细胞膜的基本结构和物质转运功能

合集下载

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能细胞膜是所有生物细胞的外壳,它不仅保护了细胞的内部结构,还负责细胞内外物质的交换和信号传递。

细胞膜的结构和物质转运功能是细胞生命活动的基础。

本文将从细胞膜的结构、物质转运功能以及相关的研究进展等方面进行阐述。

一、细胞膜的结构细胞膜是由磷脂双层组成的,磷脂分子具有亲水性和疏水性两种特性。

在水中,磷脂分子排列成双层结构,亲水性的磷酸基团朝向水相,疏水性的脂肪酸基团则朝向内部。

这种排列方式形成了细胞膜的基本结构。

除了磷脂分子外,细胞膜还包含许多蛋白质、糖类和胆固醇等分子。

这些分子在细胞膜上分布不均,形成了许多不同的结构和功能区域。

例如,膜蛋白可以形成通道、受体、酶等结构,参与物质转运和信号传递等生命活动。

二、物质转运功能细胞膜的物质转运功能是指细胞膜通过不同的机制,将物质从细胞内或外转移到另一侧。

这种物质转运可以是主动的或被动的,也可以是选择性的或非选择性的。

下面将分别介绍几种常见的物质转运机制。

1.扩散扩散是一种被动的物质转运机制,它是指物质从高浓度区域自发地向低浓度区域移动。

这种移动是无序的,不需要能量输入。

扩散可以通过细胞膜上的通道蛋白、载体蛋白或直接通过磷脂双层进行。

扩散的速度取决于物质的浓度梯度、分子大小和极性等因素。

2.运输蛋白运输蛋白是一种主动的物质转运机制,它需要能量输入。

运输蛋白可以将物质从低浓度区域转移到高浓度区域,这种转移是有选择性的。

运输蛋白分为两种类型:一种是离子泵,它可以将离子从低浓度区域转移到高浓度区域,例如Na+/K+泵;另一种是转运体,它可以将小分子物质从低浓度区域转移到高浓度区域,例如葡萄糖转运体。

3.胆固醇转运胆固醇是一种重要的细胞膜成分,它可以调节细胞膜的流动性和稳定性。

胆固醇的转运是通过载体蛋白实现的。

载体蛋白将胆固醇从细胞内转移到细胞膜上,然后再将其转移到细胞外。

这种转运可以被药物所干扰,例如他汀类药物可以抑制胆固醇合成,从而降低胆固醇的含量。

细胞膜的基本结构和物质转运功能 课件

细胞膜的基本结构和物质转运功能 课件
➢逆浓度差或电位差进行转运,由细胞代谢提供能量 ➢Na+、K+的主动转运—钠-钾泵(Na+-K+ ATP酶)
➢维持细胞内高K+,保证细胞正常代谢 ➢阻止Na+及伴随的H2O进入细胞,维持细胞体积 ➢建立势能储备,为其他物质转运提供能量
细胞膜的物质转运功能
常见的跨膜转运物质的方式
• 单纯扩散 • 易化扩散 • 主动转运 • 继发性主动转运(联合转运)
响,分电压门控性通道和化学门控性通道 ➢很多离子如:Na+、K+、Ca2+等的转运
被动转运 (passive transport)
概念:物质顺着浓度差或电位差的转运过程。 特点:
①顺浓度或电位梯度进行 ②不耗能
分类:
①单纯扩散 ②易化扩散
细胞膜的物质转运功能 常见的跨膜转运物质的方式 • 单纯扩散 • 易化扩散 • 主动转运
➢蛋白质 ➢糖类
细胞膜的化学组成和分子结构
单位膜(生物膜) 细胞的各种膜主要由脂质、蛋白质和糖类组成
• 膜的分子结构假说——液态镶嵌模型
➢脂质双分子层 ➢蛋白质
➢分子以α-螺旋或球形结构镶嵌在脂质分子中 ➢分整合蛋白和表面蛋白 ➢膜的各种功能主要取决于其所含的蛋白质,如
载体、通道、离子泵—物质转运;受体—识别 特异的化学刺激等 ➢糖类
饮作用)
粗面内质网合成蛋白性分泌物 高尔基复合体
膜性结构包被=分泌囊泡 囊泡向质膜内侧移动
囊泡膜与质膜的某点接触并融合 融合处出现裂口 分泌物排出
囊泡的膜成为细胞膜的组成部分
出胞
细胞膜上的受体对物质的“辨认”
发生特异性结合=复合物
复合物向膜表面的“有被小窝”移 动

细胞生理

细胞生理

四)细胞的兴奋性与生物电现象
1、细胞的生物电现象及其产生机制:
一个活的细胞无论是它处于安静状态还是活动状态都是存在电活动, 这种电活动称为生物电现象。其中包括静息电位和动作电位。
(1)细胞的静息电位 (2)细胞的动作电位 (3)兴奋的引起与传导
产生生物电的生理基础
细胞的电现象主要是跨膜离子流动造成的
1)离子通道受体:不具有酶活性,接受信号后构象发生变化,开放通道:
2)G蛋白(三聚体GTP结合调节蛋白)偶联的受体:不具有酶活性, 接受信号后构象发生变化,能够与下游信号分子结合,传递信号: 配体-受体复合物要通过与G蛋白的相互作用,才能将胞外信号跨膜 传递到胞内
没有信号时,G蛋白与GDP结合 处于非活性状态
②通道蛋白:根据溶质大小和电荷进行 辩别,形成跨膜亲水性离子通道;
Na+通道、K+通道、Ca2+通道、Cl-通道等; 化学门控通道(膜两侧出现某化学信号才开放) 电压门控通道(膜两侧电位差的改变决定开闭)
主动转运
在细胞膜上载体的帮助下, 通过消耗ATP,将某种物质逆浓度 梯度进行转运的过程。

点:
二)细胞间的信息传递(细胞间的跨膜信号转导功能)
动物体各器官之间的相互协调以维持整体统一性,是靠信息 传递来完成。主要的信号转导系统有三条: 环腺苷酸信号转导系统 肌醇信号转导系统 酪氨酸激酶相连的信号转导系统
1、步骤:
产生信号的细胞合成并释放信号分子 →运送信号分子至靶细胞 →信号分子与靶细胞受体特异性结合并导致受体激活 →活化受体启动胞内一种或多种信号转导途径 →引发细胞功能、代谢或发育的改变 →信号的解除并导致细胞反应终止
2、信号分子的类型 •物理信号:声,光, 电和温度变化 •化学信号:激素、局 部介质、神经递质 3、受体: 能够识别和选择性结合配体(信号分子)的大分子。多数为蛋白 (糖蛋白),少数为糖脂或二者复合物。可位于细胞膜上,细胞质 内或细胞核内。 1)不具有酶活性,接受信号后构象发生变化,开放通道:离子通道 受体 2)不具有酶活性,接受信号后构象发生变化,能够与下游信号分子 结合,传递信号:G蛋白偶联受体 3)具有酶活性,接受信号后通过催化自身或下游信号分子发生化学 变化(如磷酸化)传递信号:酶联受体

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能
(1)膜结构的液态镶嵌模型:细胞新陈代谢过程中需要不断选择性地通过细胞膜摄入和排出某些物质。

细胞膜和细胞器膜主要是由脂质和蛋白质组成。

根据膜结构的液态镶嵌模型,认为膜是以液态的脂质双分子层为基架,其间镶嵌着许多具有不同结构和功能的蛋白质。

(2)细胞膜的物质转运功能:物质的跨膜转运途径有:
①单纯扩散:扩散的方向和速度取决于物质在膜两侧的浓度差和膜对该物质的通透性。

容易通过的物质有O2、CO2、N2、乙醇、尿素和水分子等。

②经载体和通道膜蛋白介导的跨膜转运:属于被动转运,转运过程本身不需要消耗能量,是物质顺浓度梯度或电位梯度进行的跨膜转运。

经载体易化扩散指葡萄糖、氨基酸、核苷酸等;经通道易化扩散指溶液中的Na+、C1-、Ca2+、K+等带电离子,离子通道分为电压门控通道、化学门控通道和机械门控通道。

③主动转运:分原发性主动转运和继发性主动转运。

原发性主动转运的膜蛋白为离子泵(钠-钾泵,简称钠泵,也称Na+-K+-ATP 酶)。

继发性主动转运:它是间接利用ATP 能量的主动转运过程。

《生理学》细胞的基本功能——1细胞的跨膜运输方式

《生理学》细胞的基本功能——1细胞的跨膜运输方式

亲水性极性基团 磷酸和碱基) (磷酸和碱基)
二、细胞膜的物质转运功能 半透膜
哪些物质可以通过细胞膜 哪些物质可以通过细胞膜? 物质可以通过细胞膜 这些物质是如何通过细胞膜的? 如何通过细胞膜的 这些物质是如何通过细胞膜的?
O2 , 能源物质 氨基酸 脂类 各种离子等


CO2 CO2 代谢尾产物
水的跨膜转运
单纯扩散——水虽是极性分子 水虽是极性分子 单纯扩散 但分子极小,又不带电荷。 但分子极小,又不带电荷。 渗透 (osmosis) 溶液拖曳 (solvent drag) 易化扩散——水通道 (water channel) 易化扩散 水通道 水孔蛋白 (aquaporin, AQP)
Water channel
单纯扩散( (一)单纯扩散(simple diffusion)
一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。 一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。
特点: 特点:
1、顺浓度差 2、不需要膜蛋白帮助 3、不消耗能量 4、转运脂溶性物质(非极性分子)如O2和CO2 转运脂溶性物质(非极性分子)
细胞膜结构 液态镶嵌模型 (fluid mosaic model)
以液态的脂质双分子层为基本框架, 以液态的脂质双分子层为基本框架 , 其中镶嵌有不同生理 功能的蛋白质和少量多糖。 功能的蛋白质和少量多糖。
基架: 基架:液态的脂质双分子层 中间: 中间:镶嵌许多结构和功能 不同的蛋白质
疏水性非极性基团 长烃链) (长烃链)
2. 继发性主动转运
Secondary Active Transport
1)概念:利用原发性主动转运所造成的某种物质的势 概念: 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 转运体蛋白(转运体, 转运体蛋白(转运体,transporter) 2)特点 间接耗能(钠泵) 间接耗能(钠泵) 膜转运体(特殊蛋白质) 膜转运体(特殊蛋白质)

02生理学-细胞

02生理学-细胞

跳跃式传导
局部电流发生在相邻的郎飞氏结之间 传导速度快
第三节 肌细胞的收缩功能
一、神经—肌接头处的兴奋传递
(一)神经—肌接头处的结构
囊泡内含乙酰胆碱(ACh) 电压依从式钙通道 2、接头间隙: 细胞外液,50-60nm 3、接头后膜(终板膜):
1、接头前膜(轴突末梢膜):
皱褶
N2型ACh受体阳离子通道 胆碱酯酶
(三)动作电位的特征

1.“全或无”现象(all or none) 2.不衰减性传导 3.脉冲式


(四)动作电位的传导
在一般可兴奋细胞和无髓神经纤维:

局部电流

在有髓神经纤维:

跳跃式传导
局部电流
静息部位膜内 负外正,兴奋 部位膜极性反 转,兴奋区与 未兴奋区之间 存在电位差, 形成局部电流, 使邻近未兴奋 膜去极化达阈 电位而产生动 作电位。
概念 : 水溶性或脂溶性很小的小分子物质或离子,借助细胞 膜上特殊蛋白质的帮助,从细胞膜的高浓度一侧向低 浓度一侧转运的过程。
特点 : ⑴ 转运非脂溶性或脂溶性很小的物质 ⑵ 不耗能,顺浓度差转运,属被动转运 ⑶ 需要膜蛋白的帮助 分类 : ⑴ 载体转运 转运对象:葡萄糖(Glu) 氨基酸(AA) 特点:特异性 饱和性现象 竞争性抑制
eg.氧气(O2)、二氧化碳(CO2)、氮气(N2)等 脂溶性小分子 水、乙醇、尿素、甘油等分子量小的极性分子
影响因素:⑴ 细胞膜两侧浓度差(正比) ⑵ 细胞膜对该物质的通透性(正比)
一、细胞膜的物质转运功能
常见的物质跨膜物质转运形式:

单纯扩散 易化扩散


主动转运
入胞和出胞
(二)易化扩散

生理课件---第一节细胞膜的基本结构和物质转运功能

生理课件---第一节细胞膜的基本结构和物质转运功能

(2)原发性主动转运
(3)继发性主动转运
2-8
Physiology
(二)通道介导的跨膜转运
1. 通道介导的易化扩散(facilitated diffusion via ion channel)
2-8
Physiology
1. 通道介导的易化扩散
·通道(channel ):
·物质:Na+、K+、Ca2+、Cl-等 ·特点: (1)离子选择性(ionic selectivity); (2)多种构型(multi-configuration): 静息、激活、失活; (3)门控机制(gating mechanism): 电压门控通道(voltage gated channel), 化学门控通道(Chemical gated channel), 机械门控通道(Mechanically gated
1)特异性(specificity);
2)饱和性(saturation); 3)竞争性抑制(competitive inhibition)
图2-2 经载体易化扩散 A :经载体易化扩散模式图; B :经载体易化扩散的饱和现象 V max :最大扩散速度; K m : 米 氏常数 ,即达 1/2 最大扩散速率所 需的底物浓度 2-9
· 许多物质逆浓度差和电位差转运时, 所需能量来自膜两侧Na+的浓度差。
· 转运体(transporter):同时转运两
种以上物质; 同向转运(Na+-葡萄糖
同向转运体);反向转运(Na+-Ca2+
交换体,3:1)
图2-3 肠粘膜上皮细胞葡萄糖继发性主动转运模式图
2-14
Physiology
(三)出胞(exocytosis) 和入胞(endocytosis) ·endocytosis and exocytosis:细胞膜通过更为复杂的

第二章 细胞的基本功能

第二章 细胞的基本功能

主动转运与被动转运的区别
主动转运 需由细胞提供能量
逆电-化学势差 使膜两侧浓度差更大
被动转运
不需外部能量 顺电-化学势差 使膜两侧浓度差更小
(三)出胞和入胞
出胞作用
入胞作用
第二节 细胞的跨膜信号传导功能


细胞外信号分子通称为配体。 受体是指存在于细胞膜或细胞内能特异性识别生 物活性分子(配体)并与之结合进而诱发生物效 应的特殊蛋白质,即细胞接受信息的装置。 细胞外环境变化的信息以新的信号形式传递到膜 内,引发靶细胞相应的功能改变,包括细胞出现 电反应或其他功能改变。这一过程称为跨膜信号 转导,是细胞的基本功能之一。

3.DG-PKC途径

DG留在膜的内表面,和膜磷脂中的磷脂 酰丝氨酸共同激活蛋白激酶C(PKC)。 PKC有多种亚型,它们广泛分布于不同类 型的组织细胞,激活后可使底物蛋白磷 酸化,产生多种生物效应。
第二章 细胞的基本功能
第一节 细胞膜的基本结构和 物质转运功能
一、细胞膜的结构和化学组成
(一)脂质双分子层
构成:由双嗜性脂质分子两两相对 排列成双分子层
(二)嵌在细胞膜上蛋白质
以两种 形式存在: 外周蛋白 整合蛋白
(三) 糖类
形式: 糖蛋白或糖脂
二、细胞膜的跨膜物质转运功能
小分子: 被动转运、主动转运 大分子、物质团块:胞纳、胞吐
“钠-钾泵”,简称钠泵:分解ATP,逆浓度差 主动地把细胞内的Na+移出膜外,同时把细 胞外的K+移入膜内。
钠泵的意义:
①细胞内高钾是许多代谢反应的必要条件 ②维持正常细胞体积(防止细胞水肿)
③建立势能贮备(生电性)
继发性主动转运: 钠泵形成的势能贮备是某些非离子物质 进行跨膜主动转运的能量来源,因而把这种 类型的转运称为继发性主动转运或称为协同 转运。 小肠上皮、肾小管上皮等对葡萄糖、氨 基酸等营养物质的吸收就是继发性主动转运 过程。

细胞生理--细胞的基本功能

细胞生理--细胞的基本功能

第三节
细胞的生物电现象


恩格斯在 100• 多年前就指出:“地球上 几乎没有一种变化发生而不同时显示出电的 “ 变化”。人体及生物体活细胞在安静和活动 时都存在电活动,这种电活动称为生物电现 象(bioelectricity)。
一、细胞膜的被动电学特性 (一)膜电容和膜电阻 欧姆定律:I(电流)= V(电压)G(电导) 膜电位(电压)= 离子电流 / 电导(V = I / G) (二)电紧张电位(P 23)
一、静息电位及其产生机制 (一)细胞的静息电位(resting potential
RP)
:细胞处于相对安静状态时,细胞膜内 外存在的电位差。 •
1. 概 念
2.RP实验现象:
3.证明RP的实验:
(甲)当A、B电极都位于 细胞膜外,无电位改变, 证明膜外无电位差。 (乙)当 A 电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。 (丙)当A、B电极都位于 细胞膜内,无电位改变, 证明膜内无电位差。
入胞:指细胞外的大分子物质或团块进 入细胞的过程,包括吞噬和吞饮。
出胞:
入胞:
第二节
细胞的跨膜信号转导功能
跨膜信号转导主要涉及到:胞外信号的识 别与结合、信号转导、胞内效应等三个环节。
跨膜信号转导方式大体有以下三类: ① 离子通道介导的信号转导 ② G蛋白偶联受体介导的信号转导 ③ 酶偶联受体介导的信号转导
二、物质的跨膜转运
(一)单纯扩散 (二)膜蛋白介导的跨膜转运
1、经载体的易化扩散
2、经通道的易化扩散
3、原发性主动转运
4、继发性e diffusion) (1)概念:一些脂溶性物质由膜的高浓度一侧向低浓
度一侧移动的过程。

细胞的基本功能

细胞的基本功能

第二章细胞的基本功能(6学时)主要内容l、细胞膜的基本结构及物质转运功能:细胞膜的基本结构;细胞膜的跨膜物质转运功能。

2、细胞膜的跨膜信号传递功能:由具有特异感受结构的通道蛋白质完成的跨膜信号传递;由膜的特异受体蛋白质、G蛋白和膜的效应器酶组成的跨膜信号传递系统。

3、细胞的兴奋性和生物电现象:兴奋性和刺激引起兴奋的条件;细胞生物电现象及其产生机制(神经细胞、骨骼肌细胞);兴奋的引起和在同一细胞上的传导机制;细胞间的信息传递①以神经递质为媒介的信息传递:神经—肌肉接头处兴奋的传递、突触及突触传递、神经递质、受体学说:②以激素为媒介的信息传递:⑧以电信号为媒介的信息传递(传递方式,作用机制)。

4、骨骼肌细胞生理特性及收缩功能:肌细胞收缩机制及其控制。

自学内容1、兴奋性和刺激引起兴奋的条件。

2、以电信号为媒介的信息传递(传递方式,作用机制)。

3、神经递质、受体学说。

4、骨骼肌、心肌、平滑肌的生理特性。

基本要求1、了解细胞膜的物质转运功能。

2、了解细胞膜的跨膜信号传递功能。

3、了解细胞的兴奋性及生物电现象。

4、从肌肉的超微结构和分子水平理解肌肉的收缩原理及其控制。

重点、难点l、细胞膜的跨膜物质转动及信号传递功能。

2、细胞的兴奋性和生物电现象。

3、肌细胞收缩原理。

第一节细胞膜物质转运功能一.被动转运当同种物质不同浓度的两种溶剂相邻的放在一起时,溶质分子会顺着浓度差或电位差(合称电化学差)产生净流动叫被动转运(passive transport)。

被动转运分为以下两种形式:(一).单纯扩散(simple diffusion)和渗透1.单纯扩散在生物体中,物质的分子或离子顺着电化学梯度通过细胞膜的方式称为单纯扩散。

单纯扩散特点:①是一种单纯的理化过程。

②某物质扩散量大小与该物质在膜两侧的浓度,膜的通透性有关。

③不需要细胞供能,因为细胞膜是脂质双分子层结构,因此只有一些脂溶性物质才有较高通透性。

如O2、CO2和类固醇类激素等。

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能

细胞膜的结构和物质转运功能
细胞膜是细胞内外环境的分界线,同时也是物质转运的关键结构。

其主要结构包括磷脂双分子层、膜蛋白和糖脂等。

磷脂双分子层是细胞膜最基本的结构,由两层磷脂分子构成,每层分子的亲水头部朝向细胞外侧和细胞内侧,而疏水尾部则朝向膜内部,这种结构使得细胞膜可以维持稳定的分界线。

膜蛋白是细胞膜中起着许多功能的蛋白质,包括物质的转运、信号的感知和传递、细胞间的黏附等。

不同种类的膜蛋白在细胞膜上的分布和功能也不同。

糖脂则主要参与细胞膜的识别和信号传递功能,包括糖蛋白和糖脂等。

这些分子通常附着在细胞膜表面,与细胞外环境进行交互作用。

细胞膜的物质转运功能包括主动转运、被动转运和细胞吞噬等。

主动转运是指细胞膜通过耗费能量的方式将物质从低浓度区域转移到高浓度区域,这个过程需要ATP的参与;被动转运则是指物质自发地从高浓度区域转移到低浓度区域,这个过程不需要额外能量;而细胞吞噬则是指细胞膜通过包裹和摄取物质的方式将大分子物质引入细胞内部,这个过程也需要能量的参与。

第二章细胞膜的物质转运功能

第二章细胞膜的物质转运功能
• 如果光线触及这些离子通道,它们会打开,离子 进入,致使细胞特异性地激活或失活。通过这种 方式,研究人员获得了一种极好的工具来研究神 经细胞网络的功能。(光控开关)
视紫红质通道蛋白(channelrhodopsin)
Channelrhodopsins are key tools in optogenetics,
1. 定义: 溶质分子顺着浓度差或电位差 (电化学梯
度), 产生净流动叫被动转运。
被动转运的动力是电化学势能。
2.被动转运的两种形式
(1)单纯扩散: 脂溶性物质或小分子物质从高浓度侧向低浓
度侧跨膜转运。
(2)易化扩散(facilitated diffusion )
定义: 在膜蛋白的帮助下物质从高
给大脑装一个“光”控开关!
• 神经科学家或许可以。他们一 直梦想着能够随意控制特异神 经元的活性。
• 现在,光让他们梦想成真了! 光遗传学技术实现了特异、快 速、直接地改变神经元活性, 从而使“光”成了脑细胞乃至 动物行为的开关。
光遗传学(optogenetics)
• 光遗传学(optogenetics)的全称是“光 刺激基因工程”(optical stimulation plus genetic engineering)。
• ②胞吞:
细胞外某些物质团块,如细菌、病毒、异 物、血浆中脂蛋白及大分子营养物质等, 进入细胞的过程,包括吞噬、胞饮和受体 介导式入胞。
• (1)吞噬 • 被摄取的物质是固体,可形成较大的囊泡。
• (2)胞饮
• 被摄取的物质是液滴状液体,则形成较小 的囊泡。
• (3)受体介导式入胞
• 通过与膜表面的特殊受体相互作用而引起 入胞的物质转运方式。

《细胞生理学》细胞膜的结构和物质转运功能

《细胞生理学》细胞膜的结构和物质转运功能
细胞膜的结构和物质转运功能
细胞:构成机体的最基本的结构和功 能单位。
一、细胞膜的基本结构 液态镶嵌模型 (图 )
组成:脂质、蛋白质、糖类(图) 1.脂质双分子层:细胞膜的基本骨架 含:磷脂、胆固醇、鞘脂。 磷脂 磷脂酰胆碱 磷脂酰乙醇胺 磷脂酰丝氨酸 磷脂酰肌醇
2.蛋白质:多为球形蛋白质 表面蛋白质(外周蛋白质) 整合蛋白质(镶嵌蛋白质) 功能:① 物质转运功能 ② 受体功能 (图) ③ 识别功能 ④ 连接功能 ⑤ 催化功能 3 .糖类:糖蛋白或糖脂是细胞的特异性 “标志”
失活(关闭) 备用(静息) b.通过 “闸门”进行调控 c.有选择性 ③转运结果:电化学势能平衡
分类: 化学门控通道:N-Ach受体 电压门控通道:Na+通道 机械门控通道:内耳毛细胞 4 .经载体介导的易化扩散(图) 转运的物质:GS、AA进入一般细胞 共同特点:① 结构特异性 ② 饱和现象 ③ 竞争性抑制
作业:
1. 细胞膜的跨膜物质转运形式有几种,举例
说明之。
2.比较单纯扩散和易化扩散的异同点?
3.Na+-K形成细胞外高Na+、细胞内高K+ a . 离子势能贮备是生物电产生的基 础;促进某些物质的逆浓度差的跨膜转 运。如GS b. 细胞内高K+是某些生化反应必需 c. 防止细胞水肿 3.分类
原发性主动转运 继发性主动转运:(图) 各种跨膜转运机制的特征
(三)出胞和入胞 大分子物质进出细胞的方式 1.出胞:各种分泌活动、神经递质的释放 2.入胞:受体介导式入胞(图)
二、细胞膜的跨膜物质转运功能
(一)单纯扩散 1.定义 扩散: 单纯扩散:脂溶性小分子物质由高浓度 向低浓度跨膜移动的过程。 2. 扩散通量: Mmol/s.cm2 影响因素:膜内外物质浓度差、电压差 膜的通透性 3. 转运的物质:O2 ,CO2 4 .特点:① 高浓度→低浓度 ② 不耗能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细胞膜的基本结构和物质转运功能第二章细胞的基本功能细胞是人体和其他生物体的基本结构单位。

体内所有的生理功能和生化反应,都是在细胞及其产物(如细胞间隙中的胶原蛋白和蛋白聚糖)的物质基础上进行的。

一百多年前,光学显微镜的发明促成了细胞的发现。

此后对细胞结构和功能的研究,经历了细胞水平、亚细胞水平和分子水平等具有时代特征的研究层次,从细胞这个小小的单位里揭示出众多生命现象的机制,积累了极其丰富的科学资料。

可以认为,离开了对细胞及构成细胞的各种细胞器的分子组成和功能的认识,要阐明物种进化、生物遗传、个体的新陈代谢和各种生命活动以及生长、发育、衰老等生物学现象。

要阐明整个人体和各系统、器官的功能活动的机制,将是不可能的。

事实上,细胞生理学和分子生物学的实验技术和理论,已经迅速地向基础医学和临床医学各部门渗透。

因此,学习生理学应由细胞生理开始。

细胞生理学的主要内容包括:细胞膜和组成其他细胞器的膜性结构的基本化学组成和分子结构;不同物质分子或离子的跨膜转运功能;作为细胞接受外界影响或细胞间相互影响基础的跨膜信号转换功能;以不同带电离子跨膜运动为基础的细胞生物电和有关现象;以及肌细胞如何在细胞膜电变化的触发下出现机械性收缩活动。

第一节细胞膜的基本结构和物质转运功能一切动物细胞都被一层薄膜所包被,称为细胞膜或质膜(plasma membrane),它把细胞内容物细胞周围环境(主要是细胞外液)分隔开来,使细胞能相对地独立于环境而存在。

很明显,细胞要维持正常的生命活动,不仅细胞的内容物不能流失,而且其化学组成必须保持相对稳定,这就需要在细胞和它所和的环境之间有起屏障作用的结构;但细胞在不断进行新陈代谢的过程中,又需要经常由外界得到氧气和营养物质。

排出细胞的代谢产物,而这些物质的进入和排出,都必须经过细胞膜,这就涉及到物质的跨膜转运过程。

因此,细胞膜必然是一个具有特殊结构和功能的半透性膜,它允许某些物质或离子有选择的通过,但又能严格地限制其他一些物质的进出,保持了细胞内物质成分的稳定。

细胞内部也存在着类似细胞膜的膜性结构。

组成各种细胞器如线粒体、内质网等的膜性部分,使它们与一般胞浆之间既存在某种屏障,也进行着某些物质转运。

膜除了有物质转运功能外,还有跨膜信息传递和能量转换功能,这些功能的机制是由膜的分子组成和结构决定的。

膜成分中的脂质分子层主要起了屏障作用,而膜中的特殊蛋白质则与物质、能量和信息的跨膜转运和转换有关。

一、膜的化学组成和分子结构从低等生物草履虫以至高等哺乳动物的各种细胞,都具有类似的细胞膜结构。

在电镜下可分为三层,即在膜的靠内外两侧各有一条厚约2.5nm的电子致密带,中间夹有一条厚2.5nm的透明带,总厚度约7.0~7.5nm左右这种结构不仅见于各种细胞的细胞膜,亦见于各种细胞器的膜性结构,如线粒体膜、内质网膜、溶酶体膜等,因而它被认为是一种细胞中普遍存在的基本结构形式。

各种膜性结构主要由脂质、蛋白质和糖类等物质组成;尽管不同来源的膜中各种物质的比例和组成有所不同,但一般是以蛋白质和脂质为主,糖类只占极少量。

如以重量计算,膜中蛋白质约为脂质的1~4倍不等,但蛋白质的分子量比脂质大得多,故膜中脂质的分子数反较蛋白质分子数多得多,至少也超过蛋白质分子数100倍以上。

各种物质分子在膜中的排列形式和存在,是决定膜的基本生物学特性的关键因素。

分子生物学的研究成果表明,各种物质特别是生物大分子在各种生物结构中的特殊有序排列,是各种生命现象得以实现的基础。

尽管目前还没有一种能够直接观察膜的分子结构的较方便的技术和方法,但根据对生物膜以及一些人工模拟膜特性的分析研究,从30年代以来就提出了各种有关膜的分子结构的假说,其中得到较多实验事实支持而目前仍为大多数人所接受的则70年代初期(Singer和Nicholson,1972)提出的液态镶嵌模型(fluid mosaic model)。

这一假想模型的基本内容是:膜的共同结构特点是以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构、因而也具有不同生理功能的蛋白质,后者主要以а-螺旋或球形蛋白质的形式存在。

(一)脂质双分子层膜的脂质中以磷脂类为主,约占脂质总量的70%以上;其次是胆固醇,一般低于30%;还有少量属鞘脂类的脂质。

磷脂的基本结构是:一分子甘油的两个羟基同两分子脂酸相结合,另一个羟基则与一分子磷酸结合,后者再同一个碱基结合。

根据这个碱基的不同,动物细胞膜中的磷脂主要有四种:磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸和磷脂酰肌醇。

鞘脂类的基本结构和磷脂类似,但不含甘油。

胆固醇结构很特殊,它含有一个甾体结构(环戊烷多氢菲)和一个8碳支链。

最初提示膜中脂质呈双分子层形式存在的,是对红细胞膜所作的化学测定和计算。

Gortert和Grendel(1925)提取出红细胞膜中所含的脂质,并测定将这些脂质以单分子层在水溶液表面平铺时所占的面积,结果发现一个红细胞膜中脂质所占的面积,差不多是该细胞表面积的2倍。

因此导致以下结论:脂质可能是以双分子层的形式包被在细胞表面的。

以后提出的双分子层模型中,每个磷脂分子中由磷酸和碱基构成的基团,都朝向膜的外表面或内表面,而磷脂分子中两条较长的脂酸烃链则在膜的内部两两相对。

脂质分子的这种定向而整齐的排列,是由脂质分子本身的理化特性和热力学定律所决定。

所有的膜脂质都是一些双嗜性分子,磷脂的一端的磷酸和碱基是亲水性极性基团,另一端的长烃链则属疏水性非极性基团。

当脂质分子位于水表面时,由于水分子是极性分子,脂质的亲水性基团将和表面水分子相吸引,疏水性基团则受到排斥,于是脂质会在水表面形成一层亲水性基团朝向水面而疏水性基团朝向空气的整齐排列的单分子层。

从热力学业角度分析,这样组成的系统包含的自由能最低,因而最为稳定,可以自动形成和维持。

根据同样的原理,如果让脂质分子在水溶液中受到激烈扰动时,脂质有可能形成含水的小囊,但这囊只能是由脂质双分子层形成,外层脂质的极性基团和囊外水分子相吸引,内层脂质的极性基团则和囊内水分子相吸引,而两层脂质的疏水性烃链将两两相对,排斥水分子在囊膜中的存在,其结构正和天然生物膜一致。

这种人工形成的人工膜囊,称为脂质小体(liposome),似人造细胞空壳,有很大的理论研究和实用价值。

由此可见,脂质分子在细胞膜中以双分子层的形式存在,是由脂质分子本身的理化特性所决定的。

设想进化过程中最初有生物学功能的膜在原始的海洋中出现时(也可能包括新的膜性结构在细胞内部的水溶液中的生成),这些基本的理化原理也在起作用。

脂质的熔点较低,这决定了膜中脂质分子在一般体温条件下是呈液态的,即膜具有某种程度的流动性。

脂质双分子层在热力学上的稳定性和它的流动性,能够说明何以细胞可以承受相当大的张力和外形改变而不致破裂,而且即使膜结构有时发生一些较小的断裂,也可以自动融合而修复,仍保持连续的双分子层的形式。

观察一下体内某些吞噬细胞通过毛细血管壁内皮细胞间隙时的变形运动和红细胞通过纤细的毛细血管管腔时被扭曲而不破裂的情况,当会对细胞膜的可变性和稳定性有深刻的印象。

当然,膜的这些特性还同膜中蛋白质和膜内侧某些特殊结构(称为细胞架)的作用有关。

应该指出的是,膜的流动性一般只允许脂质分子在同一分子层内作横向运动;由于分子的双嗜性,要脂质分子在同一分子层内作“掉头”运动;或由一侧脂质层移到另一侧脂质层,这意味着有极性的磷酸和碱基的一端要穿越膜内部的疏水性部分,这是不容易或要耗能的。

不同细胞或同一细胞而所在部位不同的膜结构中,脂质的成分和含量各有不同;双分子层的内外两层所含的脂质也不尽相同,例如,靠外侧的一层主要含磷脂酰胆碱和含胆碱的鞘脂,而靠胞浆侧的一层则有较多的磷脂酰乙醇胺和磷脂酰丝氨酸。

胆固醇含量在两层脂质中无大差别;但它们含量的多少和膜的流动性大小有一定关系,一般是胆固醇含量愈多,流动性愈小。

近年来发现,膜结构中含量相当少的磷脂酰肌醇,几乎全部分布在膜的靠胞浆侧;这种脂质与细胞接受外界影响,并把信息传递到细胞内的过程有关。

(二)细胞膜蛋白质膜结构中含有蛋白质早已证实,但有兴趣的问题是膜中蛋白质究以何种形式存在。

70年代以前,多数人主张蛋白质是平铺在脂质双分子层的内外两侧,后来证明,蛋白质分子是以а-螺旋或球形结构分散镶嵌在膜的脂质双分子层中。

膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。

这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。

在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。

这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线盘旋,形成每一圈约含3.6个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。

这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接。

膜结构中的蛋白质,具有不同的分子结构和功能。

生物膜所具有的各种功能,在很大程度上决定于膜所含的蛋白质;细胞和周围环境之间的物质、能量和信息交换,大都与细胞膜上的蛋白质分子有关。

由于脂质分子层是液态的,镶嵌在脂质层中的蛋白质是可移动的,即蛋白质分子可以在膜脂分子间横向漂浮移位;不同细胞膜中的不同蛋白质分子的移动和所在位置,存在着精细的调控机制。

例如,骨骼肌细胞膜中与神经肌肉间信息传递有关的通道蛋白质分子,通常都集中在肌细胞膜与神经未梢分布相对应的那些部分;而在肾小管和消化管上皮细胞,与管腔相对的膜和其余部分的膜中所含的蛋白质种类大不相同,说明各种功能蛋白质分子并不都能在所在的细胞膜中自由移动和随机分布,而实际存在着的有区域特性的分布,显然同蛋白质完成其特殊功能有关。

膜内侧的细胞骨架可能对某种蛋白质分子局限在膜的某一特殊部分起着重要作用。

(三)细胞膜糖类细胞膜所含糖类甚少,主要是一些寡糖和多糖链,它们都以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白;这些糖链绝大多数是裸露在膜的外面一侧的。

这些糖链的意义之一在于以其单糖排列顺序上的特异性,可以作为它们所结合的蛋白质的特异性的“标志”。

例如,有些糖链可以作为抗原决定簇,表示某种免疫信息;有些是作为膜受体的“可识别性”部分,能特异地与某种递质、激素或其他化学信号分子相结合。

如人的红细胞ABO血型系统中,红细胞的不同抗原特性就是由结合在膜脂质的鞘氨醇分子上的寡糖链所决定的,A型抗原和B 型抗原的差别仅在于此糖链中一个糖基的不同。

相关文档
最新文档