平行线导学案

合集下载

10.3平行线的性质导学案

10.3平行线的性质导学案

10.3 平行线的性质导学案学习目标1、经历探索平行线的性质的过程。

2、会运用平行线的性质,解决与“三线八角”有关的计算问题。

3、经历观察、推理、交流等活动,发展空间观念、有条理的思考和语言表达能力。

一.知识链接:1.两条直线被第三条直线所截,你能找到哪些角,哪些是同位角,哪些是内错角,哪些是同旁内角?它们是否相等?画CD∥AB,再画一条截线EF与AB,CD二.合作探究:探究一用量角器量一下∠1与∠2的度数。

你发现了什么?思考:图中还有哪几对也是同位角?它们分别相等吗?你发现了什么规律?(小组长分配任务每人测量一组同位角)由此得到平行线的性质(1):书写格式:探究二图中各对内错角的大小分别有什么关系?各对同旁内角的大小分别有什么关系?(小组合作)利用平行线的性质(1)进行验证,并与同学交流。

由此得到平行线的性质(2):书写格式:平行线的性质(3)书写格式:1.(1)图中与∠1相等的角有哪些?(2)图中与∠3相等的角有哪些?(3)图中与∠2互补的角有哪些?2.如图,已知平行线AB,CD被直线AE所截.若∠1=1103.如图:直线a ∥b,c ∥d, ∠1=106°,求∠2 、∠3四、课堂检测:1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定2.如图,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是____,因为_________.3.如图,DF∥AC,DE∥AB ,试证明∠1= ∠21、学习了平行线的哪些性质?2、平行线的性质常应用于哪些计算?。

2023年人教版数学四年级上册平行与垂直导学案(推荐3篇)

2023年人教版数学四年级上册平行与垂直导学案(推荐3篇)

人教版数学四年级上册平行与垂直导学案(推荐3篇)〖人教版数学四年级上册平行与垂直导学案第【1】篇〗【教学目标】1.引导学生通过观察、讨论感知生活中的垂直与平行的现象。

2.帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。

3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

【教学重点】正确理解“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。

【教学难点】相交现象的正确理解(尤其是对看似不相交而实际上是相交现象的理解)。

【教具、学具准备】课件,水彩笔,尺子,三角板,量角器,小棒,淡粉色的纸片,双面胶。

【教学过程】一、画图感知,研究两条直线的位置关系导入:前面我们已经学习了直线,知道了直线的特点,今天咱们继续学习直线的有关知识。

(一)学生想象在无限大的平面上两条直线的位置关系师:老师这儿有一张纸,如果把这个面儿无限扩大,闭上眼睛,想象一下,它是什么样子的?在这个无限大的平面上,出现了一条直线,又出现一条直线。

想一想,这两条直线的位置关系是怎样的?会有哪几种不同的情况?(学生想象)(二)学生画出同一平面内两条直线的各种位置关系师:每个同学手中都有这样的白纸,现在咱们就把它当成一个无限大的平面,把你刚才的想法画下来。

注意,一张白纸上只画一种情况。

开始吧。

(学生试画,教师巡视)二、观察分类,了解平行与垂直的特征(一)展示各种情况师:画完了吗?在小组中交流一下,看看你们组谁的想法与众不同?(小组交流)师:哪个小组愿意上来把你们的想法展示给大家看看?(小组展示,将画好的图贴到黑板上)师:仔细观察,你们画的跟他们一样吗?如果不一样,可以上来补充!(学生补充不同情况)(二)进行分类师:同学们的想象力可真丰富,画出来这么多种情况。

能把它们分分类吗?在小组中交流交流。

(小组讨论、交流)1.小组汇报分类情况。

预案:a.分为两类:交叉的一类,不交叉的一类;b.分为三类:交叉的一类,快要交叉的一类,不交叉的一类;c.分为四类:交叉的一类,快要交叉的一类,不交叉一类,交叉成直角的一类。

2022年初中数学《平行线的判定》导学案(推荐)

2022年初中数学《平行线的判定》导学案(推荐)

5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线〔板书课题〕.2.学习目标:〔1〕学会并记住平行线的判定方法1、2、3.〔2〕能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:〔1〕自学内容:课本P12至P13的内容.〔2〕自学时间:10分钟.〔3〕自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.〔4〕自学参考提纲:①12“思考〞中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,假设∠1=∠2,那么a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.∠3=∠2,能得到直线a∥b吗?分析:假设能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.∠2+∠4=180°,能得到直线a∥b吗?分析:假设能由∠2+∠4=180°转化为∠1=∠2〔或∠3=∠2〕,那么由判定方法1〔或判定方法2〕,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.〔2〕生助生:小组相互交流学习,纠正认知偏差.4.强化:〔1〕判定方法1、2、3及其几何表述.〔2〕练习:课本P15“复习稳固〞的第1、2题.1.自学指导:〔1〕自学内容:课本P14例题.〔2〕自学时间:4分钟.〔3〕自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.〔4〕自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一局部,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知缺乏的学生进行点拨引导.〔2〕生助生:小组内学生相互交流,取长补短.4.强化:〔1〕判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.〔2〕练习:课本P14“练习〞第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程中的态度、方法和成效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课通过“问题情境—合作探究—建立模型—求解—应用〞的根本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;开展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔20分〕如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.〔1〕假设∠1=∠2,那么a∥b,理由是同位角相等,两直线平行.〔2〕假设∠1=∠3,那么a∥c,理由是内错角相等,两直线平行.〔3〕直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:〔1〕互相平行的直线有a∥b,c∥d;〔2〕互相垂直的直线有e⊥b,e⊥a.3.〔10分〕如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.〔10分〕如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.〔20分〕如图,直线a,b被直线c所截,现给出以下四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用〔20分〕6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b〔同位角相等,两直线平行〕.∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b〔同旁内角互补,两直线平行〕.三、拓展延伸〔10分〕7.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b〔内错角相等,两直线平行〕.∵∠3+∠4=180°,∴b∥c〔同旁内角互补,两直线平行〕.又∵a∥b,∴a∥c〔如果两条直线都与第三条直线平行,那么这两条直线也互相平行〕.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

《平行线》导学案

《平行线》导学案

5.2 平行线及其判定5.2.1平行线1.经历平行线概念的获取过程,知道同一平面内两条直线的位置关系共有两种.2.知道平行公理及其推论,会用符号语言表示平行公理的推论.3.通过观察教具模型的演示和画图等操作,积累操作活动经验,进一步发展空间观念.4.重点:平行公理及其推论.阅读教材“思考”前所有内容,解决下列问题.1.如图,直线a与b会相交吗?(1)(3)直线a与b会相交,(2)直线a与b不相交.2.在同一平面内,直线a与b不相交的情形一般称作什么?记作什么?a与b平行,记作a∥b.3.在同一平面内,不重合的两条直线有几种位置关系?两种:相交和平行.【归纳总结】在同一平面内,不相交的两条直线叫作平行线.【讨论】判断下列说法是否正确,并说明理由.(1)不相交的两条直线是平行线;(×,前提是同一平面内不相交的两条直线)(2)没有公共点的两条线段一定平行;(×,没有公共点的两条线段所在直线可能相交)(3)不相交的两条射线一定平行;(×,不相交的两条射线所在的直线可能相交)(4)两条线段平行,实际上是指它们所在的直线平行; (√)(5)在同一平面内直线不平行就一定相交.(√)【预习自测】举出生活中平行线的实例.阅读教材“思考”部分的内容,解决下列问题.1.如图1,用直尺画直线l的平行线,这样的平行线有几条?图略,无数条.2.如图2,经过直线l上方一点A画它的平行线,这样的平行线有几条?图略,1条.3.如果3,经过直线l下方一点B画它的平行线,这样的平行线有几条?图略,1条.,有且只有一条直线与这条直线平行.阅读教材“由平行公理……”至“练习”,解决下列问题.1.如图,b∥a,c∥a,那么b与c是相交还是平行?为什么?平行,假设b与c相交,交点为P,那么过点P就有两条直线都与直线a平行,而根据平行公理,这是不可能的,故b∥c.【归纳总结】平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【预习自测】如果AB∥CD,EF∥CD,那么AB∥EF,理由是如果两条直线都与同一条直线平行,那么这两条直线也平行.动探究1:a,b,c是同一平面内互不重合的三条直线,交点可能有(C)A.1个B.1个或2个或3个C.0个或1个或2个或3个D.以上都不对【方法归纳交流】本题要分类讨论,分别画图探究.动探究2:读下列语句,按要求作图:(1)如图1,M是直线AB外一点,过点M的直线MN与AB交于点N,过点M画直线CD∥AB.(2)如图2,过点C画CE∥AD交BA的延长线于E.解:(1)如图3所示;(2)如图4所示.动探究3:如图,如果AE∥BC,AD∥BC,那么∠DAE=180°,为什么?(方法指导:∠DAE=180°,即说明点D、A、E在同一条直线上.)解:因为AE∥BC,AD∥BC,由平行公理可知AE、AD在同一直线上.所以∠DAE=180°.*[变式训练]直线l同侧有A、B、C三点,如果A、B两点确定的直线l1与B、C两点确定的直线l2都与直线l平行,则A、B、C三点的位置关系是在同一条直线上,其理论依据是:过直线外一点有且只有一条直线与已知直线平行.动探究4:如图,AB∥CD,E为AD的中点.(1)过点E作EF∥AB,交BC于点F.(2)EF和DC的位置关系如何?(写出简要的推理过程)(3)用刻度尺量出BF和CF的长度,你能得出什么结论?解:(1)如图.(2)EF∥DC.因为AB∥CD,EF∥AB,所以EF∥DC(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).(3)BF=CF.学生所写的结论合理即可,如一组平行线在一条直线上截得的线段相等,则它在另一条直线上截得的线段也相等.见《导学测评》P4。

平行线的性质导学案2.doc---孙运峰

平行线的性质导学案2.doc---孙运峰

襄阳市樊城区竹条实验中学七年级数学学科课堂导学案 第 周 第 课时上课时间: 年 月 日 星期: 备课组长签字: 蹲点领导签字:【学习目标】 主备人:孙运峰 复备人: 1、 经历探索平行线的性质的过程,初步掌握平行线的性质2、 通过观察,操作推理交流等活动,进一步发展学生的空间观念和推理能力.一、明确目标((在教师的设疑、创景下,学生解读学习目标,从而基本明晰学习任务。

)如图已知00040,1140,40A D ∠=∠=∠=,那么AB ∥CD 吗?BF ∥DE 吗?二、思考探究例如图是一块梯形铁片的残余部分,量得00100,115A B ∠=∠=,梯形另外两个角分别是多少度?[试做练习] 1如图直线a ∥b,0154,2,3,4?∠=∠∠∠那么各是多少度2,如图D 是AB 上一点,E 是AC 上一点,0060,60,40ADE B AED ∠=∠=∠=①DE 和BC 平行吗?为什么? ②C ∠是多少度?为什么?三、合作交流(学科组长组织交流,收集本组典型错例和疑惑展示在黑板上)四、学以致用1如图所示,已知直线AB ∥CD,0150,∠=,则2∠=____2如图所示,已知直线AB ∥CD,,则A ∠=______3如图已知0001100,280,3105,4∠=∠=∠=∠=则_________4如图已知012,80,D BCD ∠=∠∠=∠=__________5如图,已知DE ∥BC,∠D :∠DBC=2:1,∠1=∠2,求∠DEB 的度数。

6如图AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF 交CD 于点G ,0140∠=,求2∠的度数。

五、收获整理(学到的知识、学会的方法、锻炼的能力等;不懂得知识、不同的看法法、没说的意见等)六、课后拓展:。

2022年初中数学《平行线》导学案(推荐)

2022年初中数学《平行线》导学案(推荐)

一、导学1.导入课题:如图,直线a、b是铁路上的两条铁轨,它们会相交吗?今天我们就来研究这样的两条直线——平行线.2.学习目标:〔1〕了解平行线的概念,知道同一平面内不重合的两条直线的两种位置关系, 能表达平行公理以及平行公理的推论.〔2〕会用符号语言表示平行公理及其推论, 会用三角尺和直尺过直线外一点画这条直线的平行线.3.学习重、难点:重点:平行公理及其推论.难点:文字语言、图形语言、符号语言的相互转换.4.自学指导:〔1〕自学内容:课本P11至P12“练习〞之前的内容.〔2〕自学时间:10分钟.〔3〕自学要求:认真阅读教材,重点局部做好圈点;动手操作画图,并观察图形总结规律.〔4〕自学参考提纲:①定义:同一平面内,直线a与b不相交,这时直线a与b互相平行.换言之,同一平面内不相交的两条直线叫做平行线.②直线a与b是平行线,记作a∥b.③同一平面内,两条直线的位置关系有两种,分别是相交和平行.④联系实际生活,列举平行线的实例.a.如右图,直线a及直线a外两点B、C.b.用直尺和三角尺分别过点B、C作直线a的平行线,分别记作直线b和直线c.c.结合画图过程,观察所画图形,思考:过点B〔或C〕画直线a的平行线,能画几条?直线b和直线c有何位置关系?答案:1条;b∥c.d.归纳总结:平行线的画法〔用三角尺为例〕:一“落〞:把三角尺一边落在直线上;二“靠〞,用直尺紧靠三角尺的另一边;三“推〞,沿直尺推动三角尺,使三角尺与直线重合的边过点;四“点〞,沿三角尺过点的边画直线,所画直线即为所要画的线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.〔与垂线的性质1相比较,注意它们的相同点和不同点〕推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.用符号语言表述为:如果b∥a,c∥a,那么b∥c.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:教师巡视课堂,了解学生的自学情况:①“过直线外一点画该直线的平行线〞的作图是否会操作.②平行公理与垂线性质1的相同点与不同点是否清楚.〔2〕差异指导:对个别学生进行指导,帮助理解画图的依据.2.生助生:各小组相互交流、纠正认知误区.四、强化1.平行线的概念及画法.2.平行公理及推论.3.练习:读以下语句,并画出图形.〔1〕点P是直线AB外一点,直线CD经过点P,且与直线AB平行.〔2〕直线AB与CD相交,点P是直线AB、CD外一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.五、评价1.学生学习的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和缺乏.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法和收效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔10分〕在同一平面内,两条直线的位置关系有:平行和相交.2.〔10分〕在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为如果两条直线与第三条直线平行,那么这两条直线也互相平行.3.〔10分〕两条直线相交,交点的个数是1,两条直线平行,交点的个数是0.4.〔20分〕判断:〔1〕不相交的两条直线叫做平行线.(×)〔2〕如果一条直线与两条平行线中的一条平行, 那么它与另一条直线也互相平行.(√)〔3〕过一点有且只有一条直线平行于直线.(×)5.〔20分〕画图并解答.(1)画∠AOB,并用量角器画∠AOB的平分线OC,在OC上任取一点P,比较点P到OA、OB的距离的大小.(2)画∠AOB,在∠AOB的内部任取一点P,过点P作直线PC∥OA交OB 于点C,再过点P作直线PD∥OB交OA于点D,比较∠AOB与∠CPD的大小.解:〔1〕如图:PM、PN即为点P到OA、OB的距离,PM=PN.〔2〕如图:∠AOB=∠CPD二、综合运用〔20分〕6.在同一平面内,有三条直线,它们的交点个数可能是〔D〕A.0B.1C.2D.0,1,2,37.如图,假设AB∥CD,经过点E可画EF∥AB,那么EF与CD的位置关系是EF∥CD,理由是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第7题图第8题图三、拓展延伸〔10分〕8.如图,MN⊥AB,垂足为M,MN交CD于点N,过M点作MG⊥CD,垂足为G,EF过点N,且EF∥AB,交MG于点H,其中线段GM的长度是点M到CD的距离, 线段MN的长度是点N到AB的距离,又是两平行线AB与EF之间的距离,点N 到直线MG的距离是NG.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

第4课时 《平行线》导学案

第4课时 《平行线》导学案

ba aB Aac b a第4课时 《平行线》导学案 知识目标:1、掌握平行线的定义及平行公理; 2、会用几何语言表示平行公理。

能力目标:1、作图能力----会作平行线; 学习的快乐就是通过自己的努力而获取了知识!无师而自通,是学习的最高境界! 阅读课本12页“5.2.1平行线”部分,再回答下列问题。

1、 根据几何语句“直线a 与直线b 相交于点P ”作图。

2、如图,直线a 与直线b 会相交吗? (会、不会) 定义:在同一平面内,两条直线 (有、没有)交点时,称这两条直线互相平行。

如图,可记作a b 。

3、 根据生活经验,你能画出下图中直线a 的平行线吗?试着画一画。

你能画 条。

你能解释这种现象吗?如果你画出了几条平行线,这几条还也平行吗?答: 。

由此可得到:如果两条直线都与第三条直线 ,那么这两条直线也互相 。

简写为:平行于同一直线的两直线如右图:如果a ∥b ,c ∥b ,那么 ∥ 。

用符号语言可写成:∵ a ∥b ,c ∥b (已知) ∴ ∥ (平行于同一直线的两直线平行)4、如下图,你能过点A 画直线a 的平行线吗?若能,你能画 条。

能过点B 画直线a 的平行线吗?若能,你能画 条。

通过以上事实,可以得到:平行公理:经过直线 一点,有且只有 条直线与这条直线平行。

学习方法指导(学生提问题)对左边1、2、3、4各题中的知识点进行提问,把问题写在下方。

运用已知知识去解题,是掌握知识的最佳方法一、判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )3.过一点有且只有一条直线平行于已知直线.( )4有且只有一个公共点的两条直线是相交直线.()5.在同一平面内,不相交的两条直线一定平行.()6.一个平面内的两条直线,一定能把这个平面分为四个部分.()7.在同一平面内,平行于直线AB的直线只有一条()8.在同一平面内,两条直线的位置关系有相交、垂直、平行三种()9.在同一平面内,不垂直的两条直线必平行()10.在同一平面内,不平行的两条直线必垂直()11.在同一平面内,不相交的两条直线一定不垂直()二、填空题.1.在同一平面内,两条直线的位置关系有_________.2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一条必__________.3.两条直线相交,交点的个数是______个,两条直线平行,交点的个数是_____个.三、作图题1、过点A作CD// a2、过点C作CE // AB 左边各题中,若把“直线”改成“线段”或“射线”答案又会怎样,这是一题多变。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

平行线的性质(2)导学案

平行线的性质(2)导学案

平行线的性质(2)导学案班级__________姓名_____________学号_________学习目标:进一步理解平行线的性质,灵活运用性质去解决一些实际问题. 活动一.温故知新1.平行线的性质有几个?分别是什么?2.这些性质中条件和结论分别是什么?活动二.尝试练习1.如图DE ∥AB,DF ∥AC,∠EDF=85°,∠BDF=63°.(1)∠A 的度数;(2)∠A+∠B+∠C 的度数.2.如图,已知EAB 是直线,AD ∥BC,AD 平分∠EAC,试判定∠B 与∠C 的大小关系,并说明理由.活动三.巩固练习1.如下图,DE 过△ABC 的一个顶点A ,且D E ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC+∠B +∠C 各是多少度,为什么?2.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.N MG FEDCB AFE B AE DBA活动四.拓展延伸如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(1) (2) (3) (4)活动五.课外作业1.如图,在甲、乙之间要修一条笔直的公路。

从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确对接,则乙地所修公路的走向是, 理由是。

2.一条公路两次拐弯后,方向与原来相同,如果第一次拐的角是40°,则第二次拐的角是( ) A 50° B 60° C 40° D 140° 3、一个人驱车前进时,两次拐弯后,按原来的相反方向前进,这两次拐弯的角度是( )A 向右拐85°,再向右拐95°B 向右拐85°, 再向左拐85°C 向右拐85°,再向右拐85°D 向右拐85°, 再向左拐95°4.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°.5.∠ABE=140°,∠CDE=130°,AB ∥CD ,那么BE ⊥DE 吗? 请说明理由。

最新鲁教版初中数学六年级下册7.3平行线的性质公开课导学案

最新鲁教版初中数学六年级下册7.3平行线的性质公开课导学案

7.3 平行线的性质 导学案一、学习目标1.运用平行线的性质解决简单的问题。

2.探索平行线的性质,发现平行性的特征,归纳总结平行线的特性。

二、学习重难点运用平行线的性质解决简单的问题。

三、导学导练(一)自我学习(限时10分钟) 如图,直线a 与直线b 平行。

(1)比较同位角∠1和∠5的大小,它们有什么关系? 图中还有其他同位角吗?它们大小有什么关系?(2)图中有几对内错角?它们大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)自己再画一组平行线试试,能得到相同的结论吗?换句话说:一般的,如果两条互相平行的直线被第三条直线所截,那么同位角 ,内错角 ,同旁内角 。

也可以简单的说成:两直线平行, 两直线平行, 两直线平行,(二)典例示范1. 已知直线a 与直线b 平行,你能用数学语言叙述平行线的三条性质吗?___)__________.(__________________________,__________∴___)__________.(__________________________,__________∴___)__________.(__________________________,__________∴2.如图,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4. (1)∠3与∠1的大小有什么关系?∠2与∠4呢? (2)反射光线BC 与EF 也平行吗?(三)练习巩固 基础练习1. 如图,已知4321//,//l l l l ,且∠1=48°,那么∠2,∠3,∠4的度数分别是多少?2. 如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数。

能力提高1. 如图,点B ,E 分别在AC,DF 上,BD,CE 均与AF 相交,若∠1=∠2,∠C=∠D,那么∠A 与∠F 相等吗?请说明理由。

§5.2.2平行线的判定导学案

§5.2.2平行线的判定导学案

§5.2.2 平行线的判定——主讲人:陈荣环学校: 班级: 姓名: 一、课前测评1.如图①,直线a 与直线b 相交于点O ,则∠1+∠2= °, ∠1+∠3= °,∠1与∠3是 关系。

2.如图②,直线AB 与直线CD 相交于点O ,∠1 ∠2。

3.如图③,若AB ⊥CD ,垂足为点B ,则∠ABD= °。

4.若∠1=∠2,∠2=∠3,则∠1 ∠3。

5.如果a//b ,b//c ,那么有 // 。

二、新课引入1.如图1所示,直线a 与直线b 被直线c 所截; (1)同位角: (2)内错角: (3)同旁内角:AB CD③OAB C D12②c ab1 234图1a b O12 3 ①2.探究点一:平行线的判定方法一问题1. 能否由平行线的画法找到判断两直线平行的条件?※ 判定方法一:两条直线被第三条直线所截,如果同位角 ,那么这两条直线 。

简单说成:同位角 ,两直线 。

几何语言:如上图(4)∵ ∠1=∠2( 已知 )∴ a b ( 相等,两直线 )探究点二:平行线的判定方法二 问题2:如图2,直线a 、b 被直线c 所截, 已知∠2=∠3,能得出 a//b 吗?※ 判定方法二:两条直线被第三条直线所截, 如果内错角 ,那么这两条直线 。

简单说成:内错角 ,两直线 。

几何语言:∵∠2=∠3(已知)∴ ∥ ( 相等,两直线______)1 52abc图2探究点三:如图3,若∠2+∠4=180°,能得出 a//b 吗? ※ 判定方法三:两条直线被第三条直线所截, 如果同旁内角 ,那么这两条直线 。

简单说成:同旁内角 ,两直线 。

几何语言:∵∠2+∠4=180°(已知)∴ ∥ ( 互补,两直线_____)探究点四:在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行吗?为什么? 答:这两条直线 。

理由如下: 如图4,∵b a, ∴∠1= °. 同理 ∠2= °.∴∠1 ∠2.∵∠1和∠2是 角,∴b c (同位角 ,两直线 )※ 判定方法四:___________于同一直线的两条直线平行。

10平行线_导学案

10平行线_导学案
一、课前预习
1.如图,∠1 与∠3,∠2 与∠4 是什么角?它们的大小有什么关系? ∠1 与∠2,∠l 与∠4 是什么角?它们有什么关系?
2、如下图,怎样描述直线 AB、CD 和 EF 的位置关系?这三条线可以怎样称呼? 这三条直线形成几角? 这其中有哪些我们已经学过的有特殊位置关系的角?
二、自主学习(千里之行始于足下,相信自己,你能行)
A、B、C 三点
,理论根据是
6、观察如图所示的正方形
与 AB 平行的有
与 AB 垂直的有
则 A、B、C 三点
,理论根据是
6、观察如图所示的正方形
与 AB 平行的有
7
与 AB 垂直的有 与线段 AB 所在的直线既不相交也不平行的直线是
8、如图 4,用直尺和三角尺过点 P 分别画出三角形 ABC 三边的平行线。
a
β
b

α

c
1
a
2
3
b
11
由此我们可以得出平行线的判定方法二
两条直线被第三条直线所截,如果
,那么这两条直线平行。
简单说成:

探究(三)
如图,已知∠2 和∠3 互补,那么 a∥b 吗?为什么?
解:
c
1a
2
3
b
由此我们可以得出平行线的判定方法三 两条直线被第三条直线所截,如果 简单说成: 探究(四) 如图,已知不重合的三条直线 a、b、c, 如果 a∥c,b∥c,那么 a∥b 吗? 解:
二、探究新知
探究(一):
1.把图中的直线 a 与 b 看成被直尺边 c 所截,
那么在画图过程中,
角始终保持相等.
2.你发现判定两直线平行的方法了吗? 平行线的判定方法一 两条直线被第三条直线所截,如果 那么这两条直线平行。 简单说成: 探究(二) 如图,已知∠2=∠ 3,那么 a∥b 吗? 解:

7.2探索平行线的性质导学案

7.2探索平行线的性质导学案

7.2探索平行线的性质学习目标:1、经历平行线的性质得出的过程,初步掌握平行线的性质。

2、提高动手能力,培养自我探索精神。

学习重点:平行线性质的探索过程及简单应用学习用具:练习纸(带有横格)、剪刀学习过程:一、知识回顾1、两个角之间有哪些特殊的数量关系?怎样动手操作来验证呢?2、两直线平行的条件有哪些?二、探索活动1、⑴在练习本上画两条平行线AB、CD,再画直线MN与直线AB、CD相交。

指出图中的同位角、内错角、同旁内角。

⑵将上图剪成如下图⑴、⑵、⑶、⑷所示的4块。

⑴⑵⑶⑷分别把每对同位角、内错角重叠,你发现了什么?_________________________________________________________________⑶将⑵⑶分别剪成两部分,并按下图所示拼在一起。

你发现每对同旁内角之间有什么关系?_________________________________________________________________2、你能根据“两直线平行,同位角相等”,说明“两直线平行,内错角相等”成立的理由吗?(画图,写出说理过程)三、巩固练习1、如图,l 1∥l 2,l 3⊥l 1,l 3与l 2有怎样的位置关系?你是如何思考的。

2、如图,AD ∥BC ,∠A =∠C 。

试说明AB ∥DC。

四、学习小结:五、当堂训练:1、如图,CD ∥EF ,DE ∥AC ,请找出图中相等的角,并说明理由。

2、如图,在A 、B 两地之间修一条笔直的公路,从A 地测得公路的走向为北偏东60°,如果A 、B 两地同时开工,那么∠α是多少度时,才能使公路准确接通?3、如图,一块钢板ABCD 的两边AB 、DC 平行。

要在AB 上找一点E ,使∠AEC =150°,应怎样确定点E 的位置?为什么?l 1 l 2l 3 AB C E D F六、课后作业:1、如图,直线a、b被直线l所截,a∥b,∠1=121°,求∠3的度数。

《平行线》导学案

《平行线》导学案

5.2.1 平行线学习目标:1.理解平行线的概念,了解平行公理的内容;2.经历观察、思考的过程,感受平面内两直线间的位置;3.通过观察、操作、思考,培养学生学习数学的兴趣;学习重点:平行线的概念和平行公理。

学习难点:平行公理的探究。

学具准备:分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板学习过程:一、学前准备①两条直线相交有个交点。

②平面内两条直线的位置关系除相交外,还有哪些呢?二、探索与思考(一)平行线1、观察思考:展示学具,在转动a的过程中,有没有直线a与直线b不相交的位置呢?2、定义及表示方法:在同一平面内......,是平行线。

直线a与b平行,记作。

3、对平行线概念的理解:定义中强调“在同一平面内”,为什么要强调这句话。

在同一平面内,两条直线有几种位置关系? 在空间中,是否存在既不平行又不相交的两条直线? (提示:用长方体来说明)4、总结:同一平面内两条直线的位置关系有两种:(1)(2)。

请你举出一些生活中平行线的例子。

(二)画平行线1、工具:直尺、三角板2、方法:一“落”;二“靠”;三“移”;四“画”。

3、请你根据此方法练习画平行线:已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?(三)平行公理及推论1、思考:上图中,①过点B 画直线a 的平行线,能画 条; ②过点C 画直线a 的平行线,能画 条;③你画的直线有什么位置关系? 。

2、平行公理①公理内容: 。

②比较平行公理和垂线的第一条性质:共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.3、推论: 。

①符号语言:∵b ∥a ,c ∥a (已知)∴b ∥c (如果两条直线都与第三条直线平行,那么这两条直线也互相平行)②探索:如图,P 是直线AB 外一点,CD 与EF 相交于P.若CD 与AB 平行,则EF 与AB 平行吗?为什么?练一练:教材12页练习(在书上完成)三、归纳提升1.下列说法正确的有( )c b a A B· P C D E F①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD;④若a ∥b,b ∥c,则a 与c 不相交.A.1个B.2个C.3个D.4个2.根据下列要求画图.(1)如图(1)所示,过点A 画MN ∥BC;(2)如图(2)所示,过点P 画PE ∥OA,交OB 于点E,过点P 画PH ∥OB,交OA 于点H;(3)如图(3)所示,过点C 画CE ∥DA,与AB 交于点E,过点C 画CF ∥DB,与AB•延长线交于点F.(4)如图(4)所示,过点M ,N 分别画直线AB 的平行线, 判断所画的两条直线的位置关系. C B APO B AD C B A(1) (2) (3) (4)3、如图所示,∵AB ∥CD (已知),经过点F 可画EF ∥AB∴EF ∥CD ( )4、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

相交线与平行线导学案

相交线与平行线导学案

3. 如图,直线AB 、CD 相交于点0,ZC0E=90°,ZA0C=30°ZE0F 二Z4= _,ZCOF 的 ,ZBOF= ,ZF0B=90°,则 能归纳出“邻补角”的相交线与平行线 第一课时:5.1.1相交线【学习目标】了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题. 【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质. 一、知识梳理探索一:完成课本P2页的探究,填在课本上.你吗?55呢?图1性⑴ (2) (3) (4)练习一:1. 如图1所示,直线AB 和CD 相交于点0,0E 是一条射线.写出ZAOC 的邻补角:写出ZCOE 的邻补角:写出ZBOC 的邻补角:写出ZBOD 的对顶角: 2. 如图所示,Z1与Z2是对顶角的是( 二、知识运用1. ___________________________________ 如图,直线a,b 相交,Z1=40°,则Z2=Z3二―2. ________ 如图直线AB 、CD 、EF 相交于点0,ZBOE 的第3题三、知识提高1._________________________________________________ 若两个角互为邻补角,则它们的角平分线所夹的角为度.22.如图所示,直线a,b,c两两相交,Z1=60°,Z2二3Z4,□求Z3、Z5的度数.第二课时:5.1.2垂线【学习目标】1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习过程】一、知识梳理当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴ZA0C=90°/.ABCD,垂足是方式⑵TAB丄CD于0ZAOC=探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l的垂线,这样的垂线能画条;⑵如图2,经过直线l上一点A画l的垂线,这样的垂线能画条;⑶如图3,经过直线l外一点B画l的垂线,这样的垂线能画条;1A l(图1)(图2)(图3a)■(图3b)经过探索,我们可以发现:在同一平面内,过一点有且只有条直线与已知直线垂直.二、知识运用1.如图所示,0A丄OB,0C是一条射线,若ZA0C=120求ZBOC度数2.如图所示,直线AB,CD相交于点0,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.(2)过点P画CD的垂线,与AB相交于F点.(3)比较线段PE,PF,P0三者的大小关系简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离•注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.三、知识提高1.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离2. _______________________ 如图所示,AC丄BC,CD丄AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是,点A到BC的距离是,点C到AB□的距离是,•AOCD□的依据是第三课时:5.1.3同位角、内错角、同旁内角【学习目标】1、使学生理解三线八角的意义,并能从复杂图形中识别它们;2、通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、知识梳理探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”那么这8个角之间有哪些关系呢?位置1 位置2 结论Z1和Z5 处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角Z2和Z8 处于直线。

5.1.2画平行线(导学案)- 2023-2024学年数学四年级上册-人教版

5.1.2画平行线(导学案)-  2023-2024学年数学四年级上册-人教版

5.1.2 画平行线(导学案)2023-2024学年数学四年级上册-人教版教学内容本课教学内容为“画平行线”,选自《人教版数学四年级上册》第五单元“平行与垂直”的第一节。

本节课是在学生初步认识平行线的基础上,进一步学习如何利用直尺和量角器来画出给定一条直线的平行线。

通过本节课的学习,学生将掌握平行线的画法,并理解平行线的性质。

教学目标1. 知识与技能:学生能够正确使用直尺和量角器画出给定一条直线的平行线。

2. 过程与方法:学生通过观察、操作、验证等活动,培养动手操作能力和空间想象能力。

3. 情感、态度和价值观:学生体验数学学习的乐趣,增强对数学学科的兴趣和自信心。

教学难点1. 正确使用量角器测量和画角。

2. 理解平行线的性质,并能够应用到实际操作中。

教具学具准备1. 教具:直尺、量角器、三角板、教学课件。

2. 学具:直尺、量角器、三角板、练习本。

教学过程1. 导入:通过复习平行线的定义和性质,引导学生回顾平行线的概念,为新课的学习做好铺垫。

2. 新课:教师讲解平行线的画法,并示范如何使用直尺和量角器画出给定一条直线的平行线。

学生跟随教师的步骤进行操作,画出平行线。

3. 练习:学生独立完成练习题,巩固画平行线的技能。

教师巡回指导,解答学生的疑问。

4. 小结:教师引导学生总结本节课的学习内容,回顾平行线的画法和平行线的性质。

5. 作业布置:教师布置课后作业,要求学生独立完成,巩固所学知识。

板书设计1. 5.1.2 画平行线2. 目录:教学内容、教学目标、教学难点、教具学具准备、教学过程、作业布置3. 正文:按照教学过程的顺序,逐步展示平行线的画法、练习题、小结等内容。

作业设计1. 基础题:画出给定一条直线的平行线。

2. 提高题:在实际情境中,应用平行线的性质解决问题。

3. 拓展题:研究平行线在其他学科中的应用。

课后反思本节课通过讲解、示范、练习、总结等环节,使学生掌握了画平行线的技能,并理解了平行线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
C 5.2.1 平行线导学案(书P11-12)
【学习目标】
1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.
2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.
【学习重点】探索和掌握平行公理及其推论.
【学习难点】对平行线本质属性的理解,用几何语言描述图形的性质.
【自主学习】---平行线定义、表示法
1.结合演示的结论,用自己的语言描述平行线的认识:
①平行线是同一 的两条直线
②平行线是 交点的两条直线
2.尝试用数学语言描述平行定义 特别注意:直线a 与b 是平行线,记作“ ”,这里“ ”是平行符号. 思考: 如何确定两条直线的位置关系?.
【合作探究】----画图、观察、探索平行公理及平行公理推论 1.在转动木条b 的过程中,有几个位置能使b 与a 平行?
2.用直线和三角尺画平行线. 已知:直线a,点B,点C.
(1)过点B 画直线a 的平行线,能画几条?
(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 3.观察画图、归纳平行公理及推论.
(1)对照垂线的第一性质说出画图所得的结论.
平行公理:
(2)比较平行公理和垂线的第一条性质.
共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且
是 的.
不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”
没有限制,可在直线 ,也可在直线 .
4.探索平行公理的推论. (1)直观判定过B 点、C 点的a 的平行线b 、c 是互相 . (2)从直线b 、c 产生的过程说明直线b ∥直线c.
(3)用三角尺与直尺用平推方法验证b ∥c. (4)用数学语言表达这个结论
用符号语言表达为:如果 那么
(5)简单应用. 将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。

c
b
c
b a
【达标测评】
一、填空题.
1.在同一平面内,两条直线的位置关系有_________
2.两条直线l 1与l 2相交点A ,如果l 1//l ,那么l 2与l ( ),这是因为
( )。

3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
二、判断题.
( )1.不相交的两条直线叫做平行线.
( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也
互相平行.
( )3.过一点有且只有一条直线平行于已知直线.
三、解答题.
1.读下列语句,并画出图形后判断.
(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b.
(2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.
2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
3.读下列语句,并画出图形
(1)P 是直线AB 外的一点,直线C D 经过点P,且与直线AB 平行;
(2)直线AB 、C D 是相交直线,点P 是直线AB 、C D 外的一点,直线EF 经过点P 且与直线AB 平行,与直线C D 相交;
(3)如图1,过点A 画EF//BC;
(4)如图2,在∠AOB 内取一点P ,过点P 画PC//OA 交OB 于C ,PD//OB 交OA 于D 。

图1 图2
C。

相关文档
最新文档