人教版高一数学知识点总结
人教版高一数学知识点
人教版高一数学知识点一、函数与方程1.1线性函数与一次函数1.2幂函数1.3指数函数1.4对数函数1.5三角函数1.6反三角函数1.7复合函数1.8一元函数的解析式1.9方程与不等式解法1.10图像与性质二、数列与数学归纳法2.1等差数列与等差数列求和公式2.2等比数列与等比数列求和公式2.3通项公式与递归公式2.4等差数列与等差数列求和公式2.5数列的极限2.6数列与函数的关系2.7数学归纳法三、平面解析几何3.1平面直角坐标系与平移3.2点、向量及其坐标3.3向量的线性运算3.4平面向量的模、方向角与单位向量3.5向量的数量积与几何应用3.6平面向量的代数运算3.7平面向量的数量积与应用3.8点的分类与线段的位置关系四、立体几何4.1空间直角坐标系与平面的投影4.2立体图形的投影4.3线面之间的位置关系4.4空间向量的基本性质与坐标4.5空间直线的方程及其应用4.6空间两点的距离和中点4.7空间平面的方程及其应用4.8空间几何体的体积与表面积五、数与式5.1实数的概念与大小比较5.2数轴与数的运算5.3有理数的化简与运算5.4无理数的概念与性质5.5形如a+b×√c的运算5.6分数的住单位换算5.7分数的乘除法与运算5.8分式方程与分式不等式5.9基本多項式与因式分解六、概率与统计6.1集合运算与集合关系6.2事件与概率的基本概念6.3事件的运算与概率运算法则6.4条件概率与乘法定理6.5全概率定理与贝叶斯公式6.6随机变量的概念与离散型随机变量6.7随机变量的分布律与密度函数6.8随机变量的数学期望与方差6.9正态分布与标准正态分布以上是人教版高一数学的主要知识点,每个知识点还包含了更详细的内容和相关解题方法。
这些知识点是高一学生必须掌握的数学基础,其深入学习和理解将为高中后续数学学习打下扎实的基础。
人教版高一数学知识点总结(优秀8篇)
人教版高一数学知识点总结(优秀8篇)高一数学知识点总结最新篇一集合一、集合有关概念1、集合的含义2、集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
高一数学全册知识点总结人教版
高一数学全册知识点总结人教版一、实数1. 自然数、整数、有理数和无理数的概念与性质2. 实数的大小比较与数轴表示3. 绝对值与距离的概念及性质4. 实数的四则运算规则与性质5. 实数的积与商的估算二、一次函数与二次函数1. 一次函数的图象及性质2. 一次函数的性质与应用3. 二次函数的图象及性质4. 二次函数的抛物线与顶点的性质5. 二次函数的性质与应用三、多项式与因式分解1. 多项式的基本概念与性质2. 因式分解的方法与技巧3. 特殊多项式的因式分解与应用4. 公式与分解式的化简与应用5. 多项式方程的解的存在性与求解方法四、集合与不等式1. 集合的基本概念与表示2. 集合的运算与性质3. 不等式的基本概念与性质4. 一元一次不等式的解集与图象5. 不等式组的解集与图象五、平面向量与立体几何1. 平面向量的基本概念与运算法则2. 向量的线性运算与共线关系3. 向量的夹角与垂直关系4. 立体图形的基本概念与性质5. 空间中的位置关系与计算六、三角函数与解三角形1. 三角函数的基本概念与性质2. 三角函数的图像、周期与性质3. 三角函数的基本关系与恒等式4. 三角函数的综合应用与解三角形5. 平面向量与复数在三角形中的应用七、概率与统计1. 随机事件与概率的基本概念与性质2. 事件的独立性与乘法定理3. 排列与组合的基本概念与计算4. 概率的计算与统计图表的分析5. 随机变量与统计量的概念与性质以上是高一数学全册知识点总结人教版的内容,包含了实数、一次函数与二次函数、多项式与因式分解、集合与不等式、平面向量与立体几何、三角函数与解三角形、概率与统计等主要知识点。
通过系统学习这些知识,能够帮助同学们夯实数学基础,为进一步学习打下坚实的基础。
希望同学们能够认真学习并灵活运用这些知识,提升数学能力。
人教版高一数学必修一知识点总结大全
人教版高一数学必修一知识点总结大全
一、直线与圆
1、直线:
(1)直线定义:两点在同一条直线上,两点之间连续,没有断点,没有重点,它是一种最简单的几何图形。
(2)直线性质:
①直线上任意两点间距离相等;
②平行直线:两条直线,它们的垂直距离等于0;
③垂直直线:两条直线,它们的平行距离等于0;
2、圆:
(1)圆的定义:由一点O以及与它恒定距离连续而不断的点组成的闭合曲线,它是一种特殊的椭圆形。
(2)圆的性质:
①圆的内角和=360°;
②弦分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是对圆的切线。
③弧分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是能够分开圆的弧的切线。
二、空间几何
1、空间几何定义:涉及到空间几何的几何图形指的是以空间上的点、线、面和体为元素进行几何图形绘制的几何图形。
2、空间几何性质:
(1)点:空间中的最小几何单位,它是一个无方向、无大小、只有
位置的几何实体;
(2)线:指空间中的直线,它是由无数点构成的直线段,也可以由
一点内接内垂线构成;
(3)面:由三维空间中的点、线、平面组成的形状,也可以由一线
及该线上的。
高一数学人教版知识点总结
高一数学人教版知识点总结一、集合1. 集合的概念- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,每一个自然数都是这个集合的元素。
- 集合元素的特性:确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序之分)。
2. 集合的表示方法- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}表示由1、2、3这三个元素组成的集合。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{x|p(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如{x|x > 0,x∈R}表示所有大于0的实数组成的集合。
- 韦恩图(Venn图):用平面上封闭曲线的内部代表集合。
3. 集合间的基本关系- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊂eq B(或B⊃eq A)。
如果A⊂eq B且B中至少有一个元素不属于A,则称A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊂eq B且B⊂eq A,那么A = B。
- 空集varnothing:不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算- 交集:由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B={x|x∈ A且x∈ B}。
- 并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪ B ={x|x∈ A或x∈ B}。
- 补集:设U是一个全集,A是U的一个子集,由U中所有不属于A的元素组成的集合称为A相对于U的补集,记作∁_U A={x|x∈ U且x∉ A}。
二、函数1. 函数的概念- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y = f(x),x∈ A。
人教版高一数学知识点整理归纳
人教版高一数学知识点整理归纳(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学知识点整理归纳本店铺为各位同学整理了《人教版高一数学知识点整理归纳》,希望对你的学习有所帮助!1.人教版高一数学知识点整理归纳篇一①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。
人教版高一数学知识点5篇总结最新
人教版高一数学知识点5篇总结最新高中数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是给大家带来的人教版高一数学知识点总结,希望能帮助到大家!人教版高一数学知识点1空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2) /2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S 侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R -r )11、r-底半径h-高V=πr h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr =πd /614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)人教版高一数学知识点21、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。
高一数学知识点大全人教版
高一数学知识点大全人教版高一数学知识点大全(人教版)一、函数与方程1. 一次函数- 定义与性质- 求解一次方程2. 二次函数- 定义与性质- 求解二次方程3. 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质- 指数与对数方程的求解4. 三角函数- 正弦函数、余弦函数与正切函数的定义与性质 - 常见角的三角函数值的计算- 解三角形的相关问题二、平面几何1. 三角形- 三角形的分类- 三角形的性质(角、边) - 三角形的面积2. 圆- 圆的性质- 弦、垂线与切线的性质 - 弧长与扇形面积的计算3. 平行线与比例- 平行线的性质与判定- 同位角与内错角- 比例的性质与应用4. 相似与全等- 相似图形的性质与判定- 全等三角形的性质与判定- 相似与全等三角形的应用三、立体几何1. 空间几何体- 直线、线段与射线- 角的性质与分类- 平面的性质与分类2. 空间坐标与向量- 三维坐标系- 空间向量的定义与性质- 向量的共线与平行判定3. 空间中的位置关系- 点到直线的距离- 点到平面的距离- 直线与直线、直线与平面的位置关系4. 空间中的投影- 点在直线上的投影- 点在平面上的投影- 直线在平面上的投影四、数列与数学归纳法1. 等差数列- 定义与性质- 求等差数列的通项与前n项和2. 等比数列- 定义与性质- 求等比数列的通项与前n项和3. 递推数列- 定义与性质- 利用递推关系求解数列问题4. 数学归纳法- 数学归纳法的基本思想与应用 - 利用数学归纳法证明数学命题五、概率与统计1. 随机事件与样本空间- 随机事件的基本概念- 样本空间与事件的关系- 求解事件的概率2. 概率的运算- 事件的相等、互斥与对立- 事件的并、交与差- 随机变量与概率分布3. 统计与抽样- 数据的收集与整理- 集中趋势与离散程度的度量- 抽样与总体的估计以上是高一数学知识点大全(人教版)的简单概述。
这些知识点是高中数学学习中的基础内容,掌握好这些知识对于日后的学习和应用都具有重要意义。
人教版高一数学知识点归纳总结
人教版高一数学知识点归纳总结
本文旨在归纳总结人教版高一数学的知识点,帮助学生复与梳理研究内容。
一. 几何
1. 平面几何
- 点、线、面的基本概念与性质
- 三角形的分类、性质及相关定理
- 直线与平面的关系及相交定理
- 圆的性质与相关定理
- 多边形的分类、性质及相关定理
- 空间几何中的相关概念与关系
2. 立体几何
- 空间图形的表达与展开
- 空间几何体的体积与表面积计算
- 空间几何体的相关性质与定理
- 空间几何体的位置关系与相交问题
二. 代数
1. 数与式的运算
- 实数的运算与性质
- 代数式的展开与因式分解
- 分式的运算与性质
- 根式的运算与性质
2. 方程与不等式
- 一元一次方程与一元一次不等式
- 一元二次方程与一元二次不等式
- 二元一次方程组与二元一次不等式组- 分式方程与分式不等式
3. 函数
- 函数的概念与性质
- 一次函数
- 二次函数与二次函数图像
- 分段函数及其图像
- 对数与指数函数及其图像
三. 数据与概率
1. 数据与统计
- 数据收集与整理
- 数据的图表展示与分析
- 统计分布的描述与应用
2. 概率与统计
- 随机事件与概率理论
- 概率计算
- 统计分析与推断
以上为人教版高一数学的主要知识点归纳总结,希望对高一学生的数学学习有所帮助。
学生应结合教材进行深入学习与理解,并进行大量的练习和例题的掌握,以提高数学水平。
人教版高一数学知识点精选归纳5篇分享
人教版高一数学知识点精选归纳5篇分享知识点1:函数与方程函数是数学中一个非常基础且重要的概念,我们可以用函数来描述两个量之间的关系。
函数通常用一个字母表示,比如f(x),其中的x表示输入量,而f(x)表示对应的输出量。
而方程则是数学中用来表示等式的式子,其中包含了一个或多个未知数。
在解方程时,我们需要找到让方程成立的未知数的值,这也就是方程的解。
函数与方程有着紧密的联系,我们通常可以用一个方程来解出其对应的函数。
例如,下面是一个函数与方程的例子:函数:f(x) = x^2 + 2x + 1方程:x^2 + 2x + 1 = 0知识点2:几何运算在几何学中,我们经常需要进行各种各样的几何运算,比如平移、旋转、缩放等。
这些运算可以使我们更好地理解和描述各种几何形状,并且在实际应用中也非常有用。
以下是三个几何运算的例子:1. 平移:将一个图形沿着某个方向移动一定距离,使其位置发生改变,但其形状和大小保持不变。
2. 旋转:将一个图形绕某个点或某条线旋转一定角度,使其形状和大小保持不变,仅改变其方向。
3. 缩放:将一个图形按照比例因子进行缩放,使其变为原来大小的一部分或若干倍数。
知识点3:三角函数三角函数是数学中一个重要的分支,它与三角学以及几何学等学科密切相关。
常用的三角函数包括正弦函数、余弦函数以及正切函数等。
这些函数通常用于描述角度和长度之间的关系,例如,在求解三角形的各种参数时,就需要用到各种三角函数。
以下是三个三角函数的例子:1. 正弦函数:sin(x) = 对边/斜边是指在直角三角形中,对应于角 x 的直角边的长度除以斜边的长度。
2. 余弦函数:cos(x) = 邻边/斜边是指在直角三角形中,与角 x 相邻的那条直角边的长度除以斜边的长度。
3. 正切函数:tan(x) = 对边/邻边是指在直角三角形中,对边长度除以与角 x 相邻的那条直角边的长度。
知识点4:导数与微积分导数是微积分中的一个非常基础也非常重要的概念,它用来描述函数的变化率。
人教版高一数学知识点
人教版高一数学知识点一、引言本篇文章将详细介绍人教版高一数学知识点,旨在帮助高一学生更好地掌握数学知识,提高数学能力。
本文将涵盖数与代数、几何、概率统计等多个方面的知识点。
二、数与代数1. 数的概念及性质数是人类表达和运算的基础。
数的基本概念包括整数、小数、分数等。
数的基本性质包括整数的四则运算性质、有理数的性质等。
学生需要掌握这些基本概念和性质,以便进行基本的数学运算和推理。
2. 代数式与方程代数式是数学中表达数学关系的一种形式。
代数方程则是通过代数式表示的数学关系。
学生需要掌握代数式的表示方法,理解代数方程的概念和求解方法。
同时,学生还需要掌握一些基本的代数运算,如加法、减法、乘法和除法等。
3. 函数的概念及性质函数是描述变量之间关系的数学模型。
学生需要掌握函数的概念,了解函数的定义域、值域和单调性等性质。
同时,学生还需要掌握函数的图像表示方法,了解函数的性质在解决实际问题中的应用。
三、几何1. 几何基础概念几何是研究空间形状、大小和位置的一门学科。
学生需要掌握几何的基本概念,如点、线、面、角等。
同时,学生还需要掌握几何的基本性质,如平行线性质、垂直线性质等。
2. 平面几何与立体几何平面几何主要研究平面上的几何形状和性质。
立体几何则主要研究立体图形中的几何形状和性质。
学生需要掌握这两种几何的基本方法,如作图、测量等。
四、概率统计1. 概率的基本概念概率是表示事件发生的可能性的数学概念。
学生需要掌握概率的基本概念,了解概率的计算方法。
同时,学生还需要了解概率在统计学中的应用。
2. 统计图表的绘制与应用统计图表是描述数据的一种重要工具。
学生需要掌握统计图表的绘制方法,了解各种统计图表的适用场景和应用。
同时,学生还需要了解如何应用统计图表解决实际问题。
五、总结以上是高一数学的知识点介绍,涵盖了数与代数、几何、概率统计等多个方面的知识点。
高一学生需要认真学习这些知识点,掌握基本的数学运算和推理能力,为今后的学习和生活打下坚实的基础。
数学高一知识点总结人教版
数学高一知识点总结人教版第一章直线与平面一、直线的倾斜角二、直线的倾斜角的概念及其度量三、直线的方程四、各种形式的直线方程五、弧度制六、平面的方程第二章集合与映射一、集合的基本概念二、集合的表示法三、集合的关系四、集合的运算五、映射的定义六、映射的性质七、复合映射第三章函数与导数一、函数的概念二、函数的运算三、函数的图像四、一次函数及其应用五、二次函数及其应用六、一元二次不等式及其应用七、函数的极限与连续性八、导数的概念九、导数的几何意义十、导数的运算法则十一、函数的微分求法十二、微分的应用第四章数列与数学归纳法一、等差数列二、等比数列三、数列的基本性质及表示四、数学归纳法五、二项式定理的应用第五章三角函数一、三角函数的概念及其定义二、三角函数的基本性质三、三角函数的图像四、三角函数的运算五、平面向量六、平面向量的基本运算七、平面向量及其应用第六章概率与统计一、随机事件二、概率三、条件概率与独立性四、随机变量五、数理统计六、统计研究第七章共线定理一、三角形的六条边分比例定理二、角平分线定理三、高线定理四、中位线定理五、垂直平分线定理六、倒角线定理第八章空间几何一、空间的基本概念二、空间图形的位置关系三、空间图形的投影四、空间几何图形的容积五、空间直角坐标系第九章解三角形一、解三角形的基本公式二、各种角的计算三、海伦公式四、三角形的面积第十章平面几何一、平面的基本性质二、平行线三、三角形的性质四、四边形的性质五、平面几何图形的坐标计算以上就是我对高一数学知识点的总结,希望对大家学习有所帮助。
高一数学知识点及公式总结人教版
高一数学知识点及公式总结人教版高一数学知识点及公式总结(人教版)在高一数学学习中,我们需要熟练掌握各种知识点和公式,以便能够解决各类数学问题。
本文将对高一数学的知识点和公式进行总结,以帮助同学们更好地学习和理解。
一、函数与方程1. 初等函数- 线性函数:y = kx + b- 平方函数:y = ax^2 + bx + c- 指数函数:y = a^x (a > 0, a ≠ 1)- 对数函数:y = loga x (a > 0, a ≠ 1)- 三角函数:sinx, cosx, tanx2. 二次函数- 一般式:y = ax^2 + bx + c- 平移变换:y = a(x - h)^2 + k- 求解二次方程:ax^2 + bx + c = 03. 不等式与不等式组- 一元一次不等式:ax + b > 0 (a ≠ 0)- 一元一次不等式组:{ax + by > 0; cx + dy < 0 - 一元二次不等式:ax^2 + bx + c > 0 (a ≠ 0)二、解析几何1. 点、线、面与向量- 坐标平面及平面直角坐标系- 向量的定义与性质:平行、共线、共面- 直线的方程:点斜式、两点式、截距式2. 平面图形- 直线与圆的位置关系- 圆的方程:标准式、一般式- 二次曲线:椭圆、双曲线、抛物线三、立体几何1. 空间几何体- 平行线与平面的位置关系- 空间直线的方程:点向式、两平面交线 - 球的方程与性质2. 空间坐标与向量- 空间直角坐标系- 向量的数量积与向量积- 空间几何中的距离与角度四、数列与数学归纳法1. 数列的概念与性质- 等差数列与等差中项数- 等比数列与等比中项数- 通项公式与前n项和公式2. 数学归纳法- 数学归纳法的基本思想与证明方法- 常用的数学归纳法证明题型五、概率与统计1. 概率的基本概念- 随机事件与样本空间- 古典概型与几何概型- 概率的计算方法:加法原理、乘法原理、全概率公式、贝叶斯公式2. 统计与误差分析- 数据的收集与整理- 频数与频率分布表- 各种统计图表的制作与分析以上仅为高一数学知识点及公式的总结,希望能够对同学们的学习有所帮助。
2024年人教版高一数学知识点总结(二篇)
2024年人教版高一数学知识点总结高一数学是高中阶段的第一学期数学课程,为培养学生的数学思维能力和解决问题的能力奠定基础。
下面是人教版高一数学知识点的总结。
一、函数的概念与性质1. 函数的定义:函数是一种特殊的关系,每个自变量对应唯一的因变量。
2. 函数的性质:定义域、值域、单调性、奇偶性、周期性等。
二、函数的表示与常用函数1. 函数的表示:显式定义、隐式定义、参数方程等。
2. 常用函数:一次函数、二次函数、指数函数、对数函数、三角函数等。
三、函数的图像与性质1. 函数的图像:函数的图像是函数在直角坐标系上的几何表现。
2. 函数的性质与判断:单调性、奇偶性、对称性等。
3. 对称轴与零点:对称轴是函数图像的对称轴,零点是函数图像与x轴的交点。
四、函数的运算1. 函数的四则运算:加法、减法、乘法、除法。
2. 复合函数:将一个函数的结果作为另一个函数的输入。
五、方程与不等式1. 一元二次方程与一元二次不等式:解法以及解的性质与判断。
2. 二次函数与二次方程:抛物线的性质与图像。
六、数列与数列的性质1. 数列的定义与表示:通常使用数列的前n项和通项公式等。
2. 等差数列与等差数列求和:等差数列的性质以及求和公式。
3. 等比数列与等比数列求和:等比数列的性质以及求和公式。
七、平面解析几何初步1. 坐标系与直线方程:直线的斜率、截距以及点斜式、一般式等。
2. 图形的方程:圆的方程。
3. 图像的判定:直线与圆与坐标轴的交点等。
八、概率初步1. 基本概念:样本空间、随机事件、事件概率等。
2. 事件运算:并、交、否定等运算。
3. 随机变量的概念与分布律:离散型随机变量与分布律。
九、三角函数初步1. 三角函数的概念与性质:正弦函数、余弦函数、正切函数等的定义与性质。
2. 三角函数的图像与性质:正弦函数、余弦函数的周期、单调性等。
3. 三角函数的运算:和差化积、积化和差公式等。
以上便是人教版高一数学知识点的总结,这些知识点是高中数学的基础,为后续学习打下坚实的基础。
人教版高一数学知识点总结5篇
人教版高一数学知识点总结5篇数学这个科目始终是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分许多;在平常的学习和考试中同学们要擅长总结学问点,这样有助于关心同学们学好数学。
下面就是我给大家带来的人教版高一数学学问点总结,盼望能关心到大家!人教版高一数学学问点总结1一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
留意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:假如A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)③假如A B,B C,那么A C④假如A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
(人教版)高一数学必修一知识点总结
(人教版)高一数学必修一知识点总结
一、函数与方程
1. 函数的概念:函数是一种特殊的关系,它将一个元素与另一个唯一确定的元素相对应。
2. 函数的表示方式:函数可以通过图像、表格、公式等方式来表示。
3. 方程的概念:方程是含有未知数的等式,通过求解方程可以确定未知数的值。
4. 一次函数:一次函数的形式为y = kx + b,其中k和b为常数。
二、三角函数
1. 弧度制与角度制:弧度制是一种角度的度量单位,角度制是另一种度量单位。
2. 正弦、余弦和正切:正弦函数表示一个角的对边与斜边之间的比值,余弦函数表示一个角的邻边与斜边之间的比值,正切函数表示一个角的对边与邻边之间的比值。
三、平面向量
1. 平面向量的表示:平面向量可以用坐标表示,如向量AB可以表示为AB = (x₁, y₁)。
2. 向量的运算:向量可以进行加法和数乘运算,如两个向量的和可以表示为R = A + B。
3. 向量的模长:向量的模长表示向量的长度,可以通过坐标计算得到。
四、三角形与三角比
1. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和普通三角形。
2. 三角比的定义:三角比是指在特定角度下,三角函数值的比例关系,如正弦比、余弦比和正切比。
以上是(人教版)高一数学必修一的知识点总结,希望对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识总结必修一一、集合一、集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
注意:B⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q)(a^a)^b=a^ab(a>0,a 、b 属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ;○2 =N M a log M a log -N a log ;○3 n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ).幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.三、平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算AB +BC =AC ,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a ,有:0+a =a +0=a 。
|a +b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算与a 长度相等,方向相反的向量,叫做a 的相反向量,-(-a)=a ,零向量的相反向量仍然是零向量。
(1)a +(-a)=(-a)+a =0(2)a -b =a +(-b)。
数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,|λa|=|λ||a|,当λ > 0时,λa 的方向和a 的方向相同,当λ < 0时,λa 的方向和a 的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa (3)λ(a ± b) = λa ± λb (4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积已知两个非零向量a 、b ,那么|a||b|cos θ叫做a 与b 的数量积或内积,记作a?b ,θ是a 与b 的夹角,|a|cos θ(|b|cos θ)叫做向量a 在b 方向上(b 在a 方向上)的投影。
零向量与任意向量的数量积为0。
a?b 的几何意义:数量积a?b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x = 图象定义域R R ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭ 值域 []1,1- []1,1- R函 数 性 质最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{} 36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{} 36090360180,k k kα⋅+<⋅+∈Z第三象限角的集合为{} 360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{} 360270360360,k k kαα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin αcos (2k π+α)=cos αtan (2k π+α)=tan αcot (2k π+α)=cot α公式二:设α为任意角,π α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan αcot (π+α)=cot α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan αcot (-α)=-cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan αcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————1-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—----- 2 2α+βα-βcosα-cosβ=-2sin—-----•sin—----- 2 2积化和差公式⒏三角函数的积化和差公式sinα•cosβ=0.5[sin(α+β)+sin(α-β)]cosα•sinβ=0.5[sin(α+β)-sin(α-β)]cosα•cosβ=0.5[cos(α+β)+cos(α-β)]sinα•sinβ=-0.5[cos(α+β)-cos(α-β)]5平面解析几何初步两点距离公式:根号[(x1-x2)^2+(y1-y2)^2]中点公式:X=(X1+X2)/2 Y=(Y1+Y2)/2直线的斜率倾斜角不是90°的直线`,它的倾斜角的正切,叫做这条直线的斜率.通常用k来表示,记作:k=tga(0°≤a<180°且a≠90°)倾斜角是90°的直线斜率不存在,倾斜角不是90°的直线都有斜率并且是确定的.点斜式:y-y1=k(x-x1);斜截式:y=kx+b;截距式:x/a+y/b=1直线的标准方程:Ax+Bx+C=0圆的一般方程:x2+y2+Dx+Ey+F=0圆的标准方程(x-a)2+(y-b)2=r2 《2表示平方》圆与圆的位置关系:1 点在圆上(点到半径的距离等于半径)点在圆外(点到半径的距离大于半径)点在圆内(点到半径的距离小于半径)2 (1)相切:圆心到直线的距离等于半径(2)相交:圆心到直线的距离小于半径(3)相离:圆心到直线的距离大于半径3 圆的切线是指垂直于半径,直线到圆心距离等于半径的直线,垂足叫切点4 圆心距为Q 大圆半径为R 小圆半径为r两圆外切Q=R+r两圆内切Q=R-r (用大减小)两圆相交Q<R-r两圆外离Q>R+r两圆内含Q<R-r直线与圆的位置关系有三种:相离,相交,相切.有如下关系相离则d>r,反之d>r则相离,相切则d=r,反之d=r则相切,相交则d<r,反之d<r则相交.空间直角坐标系的定义ABCD –A′B′C′O是长方体,以O为原点,分别以射线OB、OA’、OB’为正方向,以线段OB、OA’、OB’建立三条坐标轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系O –xyz,点O叫做坐标原点,x、y、z轴叫做坐标轴,由两条坐标轴组成的平面叫做坐标平面,分别叫做xOy平面、yOz平zOx平面,这种坐标系叫做右手直角坐标空间直角坐标系内点的坐标表示方法设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。