高中物理解题方法例话:13逆向思维法
高考物理复习热点解析—逆向思维法
高考物理复习热点解析—逆向思维法许多物理问题,按照常规的思路来分析思考,比较复杂,如果把问题颠倒过来看,可能变得极其简单,这是逆向思维的运用.善于运用逆向思维,不仅容易将问题化难为易,也容易应用灵活多变的方法来解决问题.在解决具体问题时由因到果的正向思维受阻,使求解过程陷入“山穷水尽”的境地时,若能变换角度,把物体所发生的物理过程逆过来加以分析,又能领略到“柳暗花明”的意境.这种“反其道而行之”的方法叫逆向思维法.解决物理问题常用的逆向思维有过程逆向、时间反演等.例题1.在六盘山高中运动会期间,某位老师参加定点投篮比赛,先后两次将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙面上,不计空气阻力,则下列说法正确的是()A.篮球在空中运动的加速度两次一样大B.篮球撞墙的速度,第一次较大C.从抛出到撞墙,第一次篮球在空中运动的时间较短D.抛出时的速度,第一次一定比第二次大【答案】A【解析】A.不计空气阻力,篮球只受重力,所以篮球在空中运动的加速度两次一样大,均为重力加速度,故A正确;BC .在两次运动中,篮球被抛出后的运动可以看作是平抛运动的逆反运动,由于两次篮球垂直撞在竖直墙面上,在竖直方向有212h gt =可得篮球从抛出到撞墙,第一次在空中运动的时间较长,但是两球的水平位移相同,根据x x v t=可知篮球撞墙的速度,第一次较小,故BC 错误;D.根据平行四边形定则知,抛出时的速度v =第一次的水平初速度小,上升的高度大,则无法比较抛出时的速度大小,故D 错误。
故选A 。
例题2.如图所示,在水平面上有一个质量为m 的小物块,在某时刻给它一个初速度,使其沿水平面做匀减速直线运动,其依次经过A 、B 、C 三点,最终停在O 点。
A 、B 、C 三点到O 点的距离分别为1L 、2L 、3L ,小物块由A 、B 、C 三点运动到O 点所用的时间分别为1t 、2t 、3t 。
下列结论正确的是()A .312222123L L L t t t ==B .312123L L L t t t ==C .312222123L L L t t t >>D .312123L L L t t t <<【答案】A【解析】A C .小物块由A 点到O 点的匀减速运动过程可看成由O 点到A 点的初速度为0的匀加速运动过程,由此可得21112L at =22212L at =23312L at =联立以上各式可得312222123L L L t t t ==A 正确;C 错误;B D .由02v v v +=知1A 12L v t =22B 2L v t =33C 2L v t =因为A B Cv v v >>所以312123L L L t t t >>BD 错误。
高中物理反向思维教案
高中物理反向思维教案
目标:通过反向思维,让学生通过探究物理定律的反面案例,深刻理解物理定律的原理和应用。
教学目标:
1. 理解物理定律的基本原理
2. 探究物理定律的反面案例
3. 分析和解释反面案例中的错误
4. 提出正确应用物理定律的方法
教学过程:
一、导入(5分钟)
教师向学生提出一个问题或挑战,让学生通过反向思维的方式来解决。
例如,如果地球突然停止旋转,会发生什么情况?
二、学习物理定律(10分钟)
教师向学生介绍一些基本的物理定律,例如牛顿第一、第二、第三定律等。
三、探究反面案例(15分钟)
学生分组讨论一个反面案例,例如“如果一个物体在空中自由下落时,速度会逐渐变大直至无限大”,要求学生分析其中的错误,并提出正确的物理定律。
四、分析错误原因(10分钟)
学生展示他们对反面案例的分析,讨论其中的错误原因并指出正确的物理定律。
五、应用物理定律(15分钟)
学生通过老师提供的一些案例或问题,练习应用正确的物理定律进行解决。
六、总结与展望(5分钟)
教师与学生一起总结本节课的重点,展望未来如何应用反向思维来更好地理解物理定律。
作业:
1. 独立完成一些应用物理定律的题目
2. 思考一个反面案例并写出错误原因以及正确的物理定律
评价标准:
1. 能够正确理解和应用物理定律的学生,分数较高
2. 能够深刻分析和解释错误案例的学生,分数较高
3. 能够提出合理的应用物理定律的方法的学生,分数较高
扩展阅读:可以让学生自主阅读一些有关反向思维和物理定律的文章,并结合课堂所学进行思考和讨论。
高中物理解题常用思维方法
高中物理解题常用思维方法高中物理解题常用思维方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。
高中物理解题常用思维方法二、对称法对称性就是事物在变化时存在的某种不变性。
自然界和自然科学中,普遍存在着优美和谐的对称现象。
利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。
从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。
用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。
高中物理解题常用思维方法三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。
运用物理图象处理物理问题是识图能力和作图能力的综合体现。
它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。
高中物理解题常用思维方法四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。
求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。
在分析弹力或摩擦力的有无及方向时,常利用该法。
高中物理解题常用思维方法五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。
这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。
高中物理-高中物理思想方法
思想方法1 极限思维法1.极限思维法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的,那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维方法.极限思维法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v =Δx Δt 中,当Δt →0时,v 是瞬时速度.(2)公式a =Δv Δt 中,当Δt →0时,a 是瞬时加速度.思想方法2 巧解匀变速直线运动问题的六种方法运动学问题的求解一般有多种方法,除直接应用公式外,还有如下方法:1.平均速度法定义式v -=x t 对任何性质的运动都适用,而v -=12(v 0+v )适用于匀变速直线运动.2.中间时刻速度法利用“任一时间t ,中间时刻的瞬时速度等于这段时间t 内的平均速度”,即v t2=v-,适用于任何一个匀变速直线运动,有些题目应用它可以避免常规解法中用位移公式列出的含有t2的复杂式子,从而简化解题过程,提高解题速度.3.比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征的比例关系,用比例法求解.4.逆向思维法把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知的情况.5.图象法应用v-t图象,可以使比较复杂的问题变得形象、直观和简单,尤其是用图象定性分析,可避开繁杂的计算,快速得出答案.6.推论法在匀变速直线运动中,两个连续相等的时间T内的位移之差为一恒量,即Δx=x n+1-x n=aT2,若出现相等的时间间隔问题,应优先考虑用Δx=aT2求解.数学技巧1物理中的函数图象1.问题概述物理图象是借助数形结合,将物体运动的函数关系与几何图线相结合,来描述两个物理量之间的依存关系,是近几年高考物理试卷中考查的热点问题之一.2.表现形式根据物理情景从同一角度或从不同角度设计物理图象,让学生判断哪些图象能正确描述物理情景.3.处理方法分析物理情景及所给图象,根据相应的物理原理写出数学表达式,最后根据数学表达式选出正确答案,或根据所给选项图象确定其运动性质是否符合题意.思想方法3临界条件在摩擦力突变问题中的应用1.问题特征当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性,对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力突变为滑动摩擦力.(2)滑动摩擦力突变为静摩擦力.思想方法4动态平衡问题的分析方法1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.2.基本思路:化“动”为“静”,“静”中求“动”.3.分析方法(1)解析法①列平衡方程求出未知量与已知量的关系表达式.②根据已知量的变化情况来确定未知量的变化情况.(2)图解法①根据已知量的变化情况,画出平行四边形边、角的变化.②确定未知量大小、方向的变化.。
高中物理学习方法与技巧
高中物理学习方法与技巧高中物理学习方法与技巧1、有准备的去听,也就是说听课前要先预习,找出不懂的知识、发现问题,带着知识点和问题去听课会有解惑的快乐,也更听得进去,容易掌握;2、参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。
3、听要结合写和思考。
纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。
4、如果你因为种种原因,出现了那些似懂非懂、不懂的知识,课上或者课后一定要花时间去弄懂。
不然问题只会越积越多,最后就只能等着拥抱那“不三不四”的考试分数了。
高中物理提分小窍门一、独立做题要独立地(指不依赖他人),保质保量地做一些题。
题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。
任何人学习数理化不经过这一关是学不好的。
独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。
二、物理过程要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。
题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器,以显示几何关系。
画图能够变抽象思维为形象思维,更精确地掌握物理过程。
有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。
三、学习资料学习资料要保存好,既要作好分类工作,还要好记号。
学习资料的分类包括练习题、试卷、实验报告等等。
所谓作记号,比方说对习题而言,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。
高考物理选择题的答题技巧物理选择题技法一、比较排除法通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项。
如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。
高中物理教学中学生逆向思维能力培养的策略
高中物理教学中学生逆向思维能力培养的策略随着社会的不断发展,科技的飞速进步,物理知识在高中教育中的重要性也越来越突出。
而作为物理学科的核心技能之一,逆向思维能力在高中物理教学中的培养显得尤为重要。
逆向思维能力不仅可以帮助学生更好地理解和应用物理知识,还可以培养学生的创新意识和问题解决能力。
本文将就高中物理教学中学生逆向思维能力培养的策略进行一些探讨。
1. 培养学生的自主学习能力自主学习是逆向思维能力的基础,而培养学生的自主学习能力是高中物理教学中不可或缺的一环。
教师可以通过布置探究性实验、案例分析等任务,引导学生通过自主地查找、筛选信息,提出问题,分析问题,提出解决方案等全过程,培养学生的独立思考和逆向思维能力。
2. 引导学生重视问题的发现和解决在教学中,教师应引导学生重视问题的发现和解决,培养学生对问题的敏感性和主动性。
对于一些常规的物理问题,教师可以引导学生通过逆向思考的方式来发现问题,提出疑问,并通过实验和推理进行解决,引导学生逐步形成逆向思维的习惯。
3. 鼓励学生进行创新实践创新实践是培养学生逆向思维能力的有效途径。
教师可以在教学中设置一些创新实践的任务,让学生通过自主思考、实验设计和实践操作等方式来解决问题,培养学生的逆向思维能力和创新意识。
4. 引导学生进行思维导图练习思维导图是一种能够有效促进学生思维发展和提高学习效率的工具。
教师可以引导学生在学习物理知识的过程中进行思维导图的练习,通过将零散的知识点、概念、定律等进行整合和归纳,帮助学生形成系统的思维方式和逆向思维模式。
5. 创设具有逆向思维要求的教学情境教学情境是教学的载体和形式,对于培养学生逆向思维能力至关重要。
教师可以在课堂上通过展示一些人们长期以来错误的物理认知,鼓励学生进行逆向思考和重新分析,以此引发学生的思考,增强学生的逆向思维能力。
6. 加强跨学科交叉教学物理学科与数学、化学等学科有着千丝万缕的联系,跨学科交叉教学可以促进学生对物理知识的更加深入和透彻的理解,也是培养学生逆向思维能力的重要途径。
高三物理教学中的逆向思维方法
高三物理教学中的逆向思维方法摘要:在物理学习过程中,很多物理概念和定律的解答和各种习题的解析,常常要通过逆向思考来解决。
逆向思考其实就是通过从事物的反面进行思考并用创新型的方式解决问题。
通过逆向思考的方式,学生不仅可以从多方面解答问题,还能培养创新方法解决问题,学会融会贯通,举一反三。
有意识的培养学生的逆向思维意识,能让他们在学习中另辟蹊径,达到意想不到的学习效果[1]。
关键词:高三物理复习;逆向思考教学;创新意识;能力培养受到传统的教学和学生本身的思维定式的影响,学生一般都习惯于从问题的正向思维出发去进行学习和思考并解决问题。
然而一些物理问题在解决的过程中如果通过逆向思考,通过问题的结果来找出解决方法,能够使问题得到更快速有效的解决。
逆向思考方法充分体现了人类发散思维的活跃性,以及他们在灵活解决问题方面的能力。
本文从几个方面探讨在高三物理复习中运用逆向思考教学的一些方法,供大家参考。
一、逆向思考方法的概念和特点(一)逆向思考法概念逆向思考法就是通过将事物的因果关系进行互换来分析和讨论问题,通过改变事物情发生的结果和原因来探究事物的本质。
通过这种学习方法,能够简化物理学习中的一些难题,提高学生解决问题的效率。
例如,将物体垂直向上抛出,在达到最高点前一秒的速度是怎样变化的?对于这道问题的解答,如果直接按照垂直上抛来求解,分析问题的过程可能很复杂,但是如果根据它下落的前一秒的速度变化规律来求解,就简单的多了[2]。
(二)逆向思考具有思维发散性和多向性的特点。
例如在复习“力的合成”这一课程时,对于提出的问题:作用在一个直线上的两个同方向作用力4N和6N,形成的合力是多大?按照正向思维方式,应该是10N。
如果换一个思维方式:合力为10N的两个力作用在同一直线和同一方向上,那么这两个力分别是多少?这时候通过逆向思维得出的结论就很有意思了。
可以是2和8,也可以是3和7、6和4等,这就大大拓展了学生的创新思维。
高三物理逆向思维法高考物理解题方法大全(原卷版)
高中物理解题方法逆向思维解题法(原卷版) 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。
所谓“逆向思维”,简单说来就是“倒过来想一想”。
这种方法用于解物理题,特别是某些难题,很有好处。
下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。
一、 在解题程序上逆向思维解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。
但有些题目反过来思考,从未知到已知逐步推理,反而方便些。
例1.如图1所示,图1一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。
用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。
在下列四种接法中,符合关系12212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。
(B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。
(C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。
(D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。
这种在解题程序上的逆向思维法,较多用于选择题和证明题,因为此类题给出了要求的结果,便于逆推。
二、在因果关系上逆向思维物理过程有一定的因果关系,通常从原因出发推导结果,称为正向思维。
但有时反过来,从结果倒推原因,可称为逆向思维。
例2.某人透过焦距为10厘米,直径为4.0厘米的薄凸透镜观看方格纸,每个方格的边长均为0.30厘米。
他使透镜的主轴与方格垂直,透镜与纸面相距10厘米,眼睛位于透镜主轴上离透镜5.0厘米处。
问他至多能看到同一行上几个完整的方格?有同学问:把物体放在焦点处不是不能成像吗?笔者一提示:用逆向思维法。
高中物理逆向思维法典型例题
高中物理逆向思维法典型例题常用的逆向思维有过程逆向、时间反演等.常在匀减速直线运动至速度为零、斜抛运动末速度水平、光路可逆等.例题:子弹以水平速度连续射穿三个并排的完全相同固定在水平地面上的木块后速度恰好减为零,如图所示,则它在射穿每个木块前的速度之比为多少?穿过每个木块所用时间之比为多少?(设子弹在每个木块中运动的阻力相等)例题:一辆汽车以72km/h的速率行驶,现因故紧急刹车并最终停止,已知汽车刹车过程中加速度的大小为5m/s²,则汽车从开始刹车在5s内的平均速度为(C)A、12m/sB、10m/sC、8m/sD、6m/s例题:做匀减速直线运动直到静止的质点,在最后三个连续相等的运动时间内通过的位移之比是5:3:1,在最后三个连接相等的位移内所用的时间之比是(√3一2):(√2-1):1例题:一物体以某一初速度在粗糙的平面上做匀减速直线运动,最后静止下来。
若物体在最初5s内通过的路程与最后5s内通过的路程之比为11:5,求此物体一共运动了多长时间。
例题:一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,已知物体由a到e的时间为to,则它从e经b再返回e所需时间为()A.t₀B.(√2-1)t₀C.2(√2+1)t₀D.(2√2+1)t₀例题:如图所示,在斜面底端C点以一定初速度斜向左上方抛出质量相同的两小球a、b,小球a、b分别沿水平方向击中斜面顶端A 点和斜面中点B,不计空气阻力,则下列说法正确的是(D)A.小球a.b在空中飞行的时间之比为2:1B.小球a.b在C点时的初速度大小之比为2:1C.小球a.b在击中点时的动能之比为4:1D.小球a.b在抛出点时的速度与斜面的夹角之比为1:1例题:如图所示,一充电的平行板电容器,板长为L,两板间距为d,现将一带电微粒(重力不计)从下极板的左边缘射入电场中,结果带电微粒刚好从上极板的右边缘水平射出,试确定带电微粒射入电场时,速度方向与下板的夹角θ。
高考物理选择题做题策略与技巧
高考物理选择题做题策略与技巧高考物理中,选择题占据着相当重要的一部分分值。
掌握有效的做题策略与技巧,对于在高考中取得优异成绩至关重要。
以下将为大家详细介绍高考物理选择题的做题策略与技巧。
一、认真审题审题是做好选择题的第一步,也是最为关键的一步。
在审题时,要特别注意以下几个方面:1、抓住关键词题目中的关键词往往能够指明解题的方向和重点。
例如,“匀速”“最大”“最小”“恰好”等词汇,这些关键词能够帮助我们明确题目所描述的物理情境和需要解决的问题。
2、理解物理概念和规律很多选择题都是基于物理概念和规律来设置的。
如果对相关的概念和规律理解不透彻,就很容易出错。
因此,在审题时,要迅速回忆与题目相关的物理概念和规律,确保自己对其有清晰的认识。
3、分析题目中的条件和隐含条件有些题目中的条件是明确给出的,而有些则是隐含在题目中的。
例如,物体在光滑平面上运动,就意味着摩擦力为零;一个带电粒子在匀强电场中运动,就需要考虑电场力的作用等。
只有充分挖掘出这些隐含条件,才能正确解题。
二、排除法排除法是做选择题时常用的一种技巧。
通过对选项进行逐一分析,排除明显错误的选项,可以大大提高解题的准确率和效率。
1、排除与常识相悖的选项如果某个选项与我们日常生活中的常识或已经掌握的物理知识相悖,那么这个选项很可能是错误的。
2、排除与题目条件不符的选项将每个选项与题目中给出的条件进行对比,如果某个选项不符合题目所给定的条件,就可以将其排除。
3、排除逻辑上不合理的选项有些选项在逻辑上存在漏洞或者不合理之处,通过仔细分析,可以将其排除。
三、特殊值法对于一些具有一般性结论的选择题,如果我们能够选取特殊值进行代入计算,往往可以快速得出答案。
例如,在涉及到比例关系的题目中,可以选取一些简单的特殊值,如 1、2、0 等,代入选项中进行计算和比较。
通过这种方法,可以避免复杂的计算过程,节省解题时间。
四、极限法极限法是将物理量推向极端情况进行分析和判断的一种方法。
高考物理选择题答题技巧
高考物理选择题答题技巧选择题在高考中属于保分题目,只有“选择题多拿分,高考才能得高分”,在平时的训练中,针对选择题要做到两个方面:一是练准确度;高考中遗憾的不是难题做不出来,而是简单题和中档题做错;平时会做的题目没做对,平时训练一定要重视选择题的正确率.二是练速度:提高选择题的答题速度,能为攻克后面的解答题赢得充足时间.解答选择题时除了掌握直接判断和定量计算常规方法外,还要学会一些非常规巧解妙招,针对题目特点“不择手段”,达到快速解题的目的.(一)特殊值代入法有些选择题选项的代数表达式比较复杂,需经过比较繁琐的公式推导过程,此时可在不违背题意的前提下选择一些能直接反应已知量和未知量数量关系的特殊值,代入有关算式进行推算,依据结果对选项进行判断.例1如图1所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力FT和斜面的支持力FN分别为(重力加速度为g)( )图1A.FT=m(gsinθ+acosθ),FN=m(gcosθ-asinθ)B.FT=m(gcosθ+asinθ),FN=m(msinθ-acosθ)C.FT=m(acosθ-gsinθ),FN=m(gcosθ+asinθ)D.FT=m(asinθ-gcosθ),FN=m(gsinθ+acosθ)技法运用一般的求解方法是分解力或加速度后,再应用牛顿第二定律列式求解,其实应用特殊值代入法更简单,当加速度a =0时,小球受到细线的拉力FT不为零也不可能为负值,所以排除选项C、D;当加速度a=g/tanθ时,小球将离开斜面,斜面的支持力FN=0,排除选项B,故选项A 正确.答案A方法感悟这种方法的实质是将抽象、复杂的一般性问题的推导、计算转化成具体的、简单的特殊性问题来处理,以达到迅速、准确解题的目的.(二)“二级结论”法“二级结论”是由基本规律和基本公式导出的推论.熟记并巧用一些“二级结论”可以使思维过程简化,节约解题时间.非常实用的二级结论有:(1)等时圆规律;(2)平抛运动速度的反向延长线过水平位移的中点;(3)不同质量和电荷量的同性带电粒子由静止相继经过同一加速电场和偏转电场,轨迹重合;(4)直流电路中动态分析的“串反并同”结论;(5)平行通电导线同向相吸,异向相斥;(6)带电平行板电容器与电源断开,改变极板间距离不影响极板间匀强电场的强度等.例2(多选)如图2所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示.不计轨道电阻,以下叙述正确的是( )图2A.FM向右B.FN向左C.FM逐渐增大D.FN逐渐减小技法运用根据直线电流产生磁场的分布情况知,M区的磁场方向垂直纸面向外,N区的磁场方向垂直纸面向里,离导线越远,磁感应强度越小.当导体棒匀速通过M、N两区时,感应电流的效果总是反抗引起感应电流的原因,故导体棒在M、N两区运动时,受到的安培力均向左,故选项A错误,选项B正确;导体棒在M区运动时,磁感应强度B变大,根据E=Blv,I=E/R及F=BIl可知,FM逐渐增大,故选项C正确;导体棒在N区运动时,磁感应强度B变小,根据E=Blv,I=E/R及F=BIl可知,FN逐渐减小,故选项D正确.答案BCD方法感悟本题也可根据楞次定律判断感应电流的方向,再利用左手定则判断安培力的方向,用安培力公式分析安培力大小变化,也可得出结果,但相比应用楞次定律的二级结论慢多了.(三)逆向思维法在解决某些物理问题的过程中直接入手有一定的难度,改变思考问题的顺序,从相反的方向进行思考,进而解决问题,这种解题方法称为逆向思维法.逆向思维法的运用主要体现在可逆性物理过程中(如运动的可逆性、光路的可逆性等),也可运用反证归谬法等,逆向思维法是一种具有创造性的思维方法.例3 如图3所示,将一篮球从地面上方B点斜向上抛出,刚好垂直击中篮板上A点,不计空气阻力.若抛射点B向篮板方向移动一小段距离,仍使抛出的篮球垂直击中A 点,则可行的是( )图3A.增大抛射速度v0,同时减小抛射角θB.减小抛射速度v0,同时减小抛射角θC.增大抛射角θ,同时减小抛出速度v0D.增大抛射角θ,同时增大抛出速度v0技法运用篮球做斜上抛运动,末速度为垂直竖直篮板沿水平方向,可以将该过程逆向处理为平抛运动.当B点向篮板方向移动一小段距离后,由于A、B点间竖直高度不变,为使篮球飞经B点,从A点飞出的水平速度应该小一点,若水平速度减小,则落到B点的速度变小,但与水平面的夹角变大.因此只有增大抛射角,同时减小抛出速度,才能使抛出的篮球仍垂直打到篮球上.答案C将斜抛运动通过逆向思维处理为平抛运动,从而降低解题的难度.(四)等效替换法等效替换法是把陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象、物理过程来研究,从而认识研究对象本质和规律的一种思想方法.等效替换法广泛应用于物理问题的研究中,如:力的合成与分解、运动的合成与分解、等效场、等效电源等.例4由消防水龙带的喷嘴喷出水的流量是0.28 m3/min,水离开喷口时的速度大小为16m/s,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10 m/s2)( )A.28.8 m、1.12×10-2m3B.28.8 m、0.672 m3C.38.4 m、1.29×10-2m3D.38.4 m、0.776 m3技法运用对倾斜向上的水柱,逆向思考为平抛运动,则喷口处竖直分速度为v2=vsin 60°=24 m/s,所以水柱的高度h=28.8 m,时间t=v2/g=2.4 s,即空中水量V=Qt=0.28/60×2.4 m3=1.12×10-2 m3,故正确选项为A.答案A水柱在空中运动的速度、水柱的粗细均不相同,所以直接求水柱的水量有困难,本题若用水柱的水量与2.4 s内喷口喷出的水量相等,则空中水量大小就很容易求解了. (五)估算法有些选择题本身就是估算题,有些貌似要精确计算,实际上只要通过物理方法(如:数量级分析),或者数学近似计算法(如:小数舍余取整),进行大致推算即可得出答案.估算是一种科学而有实用价值的特殊方法,可以大大简化运算,帮助考生快速地找出正确选项.例5卫星电话信号需要通过地球同步卫星传送.如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105 km,运行周期约为27天,地球半径约为6 400 km,无线电信号的传播速度为3×108 m/s)( )A.0.1 sB.0.25 sC.0.5 sD.1 s答案B此题利用估算法,把小数舍余取整,相差较大的两个量求和时舍去小的那个量,并未严格精确计算也可快速得出正确选项.(六)类比分析法所谓类比分析法,就是将两个(或两类)研究对象进行对比,分析它们的相同或相似之处、相互的联系或所遵循的规律,然后根据它们在某些方面有相同或相似的属性,进一步推断它们在其他方面也可能有相同或相似的属性的一种思维方法.在处理一些物理背景很新颖的题目时,可以尝试着使用这种方法.例6两质量均为M的球形均匀星体,其连线的垂直平分线为MN,O为两星体连线的中点,如图1所示,一质量为m的小物体从O点沿着OM方向运动,则它受到的万有引力大小的变化情况是( )图1A.一直增大B.一直减小C.先增大后减小D.先减小或增大技法运用由于万有引力定律和库仑定律的内容和表达式的相似性,故可以将该题与电荷之间的相互作用类比,即将两个星体类比于等量同种电荷,而小物体类比于异种电荷.由此易得C选项正确.答案C方法感悟两个等质量的均匀星体中垂线上的引力场分布情况不熟悉,但等量同种电荷中垂线上电场强度大小分布规律我们却很熟悉,通过类比思维,使新颖的题目突然变得似曾相识了.(七)极限思维法将某些物理量的数值推向极值(如设动摩擦因数趋近零或无穷大、电源内阻趋近零或无穷大、物体的质量趋近零或无穷大、斜面的倾角趋于0°或90°等),并根据一些显而易见的结果、结论或熟悉的物理现象进行分析和推理的一种办法.例7如图1所示,一半径为R的绝缘环上,均匀地带电荷量为Q的电荷,在垂直于圆环平面的对称轴上有一点P,它与环心O的距离OP=L.静电力常量为k,关于P 点的场强E,下列四个表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析,判断正确的表达式是( )图1技法运用当R=0时,带电圆环等同一点电荷,由点电荷电场强度计算式可知在P点的电场强度为,将R=0代入四个选项,只有A、D选项满足;当L=0时,均匀带电圆环的中心处产生的电场的电场强度为0,将L=0代入选项A、D,只有选项D满足.答案D方法感悟有的问题可能不容易直接求解,但是当你将题中的某物理量的数值推向极限时,就可以对这些问题的选项是否合理进行分析和判断.(八)对称思维法对称情况存在于各种物理现象和物理规律中,应用这种对称性可以帮助我们直接抓住问题的实质,避免复杂的数学演算和推导,快速解题.例8下列选项中的各1/4圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各1/4圆环间彼此绝缘.坐标原点O处电场强度最大的是( )技法运用设1/4圆环的电荷在原点O产生的电场强度为E0,根据电场强度叠加原理,在坐标原点O处,A图场强为E0,B图场强为√2E0,C图场强为E0,D图场强为0,因此本题答案为B.答案B方法感悟利用对称性,只计算抵消后剩余部分的场强,这样可以明显减少解答运算量,做到快速解题.(九)比较排除法通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项.如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中只可能有一种说法是正确的,当然,也可能两者都错.例9如图2所示,等腰直角区域EFG内有垂直纸面向里的磁感应强度为B的匀强磁场,直角边EF长度为2L.现有一电阻为R的闭合直角梯形导线框ABCD以恒定速度v 水平向右匀速通过磁场.t=0时刻恰好位于图示位置(即BC与EF在一条直线上,且C与E重合),规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线正确的是( )图2技法运用如图所示,从t=0时刻到t=2L/V时刻,穿过闭合回路的磁通量增大,由楞次定律可得:流过闭合回路的电流方向沿逆时针方向,结合题意和四个答案可排除答案A.当t=L/V,电流大小为i=BLV/R;当t=2L/V时且CD边刚要离开磁场还未离开磁场时,电流大小为i=BLV/R,排除答案B和D.综合上面分析可得:本题答案选C.答案C方法感悟我们利用排除法求解本题时,不需要对导线框的具体运动过程进行分析,只需要抓住导线框在某一时刻的情况进行排除,这样可以节省做题时间,提高做题效率.排除法是求解选择题的好方法,同学们平时要注意灵活应用。
高中物理教学中学生逆向思维能力培养的策略
高中物理教学中学生逆向思维能力培养的策略【摘要】现代高中物理教学注重培养学生的逆向思维能力,本文从激发学生兴趣、引导学生质疑、培养学生实践能力、提倡跨学科思维和鼓励反问精神等五个方面探讨了培养学生逆向思维能力的策略。
通过生动有趣的故事和实例激发学生对物理学的兴趣,引导他们主动思考问题并形成质疑精神;通过实践探究和实验操作,培养学生的实践能力和逆向推理思维;接着,跨学科思维的引入可以拓展学生的思维边界,更好地理解物理现象;鼓励学生勇于发问和探究,培养他们解决问题的能力。
总结了一系列训练方法,并展望未来发展方向。
通过本文的指导,希望学生在高中物理学习中能够不断提高逆向思维能力,更好地应对未来挑战。
【关键词】高中物理教学、学生、逆向思维能力、培养策略、引言、研究背景、研究意义、正文、激发兴趣、引导质疑、培养实践能力、跨学科思维、反问精神、结论、总结训练方法、展望未来发展。
1. 引言1.1 研究背景在当今社会,高中物理教学中逆向思维能力的培养已经成为教育界和科学界关注的热点问题。
随着科学技术的不断发展,传统的死记硬背和机械式学习已经不能满足学生的需求。
学生需要有更加灵活和创新的思维方式来解决现实问题,而逆向思维能力正是培养学生这种能力的有效途径之一。
当前,教育界对于高中物理教学中学生逆向思维能力的培养还处于摸索和探索阶段。
在传统教育体制下,教师往往更注重知识的灌输和考试的应试技巧,而忽视了学生的实际能力和创新意识的培养。
急需研究和探讨如何在高中物理教学中有效地培养学生的逆向思维能力,促进他们的创新能力和实践能力的提升。
1.2 研究意义研究意义主要体现在以下几个方面:逆向思维能力是一种高级认知能力,对学生的综合素质提升具有积极意义。
现代社会对创新能力和解决问题的能力提出了更高的要求,逆向思维能力恰好能够培养学生在解决复杂问题时能够从多个角度出发,找到新颖的解决方案。
逆向思维能力的培养也符合高中物理课程改革的方向,强调培养学生的自主学习和探究精神。
高中物理的典型思维方式
高中物理的典型思维方式作者:董立明来源:《中学课程辅导·教师通讯》2015年第05期要学好高中物理,光靠做题肯定是不行的,还必须掌握正确的物理思维方法。
起到举一反三、事半功倍的效果。
下面是笔者总结的常用的典型物理问题的思维方法。
一、猜想、假设与反证该方法是在研究对象的物理过程不清楚的情况下,根据猜想,假设出一种过程或一种状态,再根据题设所给条件进行逻辑分析或计算得到结果,将结果与实际情况作比较,对假设进行判断,从而获得清晰的解题思路的一种方法。
有时还可以人为地改变原题所给条件,作出某种假设,产生出与原题相悖的结论,也就是我们常说的反证。
二、作图与图像图像法是将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简,化抽象为形象的目的,包括物理过程图,状态图,矢量图,V-t图等等。
三、特值、特例与量纲这种方法常用于选择题。
是根据问题构建或回忆头脑中的物理实例或让某些物理量取特殊值,通过简单的逻辑分析、计算进行判断的一种方法,或分析量纲。
可以最大限度缩小选择题选项的数量。
四、去次留主建模型模型思维法就是对研究对象或过程加以合理的简化,突出主要因素,忽略次要因素,从而解决物理问题的方法。
高中物理的模型很多,包括:实体模型(质点、轻绳轻杆、弹簧振子、平行玻璃砖等);过程模型(匀速运动、匀变速、简谐运动等)五、极限和临界极限和临界的思维方法,是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的一般规律的表现,做科学分析,得出正确判断或导出一般结论的方法。
在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷。
这两种方法对分析综合能力和数学应用能力要求都较高,一旦应用得恰当,就能出奇制胜。
六、等效转化等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法。
基本特征为等效替代。
高中物理教学中学生逆向思维能力的培养
教学琐谈JIAOXUESUOTAN高中物理教学中学生逆向思维能力的培养山东省嘉祥县第一中学 翟东春 【摘 要】在高中阶段,要将理论与实际结合起来,教师在教学过程中要将学生的综合素质和创新思维结合起来,不断促进学生各方面的发展。
本文主要围绕高中物理教学中培养学生逆向思维能力方面存在的问题、高中物理教学中培养学生逆向思维能力的策略等展开探究。
【关键词】高中物理 中学生 逆向思维 策略探究一、培养学生逆向思维能力方面存在的问题在日常生活中,教师主要是根据平时的知识进行讲授,大部分讲授的是传统的物理知识,大部分学生的逆向思维不够完善。
让人担忧的是,目前,仍有一些教师坚持传统的教学理念,不愿改变较为陈旧的教学模式,不愿接受新课改,严重阻碍了物理课堂教学的进一步发展。
如何改善教学方式,促进学生逆向思维能力的提升呢?这就需要我们进一步展开相关的探究,重视物理实验,重视情境教学,促进自己思维能力素质的提高。
二、培养学生逆向思维能力的策略(一)从物理概念的探究方面培养中学生的创新思维物理概念主要是基于现实生活中的,学生不能死记硬背,而要结合自己的实际学习情况来进行相关的探究学习,积极探究相关规律。
当然,教师也要学习并掌握先进的教学方法和教学理念,将枯燥的专业知识转化成通俗易懂的概念和定义,积极培养学生对物理学习的兴趣,培养学生的创造性思维。
例如,在《运动》一章中,涉及匀速运动、匀减速运动、瞬时速度、平均速度等概念,学生如果死记硬背这些概念,会遗忘得特别快。
如果教师能够创新教学方法,调动学生的逆向思维,学生对这些知识点就会容易接受得多。
相对于匀减速运动,匀加速运动就显得比较容易。
很多物理的概念并不是固定的,物理教师需要根据实际情况来进行教学,从而将学生的逆向思维更好地发挥出来。
(二)创设物理情境问题来提升学生的逆向思维在高中物理的学习过程中,很多学生会遇到各种各样的问题,学生在学习过程中要主动思考,提出一些有探究性的、值得深思的问题。
高中物理八大解题方法之七:逆向思维法
l t高中物理解题方法之逆向思维法江苏省特级教师 戴儒京内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。
所谓“逆向思维”,简单说来就是“倒过来想一想”。
这种方法用于解物理题,特别是某些难题,很有好处。
下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。
一、在解题程序上逆向思维解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。
但有些题目反过来思考,从未知到已知逐步推理,反而方便些。
例1.如图1所示,图1一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。
用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。
在下列四种接法中,符合关系的有:12212121,n n I I n n U U ==(A )b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。
(B )b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。
(C )a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。
(D )a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。
析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。
但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。
对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总匝数为2 n 2,据变压器变压比公式及变流比公式有。
121221212121,22n n U U I I n n n n U U ====对(B ),初级总匝数为2 n 1,次级总匝数为n 2(ef 与gh 并联),不符合题给两公式。
高中物理几种常用的解题技巧浅谈
2019年01月中学教育高中物理几种常用的解题技巧浅谈周宜航(西南大学附属中学 重庆 400700)摘要:高中阶段物理对于大多数同学来讲,是比较难学的一门学科,要想更好、更快、更高效的解题,我们要熟练掌握基础物理知识,然后通过大量习题练习,在解题过程中学会提取重点内容,提升自己的解题能力与解题技巧。
关键词:高中物理解题技巧高中阶段物理解题难主要表现在解题的应用方面,物理题的题目构建大多源自于现实生活中,依据生产、科技为基础进行构建。
所以问题的解决过程也要将理论知识应用在实际问题上,这种情况就会对解题过程中的综合素质能力以及思维深度问题作出较高的要求,从而使得解题难度较大。
一、审题建模审题建模就是通过对题目的熟读与审视,对题目进行重点提取,内容简化等手段,将题目中的实际问题简化剖析,从而转化成基于理论知识的理想过程。
在做题时首先第一步就是要对题目进行重点提取,例如匀变速直线运动,自由落体运动,匀速平抛运动等对这类重点字句进行提取与标识,将重点提取出来看作一个整体。
做到明确解题目标,将解题目标明确下来,所有的解题过程都是服务于这个目标的。
统览全局,时刻注意题目中所有的知识点与难点,进行重点解析,不要遗漏也不要偏离主题。
防止思路极端化,在解题过程中,更多的利用物理基础知识,全面而客观地分析题目,不要偏离主题,切忌钻牛角尖。
在审题的同时最好可以将草图也画出来,画草图是帮助分析物理习题的重要步骤,可以有效的拆分化简问题的难度,将问题更直白的体现在草图中,把问题具象化,将复杂抽象的物理场景整合转化为熟悉常见的模型也是极为重要的一步,遇到新题型、新的模型、多物体存在、过程繁琐的题目,一定要注意先静心多阅读几遍,反复确认重难点。
二、数学处理用数学手段去解析物理题,对于我们高中生而言都是十分熟悉的,也是比较基本的能力要求。
高中数学平面几何,三角函数等知识都是可以运用在物理解析中。
在物理解析中最广泛最常用的数学技能无疑是解物理方程式的计算能力,所以我们在平常也要有意识的进行积累和补充物理中常用的数学知识与能力,进行融会贯通,注意在解决物理问题的过程中所遇到的数学思想与方法。
逆向思维在高中物理中的几个重要应用
逆向思维在高中物理中的几个重要应用作者:陈攀来源:《新课程·教育学术》2011年第05期逆向思维是人们重要的一种思维方式,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。
敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
当大家都朝着一个固定的思维方向思考问题时,而你却独自朝相反的方向思索,这样的思维方式就叫逆向思维。
在高中物理中,也不乏利用逆向思维解决问题的例子,课本中提到法拉第在研究电磁感应现象时,他最初的设想认为电和磁之间必然存在联系并且能相互转化,他想既然电能产生磁场,那么磁场也能产生电。
在理综高考中,如果能够利用逆向思维解决一两个题目,不仅能提高解题的正确率,节约时间,更能大大地增强学生考试时的信心。
经常可以用逆向思维解决的高中物理内容可大致分为以下几类:一、运动轨迹可逆应用直线运动中的逆向思维,在直线运动过程的“末态”作为“初态”的反向研究问题的方法。
如物体做加速运动看成反方向的减速运动,物体做减速运动看成反方向的加速运动处理。
例:质点做匀减速直线运动,第1s内位移为10m,停止运动前最后1s内位移为2m,则质点运动的加速度大小与初速度的大小分别为多少。
解析:如果按照通常的思维顺序可依次列出如下方程从上述方程组中解得a=4m/s2,υ0=12m/s二、物理分析过程的可逆应用在涉及此类问题的一些复杂题目当中,特别是一些高考计算大题中,也可见到逆向思维的方法。
根据题目的求解问题先倒推需要的物理量,一步步直到与题目的物理已知条件,用此类方法能使问题迎刃而解。
例:如图所示,在磁感应强度大小为B、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m的匀质金属杆A1和A2,开始时两根金属杆位于同一竖起面内,且杆与轨道垂直。
设两导轨面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆的单位长度的电阻为r。
高中物理模块要点回眸第11点巧用逆向思维法解题素材沪科版必修1(new)
第11点巧用逆向思维法解题逆向思维法就是沿着物理过程发生的相反方向,根据原因探索结果的思维方式,即把运动过程的末态当成初态、初态当成末态进行反向研究的方法,该方法一般用于末态已知的情况或末态很容易确定的情况,如匀减速直线运动可看成加速度等大反向的匀加速直线运动.对点例题一列火车共有n节车厢,每节车厢的长度都相同且车厢间的间隙不计.该火车进站时做匀减速直线运动直到停下,该过程中,站在车站站台的一个旅客测得最后一节车厢经过他所用时间为t,则该列车第1节车厢经过他所用的时间是________.解题指导由于做匀减速直线运动直到停下,可将此运动反演成从终点开始沿反方向做初速度为零的匀加速直线运动,由结论“初速度为零的匀加速直线运动中通过连续相等位移所用时间之比"可得t∶t2∶……∶t n=(错误!-错误!)∶(错误!-错误!)∶……∶11即t1∶t n=(错误!-错误!)∶1求得第1节车厢经过他所用时间t1=(错误!-错误!)·t答案见解题指导技巧点拨利用逆向思维法可将末速度为零的匀减速直线运动看成是反方向的初速度为零的匀加速直线运动来处理,其相应的推论和结论全部适用,求解更为快捷.物体在一条直线上由A经B到C做匀加速直线运动,AB段与BC段的位移分别为s和3s,通过的时间分别为2t和t.求物体经过B点时的速度.答案错误!解析物体从A到B做加速度为a、末速度为v的匀加速运动,可看成从B到A做加速度为-a、初速度为v的匀减速直线运动,如图所示.将AB段逆向思维,则s=v·2t+错误!(-a)(2t)2BC段正向思维,则3s=v·t+错误!at2联立求得物体在B点的速度v=错误!。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2逆向思维法
故事链接:传统的破冰船,都是依靠自身的重量来压碎冰块的,因此它的头部都采用高硬度材料制成,而且设计得十分笨重,转向非常不便,所以这种破冰船非常害怕侧向漂来的流水。
前苏联的科学家运用逆向思维法,变向下压冰为向上推冰,即让破冰船潜入水下,依靠浮力从冰下向上破冰。
新的破冰船设计得非常灵巧,不仅节约了许多原材料,而且不需要很大的动力,自身的安全性也大为提高。
遇到较坚厚的冰层,破冰船就像海豚那样上下起伏前进,破冰效果非常好。
这种破冰船被誉为“本世纪最有前途的破冰船”。
以前的发电机共同的构造是各有一个定子和一个转子,定子不动,转子转动。
1994年,我国著名的物理学家苏卫星突发奇想,利用逆向思维法,让定子也“旋转起来”。
他经过多次的实验,发明了“两向旋转发电机”定子也转动,发电效率比普通发电机提高了四倍。
同年8月获中国高新科技杯金奖,并受到联合国TIPS 组织的关注。
1996年,丹麦某大公司曾想以300万元人民币买断其专利,可见其发明价值之巨大。
说到“两向旋转发电机”的发明,也应归功于逆向思维。
逆向思维法就是打破原来的顺序或向问题的反方向去思考的一种思维方式。
常用的逆向思维法有过程逆向思维法和状态逆向思维法。
下面分别举例说明。
(1) 过程逆向思维法
[例题1](2003年高考)有一个斜面和竖直放置的半径为 2.5m 的半圆形环组成的光滑轨道如图所示,要想在水平地面上抛出一小球,使它在半环的的最高点A 平滑地(无碰撞)进入环形轨道下落到D 点,再沿斜面上升到离地面为10m 高的B 点,求小球在距D 多远的地方以多大的速度与地面成多大的角度抛出才能到达B 点?
解析:由于轨道光滑,不计空气阻力,所以小球从C 到A 到D 到B 运动与B 到D 到A 到C 的运动是可逆的,所以我们可采用逆向思维法,将小球从B 点静止释放求到C 点的速度大小方向以及位置。
设小球在A 点时的速度为A v ,以地面为零势面,根据机械能守恒定律
B 到A 的过程R mg mv mgh A 2212+= 解得s m gR gh v A /1042=-= B 到
C 的过程221c mv mgh =解得s m gh v C /2102== A 到作平抛运动
竖直速度s m v v v A C y /102
2=-= 设速度与水平方向夹角为α则1tan ==A y
v v α所以α为45度,
下落的时间g
R t 4=水平位移m g R v t v x A A 204===
所以应从距D 点20m 的地方以与地面成45度大小为s m /210的速度向上抛出才能刚好到达B 点。
[例题2]做匀减速直线运动直到静止的物体,在最后三个连续相等的运动时间内通过的位移比是 。
解析:初速度为零的匀加速直线运动开始的三个连续相等的时间内通过的位移比为:1:3:5,如把这题中的运动倒过来逆时间顺序考虑,可用上前面的规律,则可得答案为:
5:3:1。
[例题3]:一物体以4m/s 2的加速度做匀减速直线运动直到停止,求物体停止前的第2s
内通过的路程。
解析:按常方法考虑似乎缺少条件,无法求解。
如改用逆思维,将物体看成从静止开
始做加速度为4m/s 2的匀加速运动,它在第二秒内通过的路程与题目所求的物体在静止前的
第二秒内通过的路程相等。
则
s=at 22/2- at 12/2=4×22/2- 4×12/2=6m 。
(2)状态逆向思维法
[例题1]一小物体以一定的初速度自光滑斜面的底端a 点上滑,最远可达b 点,e 为ab 的中点,已知物体由a 到e 的时间为t 0,则它从e 经b 再返回e 所需时间为( )
A .t 0 B.(2-1)t 0 C.2 (2+1)t 0 D. (22+1)t 0
解析:由逆向思维可知物体从b 到e 和从e 到a 的时间比为:1:(2-1);即:t :t 0= 1:(2-1),得t= (2+1)t 0,由运动的对称性可得从e 到b 和从b 到e 的时间相等,所以从e 经b 再返回e 所需时间为2t,即 2 (2+1)t 0,答案为C 。