线代期末考试题
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线代期末试题及答案解析
线代期末试题及答案解析一、选择题1. 下列哪个矩阵是零阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}2 & -2 \\ -3 & 3\end{bmatrix}$答案:B解析:零阵是所有元素都为0的方阵,选项B满足此条件。
2. 若矩阵$A$、$B$满足$AB=I$,其中$I$为单位矩阵,则矩阵$B$是矩阵$A$的:A. 逆矩阵B. 转置矩阵C. 相反矩阵D. 对角矩阵答案:A解析:若矩阵$A$的逆矩阵存在,则$A$的逆矩阵为$B$。
3. 下列哪个矩阵是对称矩阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}-1 & 2 \\ 2 & -1\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}$答案:D解析:对称矩阵是指矩阵的转置等于自身的矩阵,选项D满足此条件。
4. 若矩阵$A$、$B$满足$AB=BA$,则矩阵$A$和$B$是:A. 可逆矩阵B. 特征矩阵C. 对角矩阵D. 可交换矩阵答案:D解析:可交换矩阵是指满足$AB=BA$的矩阵,选项D满足此条件。
5. 若行矩阵$\mathbf{u}$、$\mathbf{v}$满足$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$,其中$\mathbf{0}$为零向量,则下列哪个说法是正确的?A. $\mathbf{u}$和$\mathbf{v}$一定不相等B. $\mathbf{u}$和$\mathbf{v}$一定相等C. $\mathbf{u}$和$\mathbf{v}$可能相等也可能不相等D. 不能确定$\mathbf{u}$和$\mathbf{v}$是否相等答案:C解析:行向量的内积为零意味着两个向量正交,不一定相等,所以选项C是正确的。
期末线代试题及答案
期末线代试题及答案一、选择题(每题2分,共50分)1. 设A为3阶方阵,满足A^2 = I,则A的行列式的值是多少?A. -1B. 0C. 1D. 2答案:C2. 设向量组V1 = (1, 0, -1),V2 = (2, -1, 3),V3 = (-1, 2, 0),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:B3. 设向量组V1 = (1, 2, -1),V2 = (2, 1, 3),V3 = (-1, 4, 5),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:A4. 设A为3阶方阵,满足行列式det(A) = 3,则矩阵B = A^-1的行列式的值是多少?A. -1/3B. 3C. 1/3D. 1答案:C5. 已知矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的秩是多少?A. 2B. 3C. 1D. 0答案:C二、填空题(每题2分,共20分)1. 设A为3阶方阵,满足A^T = 2A,则A的特征值之和是________。
答案:62. 设矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的伴随矩阵的元素之和为________。
答案:03. 设向量组V1 = (1, 0, 1),V2 = (2, 1, 3),V3 = (-1, 0, -2),则V1, V2, V3的秩为________。
答案:24. 设三阶方阵A的特征值为λ1 = 2, λ2 = -1, λ3 = 0,则A的特征值对应的特征向量分别为________。
答案:(2, 0, 1),(0, 1, -1),(1, 1, -1)5. 设矩阵A = [1 2, 3 4],则A的迹为________。
答案:5三、解答题(每题20分,共60分)1. 设A为2阶方阵,满足det(A) = 3,求A的伴随矩阵。
答案:设A = [a b, c d],则伴随矩阵的元素为:A* = [d -b, -c a]所以伴随矩阵为:A* = [d/3 -b/3, -c/3 a/3]2. 已知矩阵A = [1 -1, 2 3],求A的特征值和特征向量。
大学线代期末试题及答案
大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。
答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。
答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。
答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。
答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。
答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。
最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。
7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。
8. 一个向量空间的一组基的向量数量至少是_________。
9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。
10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。
三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。
12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。
四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。
14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。
线性代数期末考试题及答案
《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
线代期末试题及答案
线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。
线性代数期末考试试题及答案
线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。
左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。
线性代数期末试题及答案
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
线代A期末考试题及答案
线代A期末考试题及答案一、选择题(每题4分,共20分)1. 向量组 \(\alpha_1, \alpha_2, \ldots, \alpha_n\) 线性无关的充分必要条件是:A. 向量组中任意向量不能由其他向量线性表示B. 向量组中任意向量不能由其他向量线性组合得到C. 向量组中任意向量不能由其他向量线性组合得到,且向量组中向量个数等于空间的维数D. 向量组中向量个数等于空间的维数答案:A2. 矩阵 \(A\) 可逆的充分必要条件是:A. \(A\) 的行列式不为零B. \(A\) 的秩等于其行数C. \(A\) 的秩等于其列数D. \(A\) 的秩等于其行数且等于其列数答案:D3. 对于实对称矩阵 \(A\),下列说法正确的是:A. \(A\) 一定可以对角化B. \(A\) 一定可以正交对角化C. \(A\) 的所有特征值都是实数D. \(A\) 的所有特征值都是正数答案:C4. 矩阵 \(A\) 和 \(B\) 相似的充分必要条件是:A. \(A\) 和 \(B\) 有相同的特征多项式B. \(A\) 和 \(B\) 有相同的特征值C. \(A\) 和 \(B\) 有相同的秩D. \(A\) 和 \(B\) 有相同的迹答案:B5. 矩阵 \(A\) 为正定矩阵的充分必要条件是:A. \(A\) 的所有特征值都大于零B. \(A\) 的所有特征值都大于等于零C. 对于任意非零向量 \(x\),都有 \(x^TAx > 0\)D. 对于任意非零向量 \(x\),都有 \(x^TAx \geq 0\)答案:C二、填空题(每题4分,共20分)6. 若向量 \(\alpha = (1, 2, 3)^T\) 和 \(\beta = (4, 5, 6)^T\),则向量 \(\alpha + \beta\) 等于 \(\boxed{(5, 7, 9)^T}\)。
7. 矩阵 \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)的行列式为 \(\boxed{-2}\)。
线性代数期末试卷及详细问题详解
一、 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)1、若方程13213602214x x x x -+-=---成立,则x 是 (A )-2或3; (B )-3或2;(C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+; (B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B3、设A 为可逆n 阶方阵,则()**A=(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭;(C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫ ⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。
线代期末试题及答案
T AB =______________.2.若三元非齐次线性方程组的系数矩阵的秩为2,123,,βββ是它的 三个解向量,且12(2,6,3),T ββ+=-23(6,8,5),T ββ+=-则该线性方 程组的通解是__________.3. 设123625t A t t ⎛⎫⎪=- ⎪ ⎪-⎝⎭的行向量线性相关,则实数t 满足的条件是 _________.4.令ii A 是三阶矩阵A 的元素ii a 的代数余子式(i =1,2,3),若A 的特征值为3,4,5,则112233A A A ++=__________.5.若101020105A c c ⎛⎫ ⎪=+ ⎪ ⎪-⎝⎭是正定矩阵,则c 的取值范围为 ___________.二. 选择题(每小题3分,共15分)1. 设A 、B 均为n 阶正交矩阵,则____________. (1)A+B 为正交矩阵 (2)A-B 为正交矩阵(3) B AB 为正交矩阵(4)k AB 为正交矩阵(k >0为实数)2.设A 为m 阶可逆矩阵,B 为n 阶可逆矩阵,则可逆分块矩阵O A D B O ⎛⎫= ⎪⎝⎭的逆矩阵是____________.(1)11A O O B --⎛⎫⎪⎝⎭ (2)11O B A O --⎛⎫⎪⎝⎭ (3) 11B O OA --⎛⎫⎪⎝⎭ (4)11O A BO --⎛⎫ ⎪⎝⎭3. 设α与β是线性无关的单位向量,则α与β的内积必 ____________.(1) >0 (2)<0 (3)>1 (4)<14.设A 为n 阶可逆矩阵,1*,,T A A A -分别是A 的转置矩阵,逆矩阵和伴随矩阵,若ξ是A 的特征向量,则下列命题中的不正确的是________.(1)ξ是T A 的特征向量 (2)2ξ是1A -的特征向量 (3)3ξ是*A 的特征向量(4) 4ξ是kA 的特征向量(k 为常数)5.设222623222,000222000A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则____ ____. (1)A 与B 是相似的且是合同的 (2)A 与B 是相似的但不是合同的 (3)A 与B 不是相似的但是合同的 (4)A 与B 不是相似的也不是合同的三.(15分)试求五元齐次线性方程组123451234512345330,30,0x x x x x x x x x x x x x x x ++++=⎧⎪-++-+=⎨⎪+++-=⎩的解空间V(作为5R 的子空间)的一组规范(标准)正交基。
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题5分,共25分)1.下列哪一个不是线性空间?A. 实数集RB. 矩阵的集合M(n,R)C. 正实数集R+D. 空集答案:C2.下列关于线性变换的叙述,正确的是()A. 线性变换保持向量的长度不变B. 线性变换保持向量的方向不变C. 线性变换保持向量的数量积不变D. 线性变换保持向量的线性组合关系不变答案:D3.若向量组α1,α2,α3线性无关,则向量组()A. 2α1,3α2,4α3 线性相关B. 2α1+3α2,4α3 线性无关C. α1+α2,α2+α3,α3+α1 线性无关D. α1,α1+α2,α1+α2+α3 线性相关答案:C4.设A是3阶矩阵,且|A|=5,则|2A|=()A. 10B. 25C. 50D. 125答案:D5.下列关于线性方程组的叙述,正确的是()A. 如果系数矩阵的秩小于未知数的个数,则方程组一定有解B. 如果系数矩阵的秩等于未知数的个数,则方程组一定有唯一解C. 如果系数矩阵的秩等于增广矩阵的秩,则方程组一定有解D. 如果系数矩阵的秩小于增广矩阵的秩,则方程组一定无解答案:C二、填空题(每题5分,共25分)6.若向量组α1,α2,α3线性无关,则其极大线性无关组所含向量的个数为______。
答案:37.设A是3阶矩阵,且|A|=4,则|A的逆矩阵|=______。
答案:1/48.若线性方程组Ax=b有解,则系数矩阵A的秩r(A)与增广矩阵B的秩r(B)满足关系______。
答案:r(A)=r(B)9.设A是n阶对称矩阵,则A的转置矩阵A^T______。
答案:等于A10.线性空间V的维数等于______。
答案:V中极大线性无关组所含向量的个数三、计算题(每题10分,共30分)11.已知向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),判断向量组是否线性相关,并说明理由。
答案:线性相关。
因为α3=α1+α2,所以向量组线性相关。
线代期末试题参考试题及答案
x4 =
= 0
0
基础解系为
⎜⎛ − 2⎟⎞
⎜⎛ − 2⎟⎞
ξ1
=
⎜ ⎜
⎜⎜⎝
1 1 0
⎟ ⎟
,
ξ
2
⎟⎟⎠
=
⎜ ⎜
⎜⎜⎝
1 0 1
⎟ ⎟ ⎟⎟⎠
⎧ ⎨ ⎩
x1 x2
+ −
2x3 + 2x4 x3 − x4 =
=5 −3
⎜⎛ 5 ⎟⎞
令
x3
=
x4
=
0 ,得一特解:η
=
⎜− 3⎟
⎜ ⎜⎜⎝
0 0
⎟ ⎟⎟⎠
A.如存在数 λ 和向量 α 使 Aα=λα,则 α 是 A 的属于特征值 λ 的特征向量
B.如存在数 λ 和非零向量 α,使(λE-A)α=0,则 λ 是 A 的特征值
C.A 的 2 个不同的特征值可以有同一个特征向量
D.如 λ1,λ2,λ3 是 A 的 3 个互不相同的特征值,α1,α2,α3 依次是 A 的属于 λ1,λ2,
-5-
1 22
2 22
1、
解: D ri − r2 (i = 3,4,
0 , n)
01
22 22 00
1 0 0 r2 − 2r1
0 00 0 00 22 −2 −2 01
n−3 0 0 n−2 22 −2 −2 00
00 0 00 0
n−3 0 0 n−2
= 1× (−2) ×1× 2 × × (n − 3) × (n − 2) = −2(n − 2)!
C. s ≤ r
D. s < r
14. 设 A、B 是 m × n 矩 阵 , 则 ( A. R( A + B) ≤ R( A) ; C. R( A + B) < R( A) + R(B) ;
线性代数期末试题及答案
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河 北 大 学 课 程 考 核 试 卷A一、选择题:(共20分,每小题2分)(一)、设A 为3阶方阵,且行列式0A a =≠,则2A *=( )A .2a B .1a - C .82a D .3a(二)、已知,A B 均为n 阶矩阵,且0,0A AB ≠=,下列结论必然成立的是( ) A. 0B = B. ()222A B A B +=+ C. ()222A B A BA B -=-+ D. ()()22A B A B A B -+=- (三)、A 为m n ⨯矩阵,n m A r <=)(,下列结论正确的是( )A.齐次线性方程组0=Ax 只有零解B. 非齐次线性方程组b Ax =有无穷多解C. A 中任一个m 阶子式均不等于零D. A 中任意m 个列向量必线性无关。
(四)、设4阶方阵A 的行列式A =0,则A 中()A .必有一列元素为零B .必有一列向量是其余向量的线性组合C .必有两列元素对应成比例D .任一列向量是其余列向量的线性组合 (五)、已知,A B 都是可逆的对称矩阵,则不一定对称的矩阵是 ( )A .1()AB - B .AB BA +C . A B +D . 11A B --+(六)、若向量组γβα,,线性无关;δβα,,线性相关,则( ) A. α必可由δγβ,,线性表示 B.β必不可由线性表示δγα,, C. δ必可由γβα,,线性表示 D. δ必不可由γβα,,线性表示(七)、设123,,ααα都是非齐次线性方程组b Ax =的解向量,若123k ααα+-是导出组0=Ax 的解, 则k =( )A . 0B . 1C . 2D . 3(八)、设向量组123,,σσσ是齐次线性方程组0AZ =的一个基础解系,则向量组( )也是0AZ =的一个基础解系。
A. 122331,,σσσσσσ++-B. 1223123,,2σσσσσσσ++++C. 112122,,σσσσσ+-D. 12123,,σσσσσ+-(九)、设A 是n m ⨯矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( )A. 1r r >B. 1r r <C. 1r r =D. r 与1r 的关系由C 而定 (十)、A 是正定矩阵的充要条件是( )A. B. 负惯性指数为零C. 存在n 阶矩阵C ,使D. 各阶顺序主子式均为正数二、填空题:(共20分,每小题2分)(一)、已知四元非齐次线性方程组3)(,==A r b Ax ,321,,ηηη是它的三个解向量,其中T T )3,1,0,1(,)2,0,2,1(3221=+=+ηηηη,则对应齐次线性方程组的通解为_______。
(二)、设向量组321,,ααα线性无关,则常数l m ,满足____ _ 时,向量组312312,,αααααα---m l 线性无关。
(三)、设A 为m 阶方阵,B 为n 阶方阵,已知b B a A ==,,则行列式AB = 。
(四)、已知A 为3阶方阵,A 的两个特征值为3,6,并且A 的迹为5,则=A 。
(五)、b Ax =有唯一解的充要条件是 。
0A >T A C C =(六)、设()()1,2,1,2,1,2T Tαβ=-=-,则向量α与β的内积为 。
(七)、当m 满足 时,二次型32212322213212445),,(x mx x x x x x x x x f -+++=是正定的。
(八)、已知三维向量空间的基底为)1,1,0(),1,0,1(),0,1,1(321===ααα,则向量)0,0,2(=β在此基底下的坐标是 。
(九)、设44⨯矩阵),,,,(),,,,(432432γγγβγγγα==B A 其中432,,,,γγγβα均为四维列向量,已知行列式1,4==B A ,则行列式=+B A 。
(十)、已知向量组)2,5,4,0(),0,,0,2(),1,1,2,1(321--==-=αααt 的秩为2,则t= 。
三、计算题:(共45分) (一)、计算n 阶行列式12121212n n n n nx a a a a x a a D a a a a a x a ++=+。
(7分)(二)、已知,B AX =其中⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=132231,113122214B A求矩阵X 。
(8分)(三)、当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解?无解?有无穷多解?并求出其通解。
(10分)(四)、求向量组 )1,4,2,3(),2,5,4,0(),0,,0,2(),1,1,2,1(4321-+-=--==-=t t αααα 的秩及其极大无关组。
(10分)(五)、设实对称矩阵,310130004⎪⎪⎪⎭⎫ ⎝⎛=A 求正交矩阵P ,使AP P 1-为对角矩阵。
(10分)五、证明题:(共15分)(一)、设A 为n m ⨯矩阵,证明:若任一个n 维向量都是0=Ax 的解,则O A =。
(8分)(二)、已知A ,B 均为n 阶方阵,并且)()(1A E A E B -+=-,试证B E +可逆,并求其逆矩阵。
(7分)河北大学课程考核参考答案及评分标准A一、选择题(共20分,每小题2分) 考察基础概念和理论(一) – (五)、C C B B A (六) - (十)、C C D C D 二、填空题:(共20分,每小题2分) 考察基础概念和理论(一)、T k )1,1,2,0(--(k 为任意常数),(二)、1ml ≠,(三)、ab mn )1(-,(四)、72-,(五)、A b A r A r ==),()(的列数,(六)、2-,(七)、22m -<<,(八)、)1,1,1(-,(九)、40,(十)、3。
三、计算题:(共45分) (一)、考察行列式的计算解: 110nn na a D D =1211002,,110100n i a a a x i n xx-=+--第行减第1行………… 3分1211000000nj n j a a a a xx x x=+=∑11n jnj a x x =⎛⎫=+ ⎪⎝⎭∑………… 7分 (二)、考察利用初等变换的方法解矩阵方程解:由,B AX =由矩阵A 可逆,得,1B A X -= ………2分故利用初等行变换,将())()(1X E B A E B A =→- ………………………4分⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----=1000100014121005921022101131132212222101131132212231214)(B A 所以⎪⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X 。
………………………6分所以⎪⎪⎪⎭⎫⎝⎛--=-=-110213)(1B A E X 。
………………………8分(三)、考察非线性方程组有解的条件及用初等变换求方程组的解,在有无穷多解的情况下能求其通解 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=010001210012210011111321023101221001111112323101221001111),(a b a a b a a b a b A………………………2分(1)当1≠a 时,方程组有唯一解。
………………………4分 (2)当1=a 且1-≠b 时,方程组无解。
………………………6分 (3)当1=a 且1-=b 时,方程组有无穷多解。
………………………8分此时⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000000000122101110100000000001221001111),(b A取43,x x 为自由未知量, 令0,043==x x ,得方程组的一个特解为T )0,0,1,1(0-=η。
令0,143==x x 或1,043==x x ,得其对应导出组的基础解系为T T )1,0,2,1(,)0,1,2,1(21-=-=ηη故,非齐次线性方程组的通解为22110ηηηk k x ++=,其中21,k k 为任意常数。
………10分(四)、考察用初等变换的方法求向量组的极大无关组及秩解:以4321,,,αααα为列向量构造矩阵),,,(4321TTTTA αααα= ………2分 利用初等行变换把A 化为行简化阶梯形矩阵,即⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--+---=0000330021103021120145124023021t t t t A ………………………4分 所以,(1)当3=t 时,向量组4321,,,αααα的秩为2,极大无关组为21,αα,……………………7分(2)当3≠t 时,向量组4321,,,αααα的秩为3,极大无关组为321,,ααα。
………………10分(五)、考察矩阵的特征值及特征向量的求解,矩阵的对角化,施密特正交化方法 解:矩阵A 的特征方程为0)4)(2(3113042=--=-----=-λλλλλλA E 。
………2分 解得4,2321===λλλ。
………………………4分对,21=λ由0)2(=-x A E ,解得基础解系T )1,1,0(1-=α。
……………6分 对,432==λλ由0)4(=-x A E ,解得基础解系,)1,1,0(,)0,0,1(32T T ==αα ………………8分由于32,αα正好正交,所以321,,ααα两两正交。
再将321,,ααα单位化,得T T T )21,21,0(,)0,0,1(,)21,21,0(321==-=ηηη。
故所求得正交矩阵,2102121021010),,(321⎪⎪⎪⎭⎫⎝⎛-==ηηηP 且⎪⎪⎪⎭⎫ ⎝⎛=-4421AP P 。
………10分五、证明题:(共15分)(一)、考察线性方程组的解的知识,及向量组等价的知识证明:由已知,任一n 维向量都是0=Ax 的解,可知n εεε,,,21 也是齐次线性方程组的解 …2分又因为n εεε,,,21 线性无关,并且任一个n 维向量都可以由n εεε,,,21 线性表示……4分从而 n εεε,,,21 为0=Ax 的基础解系,由n A r n =-)(,知 0)(=A r ,进一步得到O A =……8分(二)、证:由)()(1A E A E B -+=-得A E B A E -=+)(,即E A AB B =++……2分推出E E B A E B 2)(=+++即E A E E B 2))((=++……5分 得E A E E B =++2)(,所以B+E 可逆,且其逆矩阵为2AE +……7分。