串行通信及数据校验程序设计.

合集下载

07实验七 Linux环境下的串行通信实验

07实验七 Linux环境下的串行通信实验

连接驱动器的使能端,使得当RTS设置成高(逻辑1)时,有效RS485驱动器;设置RTS为低 时,使驱动器处于三态,这时候实际上从总线上断开了驱动器,从而允许其他节点可以使 用同一传输线。当使用RTS时,必须确保发送数据前将RTS设置成高,在发送完数据的最 后一位后,将RTS线设成低。。另一种可选方法是自动发送数据控制。这种方法要求特殊 的电路,当数据传输时自动使能或无效驱动器。它减少了软件开销和程序员的潜在错误。
五、基础知识
串行通信 1、基本原理 串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行 端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。 串口是系统资源的一部分,应用程序要使用串口进行通信,必须在使用之前向操作系统提 出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。 2、串口通信的基本任务 (1) 实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实 现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的 帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2) 进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是 并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送 入计算机处理。因此串并转换是串行接口电路的重要任务。 (3) 控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选 择和控制的能力。 (4) 进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他 校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5) 进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导实验三调度器设计基础一、实验目的和要求1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。

2.掌握Keil与Proteus的联调技巧。

3.掌握串行通信在单片机系统中的使用。

4.掌握调度器设计的基础知识:函数指针。

二、实验设备1.PC机一套2.Keil C51开发系统一套3.Proteus 仿真系统一套三、实验容1.甲机通过串口控制乙机LED闪烁(1)要求a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时闪烁,关闭所有的LED。

b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。

i.甲机发送“A”,控制乙机LED1闪烁。

ii.甲机发送“B”,控制乙机LED2闪烁。

iii.甲机发送“C”,控制乙机LED1,LED2闪烁。

iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。

c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。

两机的程序要分别编写。

d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下:i.设置串口模式(SCON)ii.设置定时器1的工作模式(TMOD)iii.计算定时器1的初值iv.启动定时器v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。

(2)电路原理图Figure 1 甲机通过串口控制乙机LED闪烁的原理图(3)程序设计提示a.模式1下波特率由定时器控制,波特率计算公式参考:b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。

2.单片机与PC串口通讯及函数指针的使用(1)要求:a.编写用单片机求取整数平方的函数。

b.单片机把计算结果向PC机发送字符串。

c.PC机接收计算结果并显示出来。

d.可以调用Keil C51 stdio.h 中的printf来实现字符串的发送。

串口通信crc校验计算

串口通信crc校验计算

串口通信crc校验计算
在串口通信中,CRC(循环冗余校验)是一种常用的校验方法,用于检测数据传输过程中的错误。

下面是一个简单的CRC校验计算示例,使用的是CRC-16(也称为Xmodem CRC)算法。

假设我们要发送的数据是 0x55 0x44 0x33 0x22,我们可以按照以下步骤计算CRC校验值:
1. 确定生成多项式。

在CRC-16中,常用的生成多项式是 0x1021(二进制表示为 1000000000000010000000001)。

2. 将数据左移16位,与生成多项式进行异或操作。

在本例中,数据左移后的结果为 0x55443322'00000000。

3. 将异或操作的结果与生成多项式进行模2除法,得到余数。

在本例中,余数为 0x243F(二进制表示为 1001010001111111)。

4. 将余数左移16位,与原数据拼接起来,得到CRC校验码。

在本例中,CRC校验码为 0x55443322'243F。

以上是一个简单的CRC校验计算示例,实际应用中可能需要根据具体的协议和数据进行调整。

单片机串行通信的设计

单片机串行通信的设计

单片机串行通信的设计单片机串行通信是指通过串行接口,将数据一位一位地传输到另一个单片机或外部设备的通信方式。

串行通信相比并行通信具有线路数量少、布线简单的优势,因此在嵌入式系统和通信领域得到广泛应用。

本文将围绕单片机串行通信的设计展开论述。

一、串行通信原理串行通信主要利用两根线路进行数据传输,一条线路作为数据线,一条线路作为时钟线。

发送方按照一定的时钟频率将数据位逐位传输到接收方,接收方根据时钟信号判断数据位的高低状态。

二、串行通信接口串行通信主要有两种接口方式:UART(通用异步收发器)和SPI(串行外设接口)。

1. UART:UART是一种异步通信方式,数据通过单个数据线进行传输。

UART有两个引脚:一根引脚用于数据传输(TXD - 发送,RXD - 接收),另一个引脚用于时钟同步(Baud Rate Generator - 波特率发生器)。

UART通信需要发送方和接收方的波特率一致,否则会导致数据传输错误。

2.SPI:SPI是一种同步通信方式,数据通过多个数据线进行传输。

SPI有四个引脚:主输出/从输入(MISO)、主输入/从输出(MOSI)、时钟信号(CLK)和片选信号(CS)。

SPI通信中的主从关系是由软件决定的,主设备负责控制时序和片选,从设备则根据主设备的控制信号进行数据传输。

三、串行通信的数据传输串行通信的数据传输基本步骤如下:1.初始化串行通信接口:设置波特率、数据位长度、停止位等参数,并打开串行通信开关。

2.发送方数据准备:将需要传输的数据准备好,存储到发送缓冲区中。

3.数据传输:根据数据位长度和波特率设定的时钟频率,将数据位逐位输出到数据线。

4.接收方接收数据:根据时钟信号,逐位读取数据线上的数据位,并存储到接收缓冲区中。

5.结束通信:关闭串行通信开关,并进行后续处理。

四、串行通信的设计考虑因素在设计单片机串行通信时,需要考虑以下因素:1.通信协议:选用合适的通信协议,例如UART协议或SPI协议。

单片机双机串行实验报告

单片机双机串行实验报告

单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。

实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。

常用的串行通信方式有同步串行通信和异步串行通信。

异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。

而同步串行通信是指通过外部时钟信号进行数据的同步传输。

实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。

2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。

3.在编程软件中,编写两个程序分别用于发送数据和接收数据。

4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。

然后利用串口发送数据的指令将数据发送出去。

5.在接收数据的程序中,同样要设置串口的参数。

然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。

实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。

发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。

实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。

否则,发送数据的单片机和接收数据的单片机无法正常进行通信。

同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。

实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。

掌握了串口的设置和使用方法,以及相关的指令和函数。

在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。

同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。

例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。

串行通讯的实验报告

串行通讯的实验报告

一、实验目的1. 理解串行通讯的基本原理和通信方式。

2. 掌握串行通讯的硬件设备和软件实现方法。

3. 学会使用串行通讯进行数据传输。

4. 通过实验,提高动手能力和分析问题、解决问题的能力。

二、实验原理串行通讯是指用一条数据传输线将数据一位一位地按顺序传送的通信方式。

与并行通讯相比,串行通讯具有线路简单、成本低等优点。

串行通讯的基本原理如下:1. 异步串行通讯:每个字符独立发送,字符间有时间间隔,不需要同步信号。

每个字符由起始位、数据位、奇偶校验位和停止位组成。

2. 同步串行通讯:数据块作为一个整体发送,需要同步信号。

同步串行通讯分为两种方式:面向字符方式和面向比特方式。

三、实验设备1. 计算机:一台2. 串行通讯设备:串行数据线、串行接口卡、串口调试助手等3. 单片机实验平台:一台4. 数码管显示模块:一个四、实验内容1. 异步串行通讯实验(1)硬件连接:将计算机的串口与单片机实验平台的串行接口连接。

(2)软件设计:编写程序,实现单片机向计算机发送数据,计算机接收数据并显示在屏幕上。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

b. 编写发送程序,实现单片机向计算机发送数据。

c. 编写接收程序,实现计算机接收数据并显示在屏幕上。

2. 同步串行通讯实验(1)硬件连接:与异步串行通讯实验相同。

(2)软件设计:编写程序,实现单片机向计算机发送数据块,计算机接收数据块并显示在屏幕上。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

b. 编写发送程序,实现单片机向计算机发送数据块。

c. 编写接收程序,实现计算机接收数据块并显示在屏幕上。

3. 双机通讯实验(1)硬件连接:将两台单片机实验平台通过串行数据线连接。

(2)软件设计:编写程序,实现两台单片机之间相互发送和接收数据。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

串行口通信开启和关闭紧急处理功能程序设计代码

串行口通信开启和关闭紧急处理功能程序设计代码

串行口通信开启和关闭紧急处理功能程序设计代码串行口通信开启和关闭紧急处理功能程序设计代码一、介绍串行口通信是计算机与外部设备进行数据交互的一种常见方式。

在某些情况下,可能会遇到紧急处理的需求,例如在发生故障或异常情况时需要立即停止通信。

本文将详细介绍如何设计一个程序,在串行口通信中实现开启和关闭紧急处理功能。

二、程序设计思路为了实现串行口通信开启和关闭紧急处理功能,我们需要使用一个编程语言来编写程序。

在这里,我们选择使用Python语言进行示例演示。

下面是程序设计的主要思路:1. 导入所需的库和模块:我们需要导入Python的serial模块来实现串行口通信功能。

2. 设置串行口参数:在开始通信之前,我们需要设置好串行口的参数,包括波特率、数据位、停止位等。

3. 打开串行口:通过调用serial模块中的open()函数来打开指定的串行口。

4. 开启紧急处理功能:通过向外部设备发送特定指令来开启紧急处理功能。

5. 进行数据交互:使用read()和write()函数进行数据的读取和写入操作。

6. 关闭紧急处理功能:通过向外部设备发送特定指令来关闭紧急处理功能。

7. 关闭串行口:通信结束后,通过调用serial模块中的close()函数来关闭串行口。

三、程序设计代码下面是一个简单的示例代码,演示了如何实现串行口通信开启和关闭紧急处理功能:```pythonimport serial# 设置串行口参数port = 'COM1' # 串行口号baudrate = 9600 # 波特率bytesize = serial.EIGHTBITS # 数据位parity = serial.PARITY_NONE # 校验位stopbits = serial.STOPBITS_ONE # 停止位# 打开串行口ser = serial.Serial(port, baudrate, bytesize, parity, stopbits)# 开启紧急处理功能ser.write(b'Emergency:ON')# 进行数据交互data = ser.read(10) # 读取10个字节的数据ser.write(b'Send data')# 关闭紧急处理功能ser.write(b'Emergency:OFF')# 关闭串行口ser.close()```四、代码解释和注意事项1. 在代码中,我们首先导入了serial模块,并设置了需要的串行口参数。

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告摘要:本文介绍了一种基于单片机的双机之间的串行通讯设计。

该设计使用两个单片机,通过串行通信协议进行数据传输。

通讯过程中,两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

同时,本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

关键词:单片机,串行通讯,中断方式,移位寄存器,串行口扩展一、引言串行通讯是计算机系统中常用的一种数据传输方式,它可以实现不同设备之间的数据传输。

在单片机应用中,串行通讯也是一种常见的数据传输方式。

本文介绍了一种基于单片机的双机之间的串行通讯设计,该设计使用两个单片机通过串行通信协议进行数据传输。

本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

二、设计原理该串行通讯设计使用两个单片机,分别为发送单片机和接收单片机。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

在串行通讯中,数据是通过串行口进行传输的。

串行口工作方式0 是一种常见的串行口工作方式,它使用移位寄存器进行数据接收和发送。

在移位寄存器中,数据被移位到寄存器中进行传输,从而实现了数据的串行传输。

三、设计实现1. 硬件设计在该设计中,发送单片机和接收单片机分别使用一个串行口进行数据传输。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

硬件设计主要包括两个单片机、串行口、数据线和中断控制器。

其中,两个单片机分别拥有自己的串行口,并且都能够接收和发送数据。

数据线将两台单片机连接在一起,中断控制器用于处理数据的接收和发送。

基本串口通信程序设计

基本串口通信程序设计

基本串口通信程序设计串口通信是指通过串行接口进行数据传输的一种通信方式。

串口通信通常用于短距离的数据传输,具有稳定性强、传输速率低的特点。

本文将介绍串口通信的基本原理和程序设计。

一、串口通信基本原理串口通信是通过串行接口将数据一位一位地传输的通信方式。

串口通信的基本原理是使用两根信号线进行通信:一根是传输数据的信号线(TX),负责向外发送数据;另一根是接收数据的信号线(RX),负责接收外部发送过来的数据。

二、串口通信程序设计步骤1. 打开串口:首先需要通过操作系统提供的串口接口函数,打开需要使用的串口。

在Windows系统中,可以使用CreateFile函数打开串口;在Linux系统中,可以使用open函数打开串口。

3. 发送数据:使用WriteFile函数(Windows系统)或write函数(Linux系统),向串口发送需要传输的数据。

4. 接收数据:使用ReadFile函数(Windows系统)或read函数(Linux系统),从串口接收数据。

5. 关闭串口:数据传输完成后,需要关闭串口,使用CloseHandle函数(Windows系统)或close函数(Linux系统)即可关闭串口。

三、串口通信程序设计示例(Windows系统)下面是一个简单的串口通信程序设计示例,实现了从串口接收数据并将接收的数据原样返回的功能。

#include <iostream>#include <windows.h>int mainHANDLE hSerial;DCB dcbSerialParams = {0}; // 串口参数hSerial = CreateFile("COM1", GENERIC_READ , GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); // 打开串口dcbSerialParams.DCBlength = sizeof(dcbSerialParams);std::cout << "Error getting serial port state\n";return 1;}dcbSerialParams.BaudRate = CBR_9600;dcbSerialParams.ByteSize = 8;dcbSerialParams.StopBits = ONESTOPBIT;dcbSerialParams.Parity = NOPARITY;std::cout << "Error setting serial port state\n";return 1;}return 1;}char buffer[100];DWORD bytesRead;while (1)if (ReadFile(hSerial, buffer, sizeof(buffer), &bytesRead, NULL) && bytesRead > 0)std::cout << "Received data: " << buffer << std::endl;DWORD bytesWritten;if (!WriteFile(hSerial, buffer, bytesRead, &bytesWritten, NULL))std::cout << "Error writing to serial port\n";return 1;}}}CloseHandle(hSerial); // 关闭串口return 0;以上程序打开串口COM1,设置波特率为9600,数据位为8位,停止位为1位。

双机串行通讯设计实验报告

双机串行通讯设计实验报告

双机串行通讯设计实验报告实验报告:双机串行通讯设计实验一、实验目的本实验的目的是通过双机串行通讯设计,实现两台计算机之间的数据传输和通信,掌握串行通讯的基本原理和应用。

二、实验原理串行通讯是指信息逐位地按顺序传送的通信方式。

串行通讯的优点是只需一对逻辑线路即可完成数据传输,可以减少硬件成本和物理排布空间。

而并行通讯需要多对逻辑线路,更加复杂。

在本实验中,我们使用两台计算机分别作为发送端和接收端。

数据通过串行通讯线路逐位传输,接收端按照发送端发送的顺序恢复数据。

具体步骤如下:1.确定双机串行通讯的物理连接方式,例如通过串口线连接两台计算机的串行端口。

2.在发送端,将待传输的数据进行串行化处理,即将数据逐位拆分成一个个比特,按照一定的传输格式进行编码。

3.将编码后的数据按照一定的速率逐位地通过串行线路发送到接收端。

4.在接收端,根据发送端的传输格式,逐位地接收并解码数据。

5.接收端将解码后的数据进行处理,恢复为原始数据。

三、实验步骤和结果1.硬件连接:使用串口线将两台计算机的串行端口连接起来。

2.软件设置:在两台计算机上分别进行串口的设置,确定串口的参数(波特率、数据位、停止位等)一致。

3.发送端设计:编写发送端的程序,将待传输的数据进行串行化处理,并按照约定的传输格式进行编码。

4.接收端设计:编写接收端的程序,根据发送端的传输格式,逐位接收和解码数据,并进行恢复处理。

5.实验测试:分别在发送端和接收端运行程序,进行数据传输和通信测试。

通过观察接收端接收到的数据是否与发送端发送的数据一致来验证通讯是否成功。

实验结果显示,通过双机串行通讯设计,发送端的数据能够成功传输到接收端,并且接收端能够正确解码和恢复数据,实现了双机之间的数据传输和通信。

四、实验总结本实验通过双机串行通讯的设计,实现了两台计算机之间的数据传输和通信。

实验结果表明串行通讯的设计和实现是可行的。

串行通讯具有硬件成本低、占用空间少等优点,因此在实际应用中被广泛使用。

串行通信_实验报告

串行通信_实验报告

一、实验目的1. 理解串行通信的基本原理和概念;2. 掌握串行通信的常用接口和协议;3. 学会使用串行通信进行数据传输;4. 熟悉串行通信在嵌入式系统中的应用。

二、实验原理串行通信是一种数据传输方式,通过一根或多根数据线,将数据一位一位地按顺序传送。

与并行通信相比,串行通信在传输速度和成本上具有优势,广泛应用于嵌入式系统、工业控制、远程通信等领域。

串行通信的基本原理如下:1. 数据格式:串行通信中,数据以字节为单位进行传输,每个字节由起始位、数据位、校验位和停止位组成。

2. 通信方式:串行通信主要有同步通信和异步通信两种方式。

a. 同步通信:通信双方使用统一的时钟信号进行数据传输,数据在传输过程中保持同步。

b. 异步通信:通信双方使用不同的时钟信号进行数据传输,数据在传输过程中不保持同步。

3. 串行通信接口:常用的串行通信接口有RS-232、RS-485、USB等。

三、实验设备1. 单片机开发板:STC89C52;2. 串口通信模块:MAX232;3. 串口通信线;4. 电脑;5. 串口调试助手。

四、实验步骤1. 连接电路:将单片机开发板、串口通信模块和电脑通过串口通信线连接起来。

2. 初始化单片机串口:设置单片机串口的工作方式、波特率、校验位和停止位等参数。

3. 编写串口发送程序:在单片机上编写程序,实现数据的串行发送。

4. 编写串口接收程序:在单片机上编写程序,实现数据的串行接收。

5. 使用串口调试助手进行测试:在电脑上打开串口调试助手,设置相应的通信参数,发送和接收数据。

五、实验结果与分析1. 实验结果:通过串口调试助手,成功实现了单片机与电脑之间的数据传输。

2. 分析:a. 在初始化单片机串口时,设置了正确的波特率、校验位和停止位等参数,保证了数据的正确传输。

b. 在编写串口发送程序时,正确地实现了数据的串行发送。

c. 在编写串口接收程序时,正确地实现了数据的串行接收。

六、实验总结1. 通过本次实验,掌握了串行通信的基本原理和概念;2. 学会了使用串行通信进行数据传输;3. 熟悉了串行通信在嵌入式系统中的应用。

写出串行通信软件设计的初始化步骤

写出串行通信软件设计的初始化步骤

写出串行通信软件设计的初始化步骤串行通信软件(Serial Communication Software)是实现串行通信的软件程序,它可以通过串行端口与外部设备进行数据传输。

下面是串行通信软件设计的初始化步骤,以便于你了解和理解串行通信软件的开发和实现。

1.端口选择首先需要选择使用的串行端口。

通常,计算机上有多个串行端口,如COM1、COM2等。

在使用串行通信软件之前,需要确定使用哪个串行端口进行通信,并确定该端口的参数,如波特率、数据位、校验位、停止位等。

2.串口参数设置串口通信的参数设置包括波特率、数据位、校验位和停止位等。

波特率是指单位时间内传输的数据位数,通常设置为9600、19200等。

数据位指每个字节中用于数据传输的位数,通常为7或8位。

校验位用于检验数据传输的准确性,通常选择奇校验、偶校验或无校验。

停止位指传输一个字节后的停止位数,通常为1或2位。

3.串口打开在确定好串口参数后,需要打开串口以进行数据传输。

在打开端口之前,需要设置串口的参数,如波特率、数据位、校验位、停止位等。

然后使用打开串口的命令来打开串口。

4.数据传输在串口成功打开后,就可以进行数据传输。

数据传输通常分为发送和接收两个过程。

在发送数据时,需要将要发送的数据写入串口的输出缓冲区。

在接收数据时,需要从串口的输入缓冲区中读取接收到的数据。

5.串口关闭在数据传输完成后,需要关闭串口以释放资源。

关闭串口时,需要先停止数据的传输,然后使用关闭串口的命令来关闭串口。

总之,串行通信软件的初始化步骤包括端口选择、串口参数设置、串口打开、数据传输和串口关闭。

在实际开发中,需要根据具体的需求进行相应的设置和调整,以实现串行通信的功能。

单片机串行通信

单片机串行通信

1.单片机串行通信的概述在通信领域内,有两种数据通信方式:并行通信和串行通信。

随着计算机网络化和微机分级分布式应用系统的发展,通信的功能越来越重要。

通信是指计算机与外界的信息传输,既包括计算机与计算机之间的传输,也包括计算机与外部设备,如终端、打印机和磁盘等设备之间的传输。

串行通信是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。

其只需要少数几条线就可以在系统间交换信息,特别使用于计算机与计算机、计算机与外设之间的远距离通信。

使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。

在串行通信中,把通信接口只能发送或接收的单向传送办法叫单工传送;而把数据在甲乙两机之间的双向传递,称之为双工传送。

在双工传送方式中又分为半双工传送和全双工传送。

半双工传送是两机之间不能同时进行发送和接收,任一时该,只能发或者只能收信息。

51系列单片机有一个可编程的全双工串行通信接口,它可作异步接收发送器用,也可做同步移位寄存器用,其帧格式可有8位、10位或11位,并能设置各种波特率,给使用带来很大的灵活性。

51系列单片机有两个物理上独立的接收、发送缓冲器SBUF,它们只占用同一地址99H,可同时发送、接送数据。

发送缓冲器只能写入,不能读出,接收缓冲器只能读出、不能写入。

串行发送接收的速率与波特率发生器产生的移位脉冲同频。

51系列单片机用定时器T1或直接用CPU时钟作为通信波特率发生器的输入,在串行接口的不同工作方式中,波特率发生器从两个输入信号中选择一个分频,产生移位脉冲来同步串口的接收和发送,移位脉冲的速率即是波特率。

接收器是双缓冲结构,在前一个字节被从接收缓冲器SBUF读出之前,第二字节即开始被接收。

但是,若在第二个字节接收完毕后,前一个字节还未被CPU 读取的话,第二个字就会覆盖第一个字节,造成第一个字节的丢失。

接收器是双缓冲结构,串行口的发送和接收都是以特殊功能寄存器SBUF的名义进行读或写的。

实验四 串行通信实验

实验四  串行通信实验

实验四 串行通信实验一、实验目的1.了解51单片机串行口的结构、串行通讯的原理。

2.掌握51单片机与PC 机之间通讯的方法。

3. 学习系统应用程序的设计和调试二、实验设备PC 机一台 、 实验教学板一块。

三、实验原理51单片机的串行接口是全双工的,它能做异步接收器/发送器(UART ),也能做同步移位寄存器使用。

在做UART 使用时,相关的寄存器有SBUF 、SCON 、和PCON 中的波特率倍增位SMOD 。

SBUF 是数据发送缓冲器和接收缓冲器,逻辑上用同一个地址,物理上是分开的,用读写操作来选择。

SCON 是串行口控制寄存器,用于设定串行口的工作方式;保存方式2和方式3的第9位数据;存放发送、接收的中断标志。

在串行通讯的方式1和方式3中,通信的波特率是可以设置的,满足下式:2/132SMOD=⨯波特率(定时器计数器的溢出率)PC 机的串行通讯口是借助通用异步接收发送器8250(或16C550等)实现的,可使用comdebug.exe 等提供了有关串行口的收、发操作窗口的软件实现通讯。

PC 机的串行通讯采用RS232电平,因此要求单片机的实验板也要配置RS232接口,解决逻辑电平的配接。

如果通讯距离较远,则要配接调制解调器。

四、实验内容1, 自发自收用一根短路线,将实验板中RS232插口的RXD 和TXD 两个插孔短路。

然后编程设定串行口为工作方式1,传送55H 和0AAH 两个数据。

实验要求:程序采用查询方式。

每传送、接收一个数据,做一次检查,看是否正确,若两次都正确,则在显示器上显示“GOOD”,若不正确,则不显示,并要重新传送。

2, 单片机与PC 机的通信先使用通讯电缆将单片机的RS232接口与PC 机的COM1口连接,PC 机起动并运行comdebug.exe 软件,窗口上设置波特率为1200,8位数据、一个停止位。

单片机端也采用工作方式1,波特率为1200,完成单片机与PC 机的通信。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。

串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。

本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。

2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。

串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。

通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。

2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。

选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。

对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。

2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。

通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。

对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。

3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。

3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。

常用的通信协议有UART、RS232、SPI、I2C等。

UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。

3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。

起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。

校验位可以是奇校验、偶校验、无校验等。

4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。

二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。

数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。

2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。

3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。

通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。

4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。

5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。

三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。

2. 实验软件:Keil C51集成开发环境。

四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写发送端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。

(4)循环发送指定的数据。

2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写接收端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。

双机串行通信的设计与实现

双机串行通信的设计与实现

双机串行通信的设计与实现一、设计要求1.单机自发自收串行通信。

接收键入字符,从8251A的发送端发送,与同一个8251A的接收端接收,然后在屏幕上显示出来。

2.双机串行通信,在一台PC机键入字符,从8251A的发送端发送给另一台PC机,另一台PC机的8251A的接收端接收,然后在屏幕上显示出来。

二、所用设备IBM-PC机两台(串行通信接口8251A两片,串行发送器MC1488和串行接收器MC1489各两片,定时器/计数器8253,终端控制器8259等),串口线一根串行直连电缆用于两台台电脑通过串行口直接相连,电缆两端的插头都是9 针的母插头:三、硬件方案1.设计思想计算机传输数据有并行和串行两种模式。

在并行数据传输方式中,使用8条或更多的导线来传送数据,虽然并行传送方式的速度很快,但由于信号的衰减或失真等原因,并行传输的距离不能太长,在串行通信方式中,通信接口每次由CPU得到8位的数据,然后串行的通过一条线路,每次发送一位将该数据放送出去。

串行通信采用两种方式:同步方式和异步方式。

同步传输数据时,一次传送一个字节,而异步传输数据是一次传送一个数据块。

串口是计算机上一种非常通用设备串行通信的协议。

大多数计算机包含两个基于RS232的串口。

串口按位(bit)发送和接收字节。

尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

典型地,串口用于ASCII码字符的传输。

通信使用3根线完成:(1)地线,(2)发送,(3)接收。

由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。

其他线用于握手,但是不是必须的。

串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。

对于两个进行通行的端口,这些参数必须匹配:RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。

可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。

单片机-实验三-串行口通信实验

单片机-实验三-串行口通信实验

实验三串行口通信实验一、实验目的1、掌握单片机串行口的工作原理及工作方式;2、掌握单片机串行口波特率的设置方法;3、掌握单片机串行口查询方式程序的设计方法。

二、实验内容及要求1、单片机的串行口经RS-232 电平变换后和PC 机相连;2、单片机系统的晶振频率选择11.0592MHz,串行口设置为9600bps、无校验位、8 位数据位、1 位停止位(简记为N81)模式;3、单片机采用查询方式收发数据,将PC 机送来的除回车/换行之外的数据加1 后送回。

三、实验设备硬件:PC 机,nKDE-51 单片机实验教学系统;软件:Keil C51 集成开发环境,FlashMagic 单片机程序烧写软件。

四、实验原理及步骤MCS-51 串行口的结构、原理及各种工作方式参阅教材相关内容。

本实验使用串行口工作方式1,通过定时器1(T1)产生波特率时钟,通过查询串行口收发中断标志RI 和TI 来判断单片机串行口数据收发的状态。

步骤如下:1、创建新项目:Project—New Project—命名、存储—CPU类型(philips P89C52X2)2、创建新程序:编译程序—完成后保存为“.c”格式3、添加程序:Target1—Source Group—add……(程序)4、检测程序:Project—Build Target5、选择烧录程序的方式(右键点target1--opption):output—Creat Execulate:Dubug Information Browse、Creat HexDebug 右侧选择use “Keil Monitor-51 Driver”6、选择程序执行点:在Debug程序烧路后,在开始执行的程序断点上鼠标右键—Set Program Counter7、Go执行五、实验过程1. 电路连接PC 机串行口为RS-232 标准的串行接口,用-15V~-5V 表示1,+5V~+15V 表示0,而单片机的串行口为TTL 电平,+5V 表示1,0V 表示0,因此单片机的串行口不能直接和PC 机的串行口相连,必须经过电平变换才能和PC 机通信。

串行通信程序设计中的CRC校验技术与实现

串行通信程序设计中的CRC校验技术与实现

串行通信程序设计中的CRC校验技术与实现
鱼瑞文;陈升荣
【期刊名称】《苏盐科技》
【年(卷),期】2002(000)002
【摘要】介绍CRC循环冗余校验技术,并就CRC-8技术在MCS-51单片机系统串行通信程序设计中的具体应用作详细阐述。

【总页数】4页(P13-15,17)
【作者】鱼瑞文;陈升荣
【作者单位】淮海工学院电子工程系;无锡小天鹅集团公司
【正文语种】中文
【中图分类】TP36
【相关文献】
1.在Visual Basic中利用通信控件实现串行通信技术 [J], 管玉芬;彭汉荣;陈晓丹
2.使用串行通信技术实现对Microcal T500中温校验炉的控制 [J], 黄甦
3.Delphi中基于Modem的串行通信的程序设计及实现 [J], 程海花;黄军高
4.32位Windows API在VB6中实现串行通信的技术分析 [J], 王建华;王雅丽
5.在LabVIEW中利用ActiveX技术实现串行通信 [J], 夏星欣;戴瑜兴
因版权原因,仅展示原文概要,查看原文内容请购买。

实验七、UART串行数据通信实验

实验七、UART串行数据通信实验

实验七、UART串行数据通信实验1(查询与中断方式)一、实验目的通过实验,掌握UART查询与中断方式的程序的设计。

二、实验设备●硬件:PC 机一台●LPC2131教学实验开发平台一套●软件:Windows98/XP/2000 系统,ADS 1.2 集成开发环境。

●EasyARM工具软件。

三、实验原理EasyARM2131 开发板上,UART0 的电路图如图8.1 所示,当跳线JP6 分别选择TxD0和RxD0 端时方可进行UART0 通讯实验。

图8.1 UART0 电路原理图四、实验内容实验内容1使用查询方式,通过串口0 接收上位机发送的字符串如“Hello EasyARM2131!”,然后送回上位机显示,主程序以及各子程序流程如图8.2 所示。

(改写发送内容,字符个数不同)。

说明:需要上位机(PC机)串口终端如EasyARM.exe 软件。

使用串口延长线把LPC2131教学实验开发平台的CZ2(UART0)与PC机的COM1 连接。

PC 机运行EasyARM 软件,设置串口为COM1,波特率为115200,然后选择【设置】->【发送数据】,在弹出的发送数据窗口中点击“高级”即可打开接收窗口。

图8.2 串口实验相关程序流程图1.实验预习要求①研读LPC2000 UART工作原理与控制章节,注意FIFO 接收情况的特性。

②了解LPC2131教学实验开发平台的硬件结构,注意串口部分的电路。

2.实验步骤①启动ADS 1.2,使用ARM Executable Image for lpc2131工程模板建立一个工程DataRet_C。

②在user 组中的main.c 中编写主程序代码,在项目中的config.h 文件中加入#include <stdio.h>。

③选用DebugInFlash生成目标,然后编译连接工程。

④将EasyARM2131开发板上的JP6跳线分别选择TxD0和RxD0端时,方可进行UART0通信实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学单片机原理及接口技术课程设计说明书学生姓名:学号:学院:计算机与控制工程学院专业:自动化题目:串行通信及数据校验程序设计指导教师:职称:2013年12月22日中北大学单片机及其接口技术课程设计任务书12/13 学年第一学期学院:计算机与控制工程学院专业:自动化学生姓名:学号课程设计题目:串行通信及数据校验程序设计起迄日期:12月16 日~12月20 日课程设计地点:中北大学指导教师:沈小林下达任务书日期: 2013年12月16日课程设计任务书课程设计任务书目录一、设计任务 (2)1.任务 (2)2.通信技术要求 (2)二、基本原理 (2)1. AT89C51单片机的串行接口结构 (2)2.串行口方式1的发送和接收 (4)3.设置串行通信寄存器 (4)三、系统方案比较与论证 (5)1.汇编语言和C语言的特点及选择 (5)2.并行通信与串行通信的比较 (5)3.串行通信程序设计的比较 (6)4.同步通信与异步通信的区别 (6)四、系统电路设计 (6)五、软件设计 (7)1.发送程序设计 (7)2.接收程序设计 (7)3.校验程序设计 (8)4.系统软件总体流程图 (9)六、总结 (11)七、参考文献 (11)一、设计任务1.任务通过对单片机串行通信程序设计掌握单片机串行数据通讯的实现及数据校验的原理。

2.通信技术要求(1)串行通信波特率:9600bps;(2)数据长度:20字节二、基本原理1.AT89C51单片机的串行接口结构51单片机的串行接口是一个全双工的接口,它可以作为UART用,也可以作为同步移位寄存器用。

51单片机串行接口的结构如下:(1)数据缓冲器(SBUF)接受或发送的数据都要先送到SBUF缓存。

接收SBUF和发送SBUF用同一直接地址99H,两者在物理结构上是相互独立的,单片机用它们来接收和发送数据,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。

(2)串行控制寄存器(SCON)SCON用于串行通信方式的选择,收发控制及状态指示,各位含义如下:SM0,SM1:串行接口工作方式选择位,这两位组合成00,01,10,11对应于工作方式0、1、2、3。

串行接口工作方式特点见下表SM2:多机通信控制位。

REN :接收允许控制位。

软件置1允许接收;软件置0禁止接收。

TB8:方式2或3时,TB8为要发送的第9位数据,根据需要由软件置1或清0。

RB9:在方式2或3时,RB8位接收到的第9位数据,实际为主机发送的第9位数据TB8,使从机根据这一位来判断主机发送的时呼叫地址还是要传送的数据。

TI :发送中断标志。

发送完一帧数据后由硬件自动置位,并申请中断。

必须要软件清零后才能继续发送。

RI :接收中断标志。

接收完一帧数据后由硬件自动置位,并申请中断。

必须要软件清零后才能继续接收。

(3)输入移位寄存器数据先串行进入输入移位寄存器,8位数据全移入后,再并行送入接收SBUF 中。

(4)波特率发生器波特率发生器用来控制串行通信的数据传输速率的,51系列单片机用定时器T1作为波特率发生器,T1设置在定时方式。

波特率时用来表示串行通信数据传输快慢程度的物理量,定义为每秒钟传送的数据位数。

(5)电源控制寄存器PCON ,最高位为波特率控制位SMOD 。

(6)波特率计算串行口方式1波特率≌2SMOD /32×f OSC /12(256-X)下表列出了定时器T1工作于方式2常用波特率及初值。

.方式1真正用于串行发送或接收,为10位通用异步接口。

TXD与RXD分别用于发送与接收数据。

收发一帧数据的格式为1位的起始位(低位在前)﹑1位停止位,最高位TB8用来作奇偶校验位,共10位。

在接收时,停止位进入SCON的RB8,此方式的传送波特率可调。

串行口方式1的发送与接收时序如图7—12(a)和(b)所示。

图1—1 方式1发送和接收时序3.设置串行通信寄存器。

(1)确定定时器T1工作模式寄存器TMOD令TMOD=00100000B=10H,定时器工作于模式2(自动重装初始值定时器),这种模式下可以自动重新装载初始值,可省去用户软件中重装常数的语句,并可产生相当精确的定时时间,此时定时器T1用作波特率发生器,系统晶体振荡频率为11.059MHZ。

(2)设置串行通信控制寄存器SCON由于采用了方式1、全双工通信、允许接收,所以SCON中取(SM0 SM1)=0 1、REN =1,其余有关多机通信的控制位SM2、TB8、RB8和接收/发送中断标志TI、RI都应清0,因此SCON=01010000B=50H,基本设置如下表所示:(3令波特率控制位SMOD=0,波特率为设定值9600bps。

(4)计算定时器T1的初值XX≌256-fosc×(SMOD+1)/(384×波特率)解得:X≌FDH所以(TH1)=(TL1)=FDH。

(5)确定通信协议甲机:将片外数据存储器单元的内容向乙机发送,每发送一帧信息,乙机对接收的信息进行奇偶校验。

此处对发送的数据作偶校验,将P值放在TB8中。

若校验正确,则乙机向甲机回发“数据发送正确”的信号(以00H作为应答信号)。

甲机收到乙机“正确”的应答信号后,再发送下一个字节。

若奇偶校验有错,则乙机发出“数据发送不正确”的信号(以FFH作为应答信号)。

甲机接收到“不正确”应答信号后,重新发送原数据,直至发送正确。

甲机将该数据块发送完毕后停止发送。

其发送格式为:乙机:接收甲机发送的数据,并写入片外数据存储器中。

每接收一帧数据,乙机对所接收的数据进行奇、偶校验,并发出相应的应答信号,直至接收完所有的数据。

4 MAZ232芯片用8051串行接口通信,如果两台8051单片机之间的距离很近(不超过1.5m),可以采用直接将两台8051单片机的串行接口直接相连,利用其自身的TTL电平(0-5V)直接传输数据信息。

如果传输距离较远(超过1.5m),由于传输线的阻抗与分布电容,会产生电平损耗和波形畸变,以至于检测不出数据或数据出错。

此时可利用 RS232标准总线接口,将单片机输出的TTL电平转换为RS232标准电平(逻辑1为-15—-5V;逻辑0为+5-—+15V)。

用RS232可将传输距离提高到15m,如果想远距离传输,可以采用RS422或者RS485。

电平转换芯片MAX232是美信公司(MAXIM)生产,专用于进行将TTL电平转换为RS232电平的芯片,MAX232内部有泵电源,能将+5V电源电压在芯片内提高到RS232电平所需的+10V或者-10V电平。

5九针串口口,分别称为 COM1 和 COM2。

二、系统方案比较与论证1.汇编语言和C语言的特点及选择本设计是硬件电路和软件编程相结合的设计方案,选择合适的编程语言是一个重要的环节。

在单片机的应用系统程序设计时,常用的是汇编语言和C语言。

主机硬件,程序可读性和可一直性比较差。

而C语言虽然执行效率没有汇编语言高,但语言简洁,使用方便,灵活,运算方便,表达花类型多样化,数据结构类型丰富,具有结构化的控制语句,程序设计自由度大,有很好的可重用性,可移植性等特点。

本着学习和创新的精神,我们采用C语言编写了程序。

2.并行通信与串行通信的比较计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。

51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信得特点是传输信号的速度快,但所用的信号线不较多,成本高,传输的距离较近。

串行通信的特点是只用两条信号线即可完成通信,成本低,传输的距离较远。

3.串行通信程序设计的比较串行通信程序设计主要有微机发送接收程序和单片机发送接收程序。

微机发送接收程序复杂难懂,操作不便。

单片机发送接收程序简单易懂,操作方便。

故而,此系统采用后者。

4.同步通信与异步通信的区别“异步通信”是一种很常用的通信方式。

异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。

异步通信的好处是通信设备简单、便宜,但传输效率较低。

异步通信也可以是以帧作为发送的单位。

接收端必须随时做好接收帧的准备。

这是,帧的首部必须设有一些特殊的比特组合,使得接收端能够找出一帧的开始。

“同步通信”的通信双方必须先建立同步,即双方的时钟要调整到同一个频率。

收发双方不停地发送和接收连续的同步比特流。

但这时还有两种不同的同步方式。

一种是使用全网同步,用一个非常精确的主时钟对全网所有结点上的时钟进行同步。

另一种是使用准同步,各结点的时钟之间允许有微小的误差,然后采用其他措施实现同步传输。

三、系统电路设计两个单片机采用全双工方式发送数据,甲机发送,乙机接收。

串行接口工作于方式 1两机均选用11..0592MHZ的振荡频率,波特率为9600bps。

双机通信的硬件连接图如下图:系统接口电路原理图四、软件设计1.发送程序设计#include<reg52.h> //包含单片机寄存器的头文件sbit key=P2^7;void main(){TMOD=0x20; //TMOD=0010 0000B,定时器T1工作于方式 2 SCON=0x40; //SCON=0100 0000B,串口工作方式1 1起始位8数据位1停止位PCON=0x00; //PCON=0000 0000B,波特率9600 晶振11.0592 TH1=0xfd; //根据规定给定时器T1赋初值TL1=0xfd; //根据规定给定时器T1赋初值TR1=1; //启动定时器T1while(1){unsigned int i,j;if(key==0){for(i=0; i<100; i++) //for语句先赋值即i=0,然后执行语句即后面的for语句,然后执行i++,然后判断为真是跳出循环for(j = 249; j > 0; j--); //什么也不做等待一个机器周期if(key==0){SBUF=P1; //发送数据while(TI==0); //检查发送完成中断标志如果未完成就等等否则复位发送标志位以便下个数据可以发送TI=0;}}}}2.接收程序设计#include<reg52.h>void main(){TMOD=0x20; //TMOD=0010 0000B,定时器T1工作于方式2 SCON=0x40; //SCON=0100 0000B,串口工作方式1 1起始位8数据位1停止位PCON=0x00; //PCON=0000 0000B,波特率9600 晶振11.0592TH1=0xfd; //根据规定给定时器T1赋初值TL1=0xfd; //根据规定给定时器T1赋初值TR1=1; //启动定时器T1while(1){unsigned int i,j;if(key==0){for(i=0; i<100; i++) //for语句先赋值即i=0,然后执行语句即后面的for语句,然后执行i++,然后判断为真是跳出循环for(j = 249; j > 0; j--); //什么也不做等待一个机器周期if(key==0){P1=SBUF; //接收数据}3仿真keil和multisim联合仿真五、总结在为期一周的单片机课程设计中,从选课题查资料,到学软件做仿真,再到检测与调试,我都收获了很多。

相关文档
最新文档