平行线导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
C 5.2.1 平行线导学案(书P11-12)
【学习目标】
1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.
2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.
【学习重点】探索和掌握平行公理及其推论.
【学习难点】对平行线本质属性的理解,用几何语言描述图形的性质.
【自主学习】---平行线定义、表示法
1.结合演示的结论,用自己的语言描述平行线的认识:
①平行线是同一 的两条直线
②平行线是 交点的两条直线
2.尝试用数学语言描述平行定义 特别注意:直线a 与b 是平行线,记作“ ”,这里“ ”是平行符号. 思考: 如何确定两条直线的位置关系?.
【合作探究】----画图、观察、探索平行公理及平行公理推论 1.在转动木条b 的过程中,有几个位置能使b 与a 平行?
2.用直线和三角尺画平行线. 已知:直线a,点B,点C.
(1)过点B 画直线a 的平行线,能画几条?
(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 3.观察画图、归纳平行公理及推论.
(1)对照垂线的第一性质说出画图所得的结论.
平行公理:
(2)比较平行公理和垂线的第一条性质.
共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且
是 的.
不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”
没有限制,可在直线 ,也可在直线 .
4.探索平行公理的推论. (1)直观判定过B 点、C 点的a 的平行线b 、c 是互相 . (2)从直线b 、c 产生的过程说明直线b ∥直线c.
(3)用三角尺与直尺用平推方法验证b ∥c. (4)用数学语言表达这个结论
用符号语言表达为:如果 那么
(5)简单应用. 将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。
c
b
c
b a
【达标测评】
一、填空题.
1.在同一平面内,两条直线的位置关系有_________
2.两条直线l 1与l 2相交点A ,如果l 1//l ,那么l 2与l ( ),这是因为
( )。
3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
二、判断题.
( )1.不相交的两条直线叫做平行线.
( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也
互相平行.
( )3.过一点有且只有一条直线平行于已知直线.
三、解答题.
1.读下列语句,并画出图形后判断.
(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b.
(2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.
2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
3.读下列语句,并画出图形
(1)P 是直线AB 外的一点,直线C D 经过点P,且与直线AB 平行;
(2)直线AB 、C D 是相交直线,点P 是直线AB 、C D 外的一点,直线EF 经过点P 且与直线AB 平行,与直线C D 相交;
(3)如图1,过点A 画EF//BC;
(4)如图2,在∠AOB 内取一点P ,过点P 画PC//OA 交OB 于C ,PD//OB 交OA 于D 。
图1 图2
C