核磁共振基本知识PPT课件

合集下载

光谱学-核磁共振课件(共86张PPT)

光谱学-核磁共振课件(共86张PPT)
第二页,共八十六页。
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)

核磁共振基本知识ppt课件

核磁共振基本知识ppt课件

3.饱和及弛豫
➢ 低能态核比高能态核只多0.001%。因此低能态核 总是比高能态核多一些,因为这样一点过剩,所以 能观察到电磁波的吸收。
➢ 如果核连续吸收电磁波,原过剩的低能态就逐渐
减少,吸收信号的强度就会减弱,最终完全消失,
这个现象就称饱和。出现饱和时,两种自旋状态的
核数目完全相同。
精选课件PPT
甲基正好处于屏蔽区共甲基处于去屏蔽区共振吸收向低场移动结果是两个吸收峰位臵发生互换相邻核自旋之间的相互作用称为自旋自旋偶合spinspincoupling由自旋耦合引起的吸收峰分裂使谱线增多的现象称为自旋自旋裂分简称自旋裂分splittingnmr吸收峰分裂为n1个相邻峰间距离为jhz各峰相对强度比为二项式a展开式的各项系数之比ppt精选版48信号裂分的数目和相对强度ppt精选版49氢核间的耦合类型苯环上的质子耦合dfppt精选版50典型有机物的质子耦合常数ppt精选版51ppt精选版5213h谱的对比ppt精选版53几种常见碳谱ppt精选版54使用一个高功率频率范围较宽的可以覆盖全部质子larmor频率范围的去偶场使样品中所有h全部共振饱和去偶使每一个c都出现一个s峰
④H键效应
H
O
R
H
O
R
H OO
R1
R2
• ROH、RNH2在0.5-5,ArOH在4-7,变化范围大, 影响因素多
• 氢键作用随温度、溶剂、浓度变化显著,可以了 解与氢键有关的结构及其变化
分子内氢键同样可以影响质子的共振吸收
-二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移为11~16
⑤ 溶剂效应
① 理想状况时的共振
➢ 对于孤立的、裸露的核,ΔE =(h/2π) γ·H ➢ 在一定H0下,一种核只有唯一的ΔE ➢ ΔE = E外 = hν ➢ 只有唯一频率ν的吸收 ➢ 如H0=2.3500 T 时,

核磁共振基本原理PPT课件

核磁共振基本原理PPT课件
由有机化合物的核磁共振图,可获得质子所处化学环境的 信息,进一步确定化合物结构。
9/20/2024
四、核磁共振波谱仪
nuclear magnetic resonance spectrometer
1.永久磁铁:提供外磁 场,要求稳定性好,均匀, 不均匀性小于六千万分之 一。扫场线圈。 2 .射频振荡器:线圈垂 直于外磁场,发射一定频 率的电磁辐射信号。 60MHz或100MHz。
9/20/2024
NMR图
9/20/2024
1.化学位移:
吸收峰所在的相对不同位置. 在照射频率确定时,都是H核,所以吸收峰的位置 应该是相同的,而实际不是这样.
(1).化学位移的由来 —— 屏蔽效应
化学位移是由核外电子的屏蔽效应引起的。
h
E
Ih
H 0
9/20/2024
H核在分子中是被价电子所包围的。因此,在外加 磁场的同时,还有核外电子绕核旋转产生感应磁场H’。 如果感应磁场与外加磁场方向相反,则H核的实际感受 到的磁场强度为:
如果把H核放在外磁场中,由于磁场间的相互作用,
氢核的磁场方向会发生变化:
H' H'
1H 核: 自旋取向数 = 2×1/2 + 1 = 2
9/20/2024
即:H核在外场有两个自旋方向相反的取向。
一 致 H0 相 反
每一种取向都对映一个能级状态,有一个ms 。如: 1H核:标记ms为-1/2 和 +1/2
NMR 谱仪
600 MHz
磁体
9/20/2024
前置放大器
RF 产生 RF 放大 信号检测 数据采集控制 数据信息交流 运行控制 磁体控制
探头
机柜

核磁共振检查相关知识ppt课件

核磁共振检查相关知识ppt课件
3
工作原理
MR是一种生物磁自旋成像技术,它是利用原子核自 旋运动的特点,在外加磁场内,经射频脉冲激后产生信号, 它对疾病的诊断具有很大的潜在优越性。它可以直接作出 横断面、矢状面、冠状面和各种斜面的体层图像,不会产 生CT检测中的伪影;常规平扫不需注射造影剂;无电离辐射, 对机体没有不良影响。用探测器检测并输入计算机,经过 计算机处理转换后在屏幕上显示图像。
5
磁共振成像的优点
1、软组织分辨率高,明显优于CT。
6
MRI常用检查方式
• 平扫 不注射对比剂直接进行的扫描 • MRI增强扫描 通过注射MRI造影剂,缩短组织在外磁场作用下的共振时
间、增大对比信号的差异、提高成像对比度和清晰度的一类诊断试剂。它 能有效改变生物体内组织中局部的水质子弛豫速率,缩短水分子中质子的 弛豫时间,准确地检测出正常组织与患病部位之间的差异的一种检查方式。
因此在选择核磁共振机房的场地时要尽量远离停车场、公
路、地铁、火车、水泵、大型电机等震动源并且它对电源
供应,承重也有具体的要求
14
5、检查禁忌症 ●带有心脏起搏器的患者;颅脑手术后存有动脉瘤夹的 患者; 铁磁性植入物患者,如枪炮伤弹片存留及眼内含金 属异物等;心脏手术后换有人工金属瓣膜者; 有合金假体, 金属关节患者;体内有胰岛素泵、神经刺激器患者; 三个 月以内的早孕妇女; 各种危重病患者不能做检查:如外伤 或意外发生的昏迷,烦躁不安,心率失常,呼吸功能不全, 失血和二便失禁等患者;幽闭恐惧症患者。
10
磁共振成像的优点
▷ 成像参数多,图像变化多,提供信息量大; ▷ 可以多轴面直接成像,病变定位准确; ▷ 磁共振频谱(MRS)还可以反映组织的生化改变,弥散成(Diffision)可

核磁共振基本原理课件

核磁共振基本原理课件

化学分析
核磁共振波谱法在化学领域中用于分 析物质的化学结构和组成,通过测量 原子核的共振频率来推断分子结构。
核磁共振的重要性
01
02
03
科学研究
核磁共振为科学研究提供 了强有力的工具,帮助科 学家深入了解物质的微观 结构和动态行为。
医学诊断
核磁共振成像技术在医学 诊断中具有重要价值,能 够提高疾病诊断的准确性 和可靠性。
冲宽度等参数。
启动核磁共振谱仪,进 行实验操作,记录数据。
对采集的数据进行预处 理、解析和可视化。
数据解析与处理
01
02
03
04
傅里叶变换
将时间域信号转换为频率域信 号,便于分析不同化学环境的
核自旋。
参数标定
根据已知化合物或标准样品, 标定实验参数,提高分析准确
性。
信号解析
通过化学位移、耦合常数等信 息,解析出分子结构信息。
工业应用
在工业领域,核磁共振技 术可用于产品质量控制、 生产过程监控以及新材料 的研发等。
02 核磁共振的基本原理
原子核的磁性
原子核具有磁性
原子核中的质子和中子具有自旋,从 而产生磁矩。不同原子核的磁矩大小 和方向不同,这决定了它们在磁场中 的行为。
磁矩的表示
磁矩的大小与原子核中的质子数和中子 数相关,通常用希腊字母μ表示。不同 原子核的μ值不同,决定了它们在磁场 中的共振频率。
核磁共振基本原理课件
contents
目录
• 引言 • 核磁共振的基本原理 • 核磁共振的实验技术 • 核磁共振的应用实例 • 核磁共振的未来发展
01 引言
核磁共振的发现
核磁共振的发现
1946年,美国科学家F.Bloch和E.M.Purcell因各自独立发现了核磁共振现象, 共同获得了诺贝尔物理学奖。这一发现为后来的核磁共振技术发展奠定了基础。

《核磁共振》PPT课件.ppt

《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。

磁共振成像基本原理PPT课件

磁共振成像基本原理PPT课件

射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

磁共振成像(MRI)的基本原理PPT演示课件

磁共振成像(MRI)的基本原理PPT演示课件
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢ 在外部磁场中,低能态的核一般比高能态的核 多一些,吸收电磁波能量而迁移到高能态的核会 经各种机制放出能量,而回到原低能态,这种过 程称弛豫。
它的存在是核磁共振现象得以保持产生波谱的必要条件。
.
17
弛豫的两种类型:
➢ 自旋-格子弛豫(纵向弛豫,T1 )
高能态核被弛豫而迁移到低能态,这时所放出的能量作为 平移、转动和振动的热能传递到格子区(弛豫过程中,高 能态核周围存在的各类磁性核称之为格子),由于这个机 制,低能态的核才能保持过剩。
+1/2 (α)
图 核在外磁场中的进动
.
-1/2 (β)
11
两种取向的能量差E可表示为:
EH0 (H0)2H0 2r(2h)(12)H0 r(2h)H0
若外界提供一个电磁波,波的频率适当,能 量恰好等于核的两个能量之差,h=E, 那么此 原子核就可以从低能级跃迁到高能级,产生核磁 共振吸收。
.
12
➢ 自旋-自旋弛豫(横向弛豫,T2)
是在进行旋进运动而互相接近的两个核之间,互相交换自 旋而产生的,这种弛豫不能保持过剩的低能态核。
3.饱和及弛豫
➢ 谱线宽度与T1、T2成反比,并决定于它们中较小者。 ➢ T太小,谱线太宽 ➢ T太大,信号强度不够, ➢ 最佳半衰期0.1~1”(相当1Hz)
4.屏蔽效应-化学位移
4.屏蔽效应-化学位移
氢原子核的外面有电子,它们对磁场的磁力 线有排斥作用。对原子核来讲,周围的电子起了 屏蔽(Shielding)效应。核周围的电子云密度越 大,屏蔽效应就越大,要相应增加磁场强度才能 使之发生共振。核周围的电子云密度是受所连基 团的影响,故不同化学环境的核,它们所受的屏 蔽作用各不相同,它们的核磁共振信号亦就出现 在不同的地方。
② 真实的核:屏蔽现象 ➢ 核外有电子(不是孤立、不是裸露) ➢ 化合物中:原子间结合(作用)不同,如化学键、氢键、
静电作用、分子间力 ➢ 设想:在H0=2.3500 T,由于核外电子的屏蔽,在核的位置,
真实的磁场比2.3500 T略小 ➢ 表示 H0 (1 - ) ➢ 共振频率,比100 MHz略高 ➢ 高多少?对1H是0~10, 13C是0~250
1.原子核的自旋
1.原子核的自旋
在有机化合物组成元素中,C、H、O、N是最主要的元素。 在其同位素中,12C、16O无磁性,因此不发生核磁共振。1H的 天然丰度较大,磁性较强,易测定,故NMR研究以前主要是针 对质子进行的。13C的丰度较小,只有12C的1.1%,且信号灵敏 度只为质子得到1/64。故总灵敏度只有1H的1/6000,较难测定。 但近30年来,核磁共振仪器很大改进,能在短时间内测定13C 谱,且给出的信息较多,已成为NMR的主要手段。1H, 19F,31P 天然丰度较大,磁性较强,且核电荷分布为球状,最易测定。
③ 核磁共振的条件
③ 核磁共振的条件
产生核磁共振必须具备磁性原子核、外磁场、 射频磁场三个前提,且满足射频磁场的频率等于 自旋核的进动频率,才发生共振,由低能态向高 能态跃迁。
④ 核磁共振现象:
在外磁场H0垂直方向施加一旋转磁场H1于 进动核,若H1的旋转频率同核的旋转进动频率值 相等时,进动核可从H1吸收能量,由低能态向高 能态跃迁—即为核磁共振。
核磁共振
(nuclear magnetic resonance)
基本知识
发展简史
第一阶段:1945年到1951年,发明核磁共振法并 奠定理论和实验基础的时期: Bloch(斯坦福大学,
观察到水中质子的信号) 和Purcell(哈佛大学,观察到石 蜡中质子的信号)获得了Nobel奖金。
发展简史
第二阶段:1951年到1960年为发展时期,其作用被 化学家和生物学家所共认,解决了许多重要难题。
.
4
发展简史
第四阶段:70年代后期理论和技术发展成熟。 1、200,300,500MHz和600MHz的超导NMR谱仪; 2、应用各种脉冲系列,在应用方面作了重要的开拓; 3、出现了2D-NMR; 4、多核研究,可应用到所有磁性核; 5、出现了“核磁共振成象技术”等新的分支学科。
.
5
主 要 用 途:
结构的测定和确证,有时还可测定构型、构象 化合物纯度的检查,灵敏度较薄层、纸层析高 混合物分析,如主要信号不重叠,无需分离即
可测定混合物的比例。 质子的交换,单键的旋转,环的转化等化学变
化速度的推定
1.原子核的自旋
➢ 在所有元素的同位素中,大约有一半的原子核具有自旋运 动。这些自旋的原子核是核磁共振的研究对象。 ➢ 自旋量子数:描述原子核自旋运动的量子数,可以为整 数、半整数或0。
2.核磁共振现象
①进动:具有一定磁矩的自旋核在外磁场H0作用下,此 核将因外磁场形成角作进动运动:为进动运动角速度, 它正比于H0(外磁场强度)
②自旋核在外磁场中的取向:没有外磁场时,其自旋磁距 取向是混乱的。磁性核处于外磁场H0中,有(2I+1)个 取向。磁性核在外磁场中的的自旋可以类比于陀螺在重力 场中的进动(旋进、回旋)
3.饱和及弛豫
➢ 低能态核比高能态核只多0.001%。因此低能态核 总是比高能态核多一些,因为这样一点过剩,所以 能观察到电磁波的吸收。
➢ 如果核连续吸收电磁波,原过剩的低能态就逐渐
减少,吸收信号的强度就会,两种自旋状态的
核数目完全相同。
.
16
3.饱和及弛豫
① 理想状况时的共振
➢ 对于孤立的、裸露的核,ΔE =(h/2π) γ·H ➢ 在一定H0下,一种核只有唯一的ΔE ➢ ΔE = E外 = hν ➢ 只有唯一频率ν的吸收 ➢ 如H0=2.3500 T 时,
➢ 1H的吸收频率为: = 100 MHz ➢ 13C的吸收频率为: = 25.2 MHz
4.屏蔽效应-化学位移
1953年出现了第一台30MHz核磁共振谱仪; 1958年及年代初又出现了60MHz,100MHz的仪器。 50年代中期发展了1H-NMR,19F-NMR和31P-NMR
.
3
发展简史
第三阶段:60至70年代,NMR技术飞跃时期。 脉冲Fourier变换技术,提高了灵敏度和分辨率,
可常规测定13C核; 双频和多频共振技术;
相关文档
最新文档