1989). Also, on more recent terms, Seo et al. said that ‘IBs are not intelligent on their own, but they can supply the users with more intelligent options thus enabling them to work competently’(ASHRAE,1989). In addition, it was also proposed that IBs can be a vital in lessening the initial capital outlay and at the same time enabling a higher impending return on investment (ROI) (ASHRAE, 1989).In other terms, some researchers define the intelligent building as a “multidisciplinary effort to integrate and optimize the building structures, systems, services and management in order to create a productive, cost effective and environmentally approved environment for the building occupants”.1.2. Factors and frameworkThe definition supported by the IBI focuses the owners’ benefits and their how well the indoor environment meets their requests, whereas that of the EI BG concentrates on building users’ benefits and how to create the requested indoor environment for dwellers. Nonetheless, either definition focuses on the benefits of the managers upon creating the required indoor environment as well as its impact on the environment and economy. Therefore, it is safe to say that intelligent buildings mainly consist of ten ‘Quality Environment Modules (QEM)’ which are as follows:M1: environmental friendliness – health and energy conservation;M2: space utilization and flexibility;M3: cost effectiveness – operation and maintenance with emphasis on effectiveness;M4: human comfort;M5: working efficiency;M6:safety and security measures –fire, earthquake, disaster and structural damages, etc.M7: culture;M8: image of high technology;M9: construction process and structureM10: health and sanitation.While considering the modules mentioned above, IBs can be defined as buildings that are “designed and established based on a suitable selection of ‘Quality Environmental Modules’that satisfy the user’s requests by mapping this module with appropriate building facilities to attain lifelong building values”. One type of IB can be formed upon selecting the appropriate QEM like ‘smart house’ or ‘green building’ [7]. The ten modules mentioned above comprise the first level which is also known as the fundamental level, of the definition. In the second level, other requested facilities or key elements can be added later upon demand which are listed in Table 2 [6].Using this technique, each type of building will have different design criteriaassigned to it that transpire it to be an IB. The buildings can vary in function between residential, industrial, commercial (office or retail), transportation terminals, educational, public services (libraries orcommunity centres) and those of religious purposes, etc. After, different modules can be categorized to each type of building according to priority (P1 the highest priority and P8 the lowest priority). Table 2 shows some examples of the proper assignment of modules to four different types of buildings [6].In order to achieve the most fitting research methodology for a successful experiential study, a number of five experts in the fields of IBs and BMS were involved regarding the importance of intelligence indicators. They were also asked to propose any additional factors if necessary. Taking their response into consideration, two parameters of “Fashion” and “Repair and development costs” were added as the sub-factors to the main factors of “Culture” and “Cost effectiveness”, respectively [4].The design team typically faces many challenges. One of the main tasks includes choosing the optimal arrangements that satisfy the concerns of developers while steadying these goals and the aspirations of the users. The variations of these multidimensional perspectives supplement the intricacies that have been included in the processes of evaluation and selection of the adequate control systems for intelligent buildings. Consequently, there is an indispensable necessity that the selection of evaluation tools to be acknowledged in order to facilitate proper decision making. As a result, an all-inclusive list of evaluationcriteria is made in an attempt to aid the decision makers in selecting the correct categ ories to reach the consumer’s satisfaction [4].2. New approach of intelligent buildings criteria selectionAs mentioned previously, the collected data showed that the title ‘Intelligent Building’ is still a vague in definition and in concept. In many cases, it is used in ways that are not always consistent as showed in Table 1. Table 1 displays some of different definitions and meanings that have been given to this title. In fact, the reasons behind the lack of agreement regarding the phrase ‘Intelligent Building ‘is that each definition based on the expertise of the subjects using them. However, it is agreeable that there remains one common ground between all the definitions, which is the main target of intelligent buildings design: Reducing the energy consumption and reducing the amount of CO2 which is produced from building sectors. With this in mind, the new approaches towards intelligent buildings criteria selection in the 21st century are showed in Fig. 5.Based on the Eight Quality Environmental Modules (QEM) in 1999 by Architect/Albert T.P. So and professor Wong, (Fig. 5) showed the fundamental level or main factors of definition of Intelligent Buildings from an architectural point of view, which are Building Management System (BMS), Building Automation System(BAS), Sensors, Smart Materials, Intelligent Skin or Interactive Facades, andPassive Design Techniques. This level of understanding and criteria selection will support the main challenge and objective facing the project team to reach the most efficient management of energy supplies through rational use of present resources and finding ways to optimize energy consumption while maintaining high level of living standards.On the secondary level of definition, most of the main factors were divided into two or more subdivisions to expand the scope of architectural techniques to support the main objective that is optimizing energy consumption through secondary level, which is showed in Fig. 6. Interactive facades, Intelligent skins, BAS, BMS, Environmental Sensor, Interaction Sensor, Interactive Materials, Intensive Properties, Indoor Environmental Control, Environmental Techniques, Solar Cells, Wind Turbines, Geothermal and all the criteria mentioned before fall in the secondary level of Intelligent Building Evaluation Criteria.The third level of evaluation criteria selection is found in the Core Level, which contains 64 parameters. This level ensures that the fundamental level and secondary level are working coherently to reach the final target of intelligent building design which is decreasing energy consumption while producing clean energy and reducing the CO2 emission showed in Fig. 7. This paper seeks to evoke progress in the state-of-art knowledge on what an Intelligent Building is, what it can do such as giving its users the most efficient environment, while utilizingand managing resources resourcefully and minimizing the life cost of hardware and facilities.3. ConclusionThis paper attempts to elucidate and broaden the scope of a concept that is becoming popular nowadays—that of the Intelligent Buildings. An in-depth analysis of the literature explains that the definition of ‘Intelligent Buildings’ is multi-faceted. Descriptions of Intelligent Buildings are now including User Comfort, Safety, Security, Environmental techniques, and energy consumptiontechniques. Many elements and dimensions characterizing Intelligent Buildings emerge from the examination of the existing literature. Yet, there has been several attempts to embrace all indexes in one definition. However, the purpose of this paper was not meant to outline a new framework for the assessment of intelligent building because experts suggest that such an attempt should be personalized to multidisciplinary issues. Also, a universal fixed system can be both challenging and problematic when it comes to forming a definition with consideration of the variety of characteristics of intelligent buildings around the world. Therefore, it is safe to say that some definitions posed by specific institutes lack universality.In conclusion, it is clear that intelligent buildings have become this century’s aspiration for the upcoming days of construction and buildingindustry. The paper shows the following points:1.The difficulty, however, of designing these buildings lies in the diversity of the aspects that impact the decision making process.2.Several present studies have succeeded in formulating a complete and inclusive outline of factors that affect the development of intelligent buildings.3.This framework consists of seven main quality environment modules from an architectural view whereas sixty-four key elements were sought out to form the secondary and core factors.4.Upon analysis of the collected data, it was made clear that three main targetsexist regarding IBs and can be summarized as those of “Safety and security”, “User comfort”, and “Environment and energy.5.Also, the outcomes of this study can provide a much clearer understanding of the method of designing a sustainable intelligent building.6.Correspondingly, this study showed how cities can be considered “Intelligent” by dwelling on definitions, factors, and evaluation criteria of selection.It is in hope that this paper will be useful to architects and decision makers who are seeking to learn how to identify intelligent buildings, plan incentives for their development, and to observe and witness the “smart” progress of their buildings.译文智能建筑,定义,因素和评估标准奥萨马·奥马尔摘要智能建筑设计是建筑行业的未来。

智能建筑英文翻译

智能建筑英文翻译

智能建筑和建筑管理系统摘要:伴随着社会的急速发展,民用高层建筑也日益趋于智能化。

本文主要介绍智能建筑的设计和智能家居的应用,照明系统的节能和控制方法,以及北方建筑的暖气设计应用。

关键词:智能建筑、智能家居、照明控制、照明系统、暖气1前言智能领域的建筑,智能家居,建筑管理系统(房屋管理中心)包含了一个巨大的各种技术,各地商业,工业,体制和住宅楼宇,包括能源管理系统和建设控制的功能,建设管理系统的核心是'智能建筑'的概念,其目的是为了控制、监测和优化建设服务,例如,照明;加热;安全,闭路电视及警报系统;存取控制;视听和娱乐系统;通风,过滤和气候控制等;甚至产品的考勤控制和报告(尤其是工作人员的运动和供货)潜在的这些概念和周边技术是巨大的,和我们的生活正在发生变化的影响,从智能建筑的设计与发展对我们的生活和工作环境的影响,对设施的规划和设施管理,也是潜在的巨大的。

任何设施管理人员考虑楼宇发展或网站的搬迁也应考虑所带来的机会智能建筑技术及概念。

这项免费的概要文章是由一家总部设在英国的首席专家加里米尔斯提供,他在智能建筑,智能家居,以及大厦管理系统都有非常熟练以及高超的水平。

智能建筑物和建筑管理系统在20世纪70年代已经在工业界开始应用,从制度和管制使用的自动化生产过程和管理植物的生长。

发达国家智能建筑在80年代概念和应用软件的发展和标准化,使智能楼宇的技术和系统,可以在以住宅和商业部门之间转让。

2智能建筑控制理论智能建筑的本质,建设管理系统和智能建筑是在控制技术,使服务一体化,自动化和优化的所有服务和设备提供服务和管理环境的建设。

可编程逻辑控制器(PLC),形成了原来的基础上的控制技术。

后来的事态发展,在商业和住宅的申请,是基于分布式智能的微处理器。

稍后这些技术的采用和发展,让各种网站的建设和服务得以优化,往往高产显着并且降低成本和节省大量能源。

有很多方法,其中建设服务的建筑物内可以得到控制,下降大致可分为二的方法类型:基于时间-提供暖气或照明服务等,只有在需要时;基本参数的优化-经常使用的名词,代表环境方面的服务,如温度的空间加热或照度的照明。

智能建筑信息安全文献综述

智能建筑信息安全文献综述

智能建筑信息安全文献综述一、引言随着信息技术的快速发展和广泛应用,智能建筑已经成为现代城市的重要组成部分。

然而,随着智能建筑的普及,其信息安全问题也日益突出。

本文旨在对智能建筑信息安全领域的文献进行综述,探讨相关研究现状和发展趋势。

二、智能建筑信息安全概述智能建筑是指通过信息技术和智能化设备实现建筑设施的自动化、智能化管理和监控,提高建筑的能源效率、舒适度和安全性。

然而,随着智能建筑的普及,其信息安全问题也逐渐凸显出来。

智能建筑信息安全涉及到的领域广泛,包括楼宇自动化系统、安防系统、照明系统等。

三、威胁和风险分析智能建筑面临着多种威胁和风险,如黑客攻击、恶意软件感染、数据泄露等。

这些威胁和风险可能导致建筑设施的损坏、数据泄露和隐私侵犯等问题。

因此,对智能建筑信息安全威胁和风险进行深入分析,是制定有效的防御策略和措施的前提。

四、安全标准和最佳实践为了提高智能建筑的信息安全水平,国内外制定了一系列的安全标准和最佳实践。

这些标准和最佳实践包括ISO 27001、NIST SP 800-53等,为智能建筑的信息安全提供了指导和参考。

同时,行业内也涌现出一些最佳实践和经验分享,为相关企业和研究人员提供了有益的参考。

五、防御策略和措施针对智能建筑面临的信息安全威胁和风险,可以采取多种防御策略和措施。

这些策略和措施包括但不限于:建立完善的安全管理体系、加强网络和设备的物理安全、采用多层次的安全防护措施等。

此外,对于敏感数据和关键设施,可以采用加密技术和访问控制等手段加强保护。

六、案例分析和研究为了更好地理解智能建筑信息安全领域的实践和发展趋势,本文对多个典型案例进行了深入分析和研究。

这些案例涉及到了政府机构、商业大厦、医院等多个领域,为相关企业和研究人员提供了有益的参考和借鉴。

七、未来趋势和研究方向随着技术的不断发展和进步,智能建筑信息安全领域也将迎来新的挑战和机遇。

未来,智能建筑信息安全将更加注重以下几个方面:一是云计算和大数据技术的应用将进一步提高智能建筑信息安全的效率和可靠性;二是人工智能和机器学习技术在智能建筑信息安全领域的应用将逐渐普及;三是跨学科交叉研究将为智能建筑信息安全领域带来新的突破和创新。

建筑行业智能化建造技术研究的工作报告

建筑行业智能化建造技术研究的工作报告

建筑行业智能化建造技术研究的工作报告摘要:本文对建筑行业智能化建造技术的研究进行了工作报告。

首先介绍了智能化建造技术的背景和意义,然后从建筑信息模型(BIM)技术、无人机应用、传感器技术、大数据分析等方面进行详细阐述。

通过对相关研究的综述和实践案例的分析,得出了智能化建造技术对建筑行业的促进作用,并展望了未来的发展趋势。

1. 引言建筑行业作为国民经济的重要组成部分,承担着城市建设和人民居住的基础设施建设工作。

随着科技的迅猛发展,传统的建造方式已经无法满足现代城市发展的需求,智能化建造技术应运而生。

2. 智能化建造技术的背景和意义智能化建造技术是指利用现代信息技术手段,将传统的建筑施工过程转化为数字化、自动化和智能化的过程。

其背后的意义在于提高建筑质量、节省人力资源、提高工作效率,从而实现可持续发展和绿色建筑的目标。

3. 建筑信息模型(BIM)技术建筑信息模型(Building Information Modeling,BIM)技术是智能化建造技术的核心。

BIM技术通过模型化的建筑数据,实现了各种信息的集成与共享,提高了设计和施工的效率,并为后期的运维管理提供了便利。

4. 无人机应用无人机技术在建筑行业的应用也取得了重要突破。

通过搭载各种传感器和摄像设备,无人机可以高效地进行建筑物的勘测、测量和监测工作,不仅提高了工作效率,还降低了人员的风险。

5. 传感器技术传感器技术在智能化建造中发挥了重要的作用。

通过在建筑物中布置各种传感器,可以实时监测温度、湿度、光照等环境参数,并及时调节,提高建筑物的舒适度和能效。

6. 大数据分析智能化建造技术将产生大量的数据,如何对这些数据进行分析,提取有价值的信息,是智能化建造的关键。

通过大数据分析,可以发现问题、优化设计,提高建筑物的质量和安全性。

7. 实践案例分析本文对国内外智能化建造技术研究的实践案例进行了分析。

通过对不同案例的研究,得出了智能化建造技术在提高工作效率、节省资源、提高建筑质量等方面的显著优势。

智能建筑论文

智能建筑论文

智能建筑论文
智能建筑是指利用先进的技术和智能化系统来提高建筑的能效、安全性、舒适度和可持续性的一种建筑形式。

智能建筑论文可以涉及以下几个方面的研究:
1. 智能建筑技术及系统:研究智能建筑的基本原理、智能化系统的设计和应用,包括智能照明系统、智能空调系统、智能安全监控系统等。

2. 建筑能效优化:通过智能化系统和技术,研究建筑能源的管理和优化,如智能节能灯光系统、智能温控系统、能源回收系统等。

3. 智能建筑的舒适性研究:研究智能建筑对人体舒适度的影响,包括室内空气质量、热舒适度、光照质量等。

4. 智能建筑的安全性研究:研究智能建筑中的安全管理系统,如智能防火系统、智能安全门禁系统、智能视频监控系统等。

5. 智能建筑的可持续性研究:研究利用智能化技术和系统来提高建筑的可持续性,包括建筑废物回收利用、建筑材料的选择与使用等。

6. 智能建筑的运营与管理:研究智能建筑运营和管理的策略与方法,包括智能化的建筑维护与保养、建筑设备的监测与管理等。

7. 智能建筑的经济性研究:研究智能建筑的经济效益和投资回报,包括智能建筑的建设成本、运营成本和节能效益等。

以上是一些智能建筑论文的研究方向,具体的选题可以根据个人的兴趣和研究领域进行选择。

建筑工程管理-智能建筑研究的综述中文翻译 精品

建筑工程管理-智能建筑研究的综述中文翻译 精品

智能建筑研究的综述M.G. Abdel-Kader, D. Dugdale, J.N. Berry, W.S. McGreal, D.M. Abraham摘要:在过去的二十年,对智能建筑的研究的大量文献已经形成。

然而,总是缺乏一个系统的表述来阐明现有的研究工作和取得的成绩。

这种表述能够对现有的研究和审查提供巨大的利益,以确定之后的人需要对哪些方面更加努力和明确未来的研究方向。

为此,本文不仅结合以前相关的智能建筑学科领域的文献而且对现有的研究工作进行了总结说明。

我们的调查发现,以往的研究努力,主要涉及三方面,包括先进的研究和创新研究智能技术,绩效评价方法与投资评估分析。

关于在全面文献回顾的基础上,本文还总结了一些未来的研究方向,这样更有益于研究人员在这一领域的研究工作。

关键词:智能建筑;定义;绩效评估;投资评价;净现值;生命周期成本分析;成本效益分析;层次分析法;模糊集理论。

1、引言“智能”这个词最早用语言来描述它作为建筑是20世纪80年代在美国开始的。

“智能建筑的概念”增强了信息技术的发展和对越来越复杂的“舒适的居住环境和要求增加对他们当地环境居住者的控制”需求。

智能建筑的研究活动已经无所不在而且很多研究结果在学术刊物上已经发表了。

大量的研究工作已经集中于讨论建筑技术的发展和性能评价方法。

然而,只有少部分论文一直坚持对解决智能建筑投资评价的问题进行研究。

与此同时,这就是不足的地方和为投资决策信息在概念的时期智能建筑的发展提供解决方案。

日益增长的智能建筑投资和更大的需求量以证明其盈利能力,而且智能建筑能够影响研究方法和技术,从而这就可以协助评估智能建筑的投资,最好这些评估都是在概念的阶段。

本文的目的是提供一种简洁的、系统的回顾和识别现有的智能建筑的研究并提议今后的智能建筑研究方向。

该文首先讨论了智能建筑的定义。

然后,本文归纳出当前三个部分的智能建筑研究领域。

第一部分是智能建筑研究概述。

第二部分提供了智能建筑项目投资评价的方法。

智能建筑技术研究

智能建筑技术研究

智能建筑技术研究随着城市化进程不断加快,人们对于城市物业的要求也在不断提高,这不仅涉及到建筑的规划和设计,还包含了建筑物的智能化、节能化、安全化等多个方面。

因此,智能建筑技术的研究变得越来越重要。

智能建筑技术是指基于现代化的信息和通信技术,将智能化系统应用于建筑物中,实现系统化管理和控制。

智能建筑技术不仅增加了建筑的安全性、便利性和舒适度,还可在节能减排、环保方面产生积极影响。

一、智能化控制系统智能化控制系统是智能建筑技术中的核心部分,可以将建筑物中的各种设备和系统联网控制,实现人员、物资、能源等方面的集成运营。

这样的系统能够智能化地管理和控制绝大部分设备和设施,从而提高建筑物的使用效率,减少能源的浪费,保证建筑物的安全与舒适性。

智能化控制系统简单的例子是,你在进入大楼时,电梯会自动轮到你所在的楼层,然后顺利地运送你到指定的楼层。

而这个过程中,电梯的开门、合门、起伏、速度、方向等各种操作,都由智能化控制系统完成。

二、智能化照明系统智能化照明系统是指根据建筑内部光照等变化情况,智能化地调整及精确控制照明设备的开关与亮度。

这样的照明系统可以带来一定的节能效益,同时也可以提高建筑物的安全性,延长照明设备的使用寿命。

例如,在智能化照明系统下,可以根据建筑物内部的环境照度,智能地控制灯光开/关、亮度调节等,强化创造或保持合适的环境场景,达到吸引顾客,提高工作效率和工作产品质量的目的。

同时,这样的智能化系统也可以在人员流动性较高的通道,提高照明环境下的安全感,防止意外发生。

三、智能化安保系统智能化安保系统可以对建筑物内部、外部及周边的安全风险进行在线监测、集中控制和管理。

通过安全监控、智能警报、远程监控等手段,使建筑物的安全得以最大化保护和维护。

例如,智能化安保系统可以自动识别来访者,迅速判断是否有匹配的授权信息,以此确保安全性。

如果有风险事件发生,则系统会自动预警并及时地通知相关部门或人员进行处理。

总之,智能建筑技术是未来物业发展不可或缺的组成部分,随着科学技术的不断进步,这种技术将得到越来越多的关注和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能建筑研究的综述M.G. Abdel-Kader, D. Dugdale, J.N. Berry, W.S. McGreal, D.M. Abraham摘要:在过去的二十年,对智能建筑的研究的大量文献已经形成。

然而,总是缺乏一个系统的表述来阐明现有的研究工作和取得的成绩。

这种表述能够对现有的研究和审查提供巨大的利益,以确定之后的人需要对哪些方面更加努力和明确未来的研究方向。

为此,本文不仅结合以前相关的智能建筑学科领域的文献而且对现有的研究工作进行了总结说明。

我们的调查发现,以往的研究努力,主要涉及三方面,包括先进的研究和创新研究智能技术,绩效评价方法与投资评估分析。

关于在全面文献回顾的基础上,本文还总结了一些未来的研究方向,这样更有益于研究人员在这一领域的研究工作。

关键词:智能建筑;定义;绩效评估;投资评价;净现值;生命周期成本分析;成本效益分析;层次分析法;模糊集理论。

1、引言“智能”这个词最早用语言来描述它作为建筑是20世纪80年代在美国开始的。

“智能建筑的概念”增强了信息技术的发展和对越来越复杂的“舒适的居住环境和要求增加对他们当地环境居住者的控制”需求。

智能建筑的研究活动已经无所不在而且很多研究结果在学术刊物上已经发表了。

大量的研究工作已经集中于讨论建筑技术的发展和性能评价方法。

然而,只有少部分论文一直坚持对解决智能建筑投资评价的问题进行研究。

与此同时,这就是不足的地方和为投资决策信息在概念的时期智能建筑的发展提供解决方案。

日益增长的智能建筑投资和更大的需求量以证明其盈利能力,而且智能建筑能够影响研究方法和技术,从而这就可以协助评估智能建筑的投资,最好这些评估都是在概念的阶段。

本文的目的是提供一种简洁的、系统的回顾和识别现有的智能建筑的研究并提议今后的智能建筑研究方向。

该文首先讨论了智能建筑的定义。

然后,本文归纳出当前三个部分的智能建筑研究领域。

第一部分是智能建筑研究概述。

第二部分提供了智能建筑项目投资评价的方法。

第三部分提出了今后的智能建筑研究方向。

2、智能建筑的定义过去已经有无数的学术和技术文献讨论了智能建筑的定义。

根据哈里斯和安打所作的研究,存在30多个智能和建筑之间的关系的定义。

早期的智能建筑定义几乎全部集中在技术方面,而且并不建议用户进行交流。

卡丹(1983年,引用文献)定义智能建筑是作为“一个具有完全自动化建设服务的控制系统”。

在华盛顿的楼宇智能化机构(1988年,引用的智能建筑。

参考文献)定义为“多种建筑系统资源进行有效的管理,最大限度地协调控制模式:也就是它的技术性能,投资和运行成本的节约,弹性”。

许多研究者对纯技术的智能建筑的定义进行了批评。

例如,在20世纪80年代中期的DEG建筑物被发现是无法满足时代变化和人类居住的建筑机构,在信息技术方面或不是他们所使用的,从而将遭到过早地淘汰或者需要大量的翻新,或者有的已经遭到更严重的破坏。

从作者Robathan,Loveday起,再到Preiser 和Schramm和安打和哈里斯,都建议智能建筑必须满足用户的要求。

根据Clements-Croome,已经有越来越多的服务意识理念和建筑物的工作管理流程都和人类的福利有着密切的关系。

建筑环境不仅直接影响着人类的健康,而且还影响着人类工作的体力、精神士气和对于工作的热情度。

有些作者建议的楼宇智能化应该强调“多学科努力整合能够优化建筑结构、体制、服务和管理,从而创建一个多产的、更有效的建筑物的环境来达到环境的最大利用”。

最近,许多作者已经把智能建筑的“被学习能力”和“性能调整从它的住房率和环境”作为它的的定义。

他们提出了智能建筑不仅可以反应一个人的性格,并且相应地能够改变这个人对组织和环境的要求,但也能够从它的住房率和环境进行学习和调节其特性。

另一方面,它也说明不同的智能建筑专业团体对智能建筑也有不同的理解。

比如,智能建筑学院就指出了智能建筑在美国和英国的理解的不同。

智能建筑学院指出在美国智能建筑的定义是为“人类提供了一个生产和经济的环境并通过优化四个基本的元素包括结构、体制、服务和管理,来阐明他们之间的相互关系”。

相比之下,总部设在英国的欧洲智能建筑集团定义了智能建筑作为“一座建筑物应该有效的管理好它里面的环境,同时使有效管理拥有终身成本最小的资源硬件和设备”。

从上面的定义表示英国的差异更重视用户的需求,而美国则更专注于技术的定义。

此外,很多设计者也认为“智能建筑不是单独存在的,他们可以提供更多的智能化来为人类服务从而使他们更加有效的工作”。

此外,大多数现有的智能建筑的定义“要么太含糊了,只在有用的地方进行指导和详细的设计,而不是专注于它的技术和它是不是适合亚洲的文化”。

现在精确的定义智能建筑是不可能的,智能建筑没有正确的定义,所以新型的智能建筑也不会达到最佳的设计来满足下个世纪。

针对这一点,专家提出了一个符合两级战略合适的智能建筑的定义。

第一级由9个“质量环境模块(QEM)”(M1-M9)组成和第二级包含了三个领域的关键要素分别是功能需求、功能空间和技术。

本文提出了包含额外的模块(M10)作为补充现有的九个模块为了应付对建筑物的健康问题。

修订后的 '(M1-M10 QEM)包括:⏹M1:有效的保护环境和节约能源;⏹M2:每平方米空间利用率和灵活性;⏹M3:有效地强调成本和维护功效;⏹M4:人类的舒适度; M5:工作效率;⏹M6:防火灾、地震、灾难等结构性破坏的能力;⏹M7:它的文化; M8:高科技的监控;⏹M9:施工过程和结构; M10:健康和卫生设施。

每10个关键元素都会按照它的重要性被安排在10个关键模块上。

所以,本文从新定义了智能建筑作为一个基础上的设计和适当的选择环境功能模块的质量而要满足用户的要求,这样才能用适当的建筑设施来反映出长期的建筑价值。

所以,Wong新定义的智能建筑有两个方面,它能同时考虑技术和满足广大用户的要求。

另外,这个新定义不仅给设计者一个清楚的方向和充分的设计细节而且是这个高品质的智能建筑设计有一个统一的定义,并为用户提供一个准确的平台来判断一般的智能建筑的好坏。

3、以前的智能建筑的研究通过智能建筑研究工作的相关文献和概述表明,通过先前的的努力可以把研究分为三个方向,其中包括先进的/创新科技,绩效评估方法和投资的评价分析。

这三种研究方向在之后的部分做了进一步的阐述。

3.1研究先进创新的技术一大堆的研究成果涉及到了智能建筑技术。

以前的研究努力都集中在先进的系统开发、系统集成、网络协议和建筑子系统的服务上,其中包括空调系统、照明系统、消防系统、电梯系统、安全保障系统和通讯系统。

技术上,楼宇智能化执行和安排与传统上有所不同。

首先,智能建筑技术是以分级报告的系统的集成。

米勒·布莱德肖指出了建筑的系统和它的结构,也就是提供整体的素质和创造一个高产、高效环境,比如它的功能、保证和安全;热性能、声学、空气质量和视觉舒适;这些也就是建筑所必须拥有的。

根据Carlini、Arkin和Paciuk的组成,许多智能建筑系统包括三个层次的集成 :⏹世界最高水平的大楼应该在遭受不同的灾害的时候还能正常的运营以及它的通信系统还是好的;⏹中等的楼宇应该包括自动化系统(BAS)、能量管理系统(EMS)、通信管理系统(CMS)和办公自动化系统(OA),还有监督和协调控制、楼宇智能化子系统。

BAS在某些场合就已完成与功能和团体能量管理体系所有相关的子系统;⏹底层包含的子系统有供暖、通风和空调(HVAC)系统、照明系统、消防系统、垂直运输系统、安全保障系统和通讯系统。

此外,在智能建筑中允许互动和为一体化建设子系统服务。

系统集成的过程是连接系统,设备和程序结合在一起的一种常见的建筑,它能做到系统的共享和数据的交换。

Arkin和Paciuk提出智能建筑的有效的运营和智能建筑系统是无关的,而且在建设服务系统中系统和建筑之间的结构是被整合了。

智能建筑系统的例子相互作用主要包括:⏹消防报警系统能够与其它建筑系统进行整合,如HVAC、照明和安全通过BAS。

如果有火在建筑一层楼暖通空调系统可以通过开启和关闭排气阻尼器来防止烟气的蔓延从而阻止室外空气摄入着火层;⏹垂直运输系统明确要求火灾报警或安全系统是互相影响,电梯数目的运作方式,在某些情况下则是容易接近的楼层;⏹火灾报警程序就是这种在安全释放特定报警条件下上锁的门;⏹用这种安全系统与照明及通风空调系统的子系统来定义活化必要的照明路径和特定的房间的安装排序模式;⏹设施管理结合BAS。

伊万挪维奇综述了当前的智能建筑研究的技术。

在当代研究的成果下努力开发新的软件,使用自动诊断的工具对神经网络进行引入,模糊的逻辑,以及其他密集型的软件,人工智能基础对设计进行检测,但如建筑服务系统/部件,传感器和控制装置,检测出来问题自然是很难的。

国际能源署(BSC)研究项目附件及附件,包括与10多所大学和研究机构进行了广泛的研究,用不同的方法、策略和应用对暖通空调故障进行检测与诊断。

许多研究人员已经共同研制智能控制方法,这些方法被应用在现代建筑管理系统中,而且也能优化建筑物的能源和改进环境绩效。

此外,无线技术的应用与建筑物或网络构建系统的也是一种受欢迎的研究领域,目前已吸引了许多研究者和行业关注的实践者。

3.2 研究性能的评价方法除了智能技术的研究和发展以外,已经有大量的研究致力于评估智能建筑。

Serafeimidis认为评价过程作为一种反馈机制的目的是促进学习,同时他也考虑了评价过程中的一系列测量和评估。

它可以是一个自觉或隐性的过程,目的是确立价值或特定情况下作出的贡献等等,并能与该对象体现出来的价值的决心。

建立绩效考核是一个关键的程序,在建设当中提供材料和部件就是为了今后改进和参考绩效反馈提供依据。

不同的主管部门曾试图制定评价模型来评估智能建筑的性能。

早期的性能评价模型,开发于1965年由Manning马库斯等人。

在1972年,Preiser和后来施拉姆(1997年)提高了评价模型,他们提出了一种综合建筑性能评价框架,并用以评估和审查所有六个问题上的建筑的建设交付和生命周期,这六个问题包括计划、规划、设计、施工、占用和回收。

许多类似的研究也已进行尝试,用以衡量建筑物的智能水平,并设立了智能建筑的最佳选择标准。

Preiser开发了“后评估过程模型(PoE)”以确定智能建筑的智能化水平。

POE的过程模型一般分三个阶段执行。

首先,在概念阶段就得指出收集发展兼容的数据;第二,应用和试点测试的评价手段和智能化写字楼领域的研究;第三,对数据和建议进行收集,并利用数据收集手段对全球准则的发展进行比较分析。

Preiser和施拉姆应用POE的过程模型,评估在跨文化背景下的智能建筑和建议,POE模型能够在一个长期持续的基础上提高楼宇智能化建设的绩效评估,因为评价系统被允许运用高科技系统,用居民的影响来评价这些系统是否有效。

相关文档
最新文档