2019-2020学年泰州市姜堰市八年级上册期末数学试卷(有答案)-优质版
江苏省泰州市泰兴市2019-2020年八年级(上)期末数学试卷 解析版
2019-2020学年八年级(上)期末数学试卷一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.25.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.56.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形二.填空题(共10小题)7.1﹣π的相反数是.8.17.85精确到十分位是.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=.10.点P(﹣5,12)到原点的距离是.11.若函数y=2x+3﹣m是正比例函数,则m的值为.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=°.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=118.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为.21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.参考答案与试题解析一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:无理数有2π,共2个.故选:B.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【解答】解:∵点P(1,﹣2)关于y轴对称,∴点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2).故选:A.4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【解答】解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.5.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.5【分析】欲求证是否为勾股数,这里给出三边的长,只要验证a2+b2=c2即可.【解答】解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.6.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【解答】解:(A)由勾股定理可知BC2+AC2=AB2,故A正确.(B)∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC,故B正确.(C)若△DEF的边长分别为1,2,,则△DEF和△ABC相似.(D)∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.二.填空题(共10小题)7.1﹣π的相反数是π﹣1 .【分析】根据相反数的定义即可得到结论.【解答】解:1﹣π的相反数是﹣(1﹣π)=π﹣1.故答案为:π﹣1.8.17.85精确到十分位是17.9 .【分析】把百分位上的数字5进行四舍五入即可.【解答】解:17.85精确到十分位是17.9.故答案为17.9.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=80°.【分析】直接利用全等三角形的性质得出对应角相等进而得出答案.【解答】解:∵△ABC≌△A'B'C',∴∠A=∠A′=60°,∠B=∠B′=40°,∴∠C′=180°﹣60°﹣40°=80°.故答案为:80°.10.点P(﹣5,12)到原点的距离是13 .【分析】直接根据勾股定理进行解答即可.【解答】解:∵点P(﹣5,12),∴点P到原点的距离==13.故答案为:13.11.若函数y=2x+3﹣m是正比例函数,则m的值为 3 .【分析】直接利用正比例函数的定义得出答案.【解答】解:∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=35 °.【分析】根据等腰三角形的性质得到∠ADC=70°,再根据三角形外角的性质和等腰三角形可求∠B的度数.【解答】解:∵AC=AD,∠C=70°,∴∠ADC=∠C=70°,∵AD=DB,∴∠B=∠BAD,∴∠B=∠ADC=35°.故答案为:35.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于32 .【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【解答】解:作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=×16×4=32.故答案为32.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是x <1 .【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围.【解答】解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为x<1.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为m>2 .【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【解答】解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为k=±1 .【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【解答】解:一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB的关系式为y=kx+b,把A(3,0),B(4,1)代入得,,解得,k=1,b=﹣3,∴一次函数y=kx+4(k≠0)中的k=1,②当直线y=kx+4(k≠0)与直线AB不平行时,如图2,则:直线y=kx+4(k≠0)一定过点C,点C的坐标为(4,0),代入得,4k+4=0,解得,k=﹣1,因此,k=1或k=﹣1.故答案为:k=±1.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=1【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)根据立方根的含义和求法,求出x的值是多少即可.【解答】解:(1)=1+2﹣﹣2=1﹣(2)∵8(x+1)3=1,∴(x+1)3=,∴x+1=,解得x=﹣.18.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.【分析】直接利用非负数的性质得出关于x,y的方程组进而得出答案.【解答】解:∵+(x+y﹣1)2=0,∴,解得:,故y﹣2x=2+2=4,则y﹣2x的平方根为:±2.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.【解答】证明:∵EA∥FB,∴∠A=∠FBD,∵EC∥FD,∴∠D=∠ECA,∵AB=CD,∴AC=BD,在△EAC和△FBD中,,∴△EAC≌△FBD(AAS),∴EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为(1,﹣1).【分析】(1)①分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;②分别作出△A1B1C1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【解答】解:(1)①如图所示,△A1B1C1即为所求;②如图所示,△A2B2C2即为所求.(2)由图知,△A2B2C2中顶点B2坐标为(1,﹣1),故答案为:(1,﹣1).21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠DAB=∠ABC=30°,∠FAC=∠ACB=50°,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【解答】解:(1)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣50°=100°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20°;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.【分析】(1)作AC的垂直平分线交AD与点G,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【解答】解:(1)如图所示:H点即为所求;(2)设AH=xm,则DH=(80﹣x)m,HC=xm,在Rt△DHC中,DH2+CD2=HC2,∴(80﹣x)2+402=x2,解得:x=50,答:报亭到小路端点A的距离50m.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【分析】(1)根据在直角三角形中,斜边上的中线等于斜边的一半可得ED=EB=AB,DF=FC=AC,再由AB=12,AC=9,可得答案;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【解答】解:(1)∵AD是高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,∴ED=EB=AB,DF=FC=AC,∵AB=8,AC=6,∴AE+ED=12,AF+DF=9,∴四边形AEDF的周长为12+9=21;(2)EF⊥AD,理由:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF⊥AD.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【分析】(1)①证明△ADF≌△CDE(ASA),即可得出AF=CE;②由①得△ADF≌△CDE(ASA),得出AF=CE;同理△CDF≌△BDE(ASA),得出CF=BE,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即可得出结论;(2)分两种情况:①点E在线段CB上时,求出CE=BC﹣BE=1,由(1)得AF=CE=1,AF2+EB2=EF2,即可得出答案;②点E在线段CB延长线上时,求出CE=BC+BE=7,同(1)得△ADF≌△CDE(ASA),得出AF=CE,求出CF=BE=3,在Rt△EF中,由勾股定理即可得出答案.【解答】(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=2+k(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.【分析】(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;②根据三角形的面积即可求得k的值,从而可得直线解析式;(2)①把点B和点C代入函数解析式即可求得s的值;②根据两条直线的交点坐标的横坐标的取值范围即可求得k的取值范围.【解答】解:(1)①把B(﹣1,2)代入y=kx+b,得b=2+k.故答案为2+k;②∵S△OAB=(2+k)×1=2解得k=2,所以直线l1的表达式为:y=2x+4;(2)①∵直线l1:y=kx+b经过点B(k﹣2b,b﹣b2)和点C(﹣1,s).∴k(k﹣2b)+b=b﹣b2,﹣k+b=s整理得,(b﹣k)2=0,所以s=b﹣k=0.②∵直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),∴kx1+b=x1(1﹣k)x1=b,∵b﹣k=0∴b=k∴x1=∵0<x1<2,∴>0或<2解得k<.答:k的取值范围是k<.。
姜堰期末考试数学试卷初二
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √4B. √-9C. πD. √22. 若a=3,b=-2,则下列各式中,正确的是()A. a+b=1B. a-b=5C. a×b=-6D. a÷b=3/23. 已知x+1=0,则x的值为()A. -1B. 1C. 0D. 无法确定4. 下列函数中,是二次函数的是()A. y=x^2+2x+1B. y=2x^3-3x^2+4C. y=x^2+3D. y=x^2+2x-15. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠C的度数是()A. 40°B. 50°C. 60°D. 70°6. 若a、b、c是等差数列,且a+b+c=12,则a+c的值为()A. 6B. 8C. 10D. 127. 下列各式中,正确的是()A. 2^3=8B. 3^2=9C. 5^0=1D. 4^1=28. 下列图形中,是平行四边形的是()A. 正方形B. 矩形C. 等腰梯形D. 等腰三角形9. 已知x^2-5x+6=0,则x的值为()A. 2或3B. 1或4C. 2或4D. 1或310. 下列数中,是质数的是()A. 14B. 15C. 17D. 18二、填空题(每题3分,共30分)11. 计算:-2+3-4+5+6-7+8-9+10=______12. 简化下列各式:(1)2x-3+5x-7=______(2)3(a+b)-2a+4b=______13. 已知x=2,则2x^2-3x+1的值为______14. 等腰三角形ABC中,AB=AC=5,底边BC=6,则三角形ABC的面积是______15. 已知a、b、c是等差数列,且a+b+c=12,则a+c的值为______16. 计算下列函数的值:(1)y=2x-3,当x=4时,y=______(2)y=3x^2+2x-1,当x=1时,y=______17. 等腰梯形ABCD中,AD=BC=5,AB=3,CD=7,则梯形ABCD的面积是______18. 若a、b、c是等比数列,且a+b+c=12,则a×b×c的值为______三、解答题(每题10分,共40分)19. (1)已知a、b、c是等差数列,且a+b+c=12,求a+c的值。
江苏省姜堰区六校联考2019年数学八上期末教学质量检测试题
江苏省姜堰区六校联考2019年数学八上期末教学质量检测试题一、选择题1.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 ( )A .3.1×10-8米B .3.1×10-9米C .3.1×109米D .3.1×108米2.已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.c <a <bD.a <c <b 3.下列式子是分式的是( )A .1x x -B .3a b +C .1x -D .12a + 4.多项式2ax a -与多项式22ax ax a -+的公因式是 A .a B .1x -C .()1a x -D .()21a x - 5.若m 为大于0的整数,则(m +1)2-(m -1)2一定是( )A .5的倍数B .4的倍数C .6的倍数D .16的倍数 6.下列各式运算正确的是( )A.321a a -=B.632a a a ÷=C.33(2)2a a =D.236[()]a a -= 7.如图,在平面直角坐标系中,△ABO 为底角是30°的等腰三角形,OA =AB =4,O 为坐标原点,点B 在x 轴上,点P 在直线AB 上运动,当线段OP 最短时,点P 的坐标为( )A .(1,1)B 3)C .(3D .(2,2)8.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .3对B .4对C .5对D .6对9.如图,大树AB 与大树CD 相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA=ED.已知大树AB 的高为5m ,小华行走的速度为1m/s ,小华行走到点E 的时间是( )A .13sB .8sC .6sD .5s10.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于( )A.B.C.D.11.下列图形是中心对称图形而不是轴对称图形的是()A.等边三角形 B.平行四边形 C.圆 D.矩形12.已知:如图,△ABC是直角三角形,∠ACB=90°,点D、E分别在AB、BC上,且CA=CD=CE,下列说法:①∠EDB=45° ②∠EAD=12∠ECD ③当△CDB是等腰三角形时,△CAD是等边三角形④当∠B=22.5°时,△ACD≌△DCE .其中正确的个数有()A.1个B.2个C.3个D.4个13.下列正多边形的组合中,不能够铺满地面的是()A.正三角形和正方形B.正三角形和正六边形C.正方形和正六边形D.正方形和正八边形14.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形15.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C的度数为()A.75°B.65°C.55°D.45°二、填空题16.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为_____.17_____.【答案】403518.已知直线l1:y=﹣2x+2与y轴交于点A,直线l2经过点A,l1与l2在A点相交所形的夹角为45°(如图所示),则直线l2的函数表达式为_____.19.如图,已知20B ∠=,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,以此类推3A ∠的度数是__________.20.在Rt △ABC 中,∠C =90°,∠A =30°,BC =6,那么AB =_____.三、解答题21.计算:(1)x x x 111--- ;(2)x x x x x x x 2214244骣+--琪-?琪--+桫. 22.计算:(1)24822a a a a ⋅-÷;(2)2()()a a b a b -+.23.如图,在△ABC 中,AB=AC ,D 是BA 延长线上的一点,点E 是AC 的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法):作∠DAC 的平分线AM ,连接BE 并延长交AM 于点F .(2)试猜想AF 与BC 有怎样的关系.24.已知线段a 和1∠,求作:等腰ABC ∆,使腰2AB AC a ==,底角等于1∠25.如图,已知ABC ∆,画出ABC ∆的高AD 和CE .【参考答案】***一、选择题16.5×10﹣5.17.无18.y =﹣x+219.20°.20.12三、解答题21.(1)1;(2)2x x-. 22.(1)6a (2)3222a ab -23.(1)见解析;(2)AF ∥BC ,AF=BC.【解析】【分析】(1)根据题意画出图形即可;(2)首先根据等腰三角形的性质与三角形内角与外角的性质证明∠C=∠FAC ,进而可得AF ∥BC ;然后再证明△AEF ≌△CEB ,即可得到AF=BC .【详解】解:(1)如图所示;作∠DAC 的平分线AM ;连接BE 并延长交AM 于点F ;(2)(2)AF ∥BC ,且AF=BC ,理由如下:∵AB=AC ,∴∠ABC=∠C ,∴∠DAC=∠ABC+∠C=2∠C ,由作图可得∠DAC=2∠FAC ,∴∠C=∠FAC ,∴AF ∥BC ,∵E 为AC 中点,∴AE=EC ,在△AEF 和△CEB 中FAE C AE CEAEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△CEB (ASA ).∴AF=BC .综上可知,AF ∥BC ,AF=BC.【点睛】此题主要考查了作图,以及平行线的判定,全等三角形的判定,关键是证明∠C=∠FAC .24.见解析.【解析】【分析】先作∠MBN =∠1,在BM 上截取BA =2a ,然后以A 点为圆心,BA 为半径画弧交BN 于C ,则△ABC 满足条件.【详解】解:如图,△ABC 为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.见解析.。
2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷及答案解析
2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共6小题,共18.0分)1. 下列图案是轴对称图形的有( )个.A. 1B. 2C. 3D. 4 2. 在3.14,π,−0.10010001,3.7.,−√4,√93,13中,无理数有( )A. 1个B. 2个C. 3个D. 4个3. 下列各组数据不是勾股数的是( )A. 12,18,22B. 3,4,5C. 7,24,25D. 9,12,154. 若点A(a +1,b −2)在第二象限,则点B(−a,1−b)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知△ABC 的六个元素,下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6. 下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx(m 、n 为常数,且mn ≠0)的图象的是( )A. B. C. D.二、填空题(本大题共10小题,共30.0分)7. 16的平方根是______.8. 3.1415精确到百分位的近似数是______.9. 已知点P(−2,1),那么点P 关于x 轴对称的点Q 的坐标是______.10. 已知一次函数y =(k −1)x −2,y 随x 的增大而减小,那么k 的取值范围是______.11. 若等腰三角形中一个底角等于50°,则这个等腰三角形的顶角=______°.12. 若二元一次方程组{4x −y =1y =2x −m的解是{x =2y =7,则一次函数y =2x −m 的图象与一次函数y =4x −1的图象的交点坐标为______.13. 如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_________.14. 如图,函数y =3x 和y =ax +4的图象相交于点A(m,3),不等式3x ≥ax +4的解集为______.15. 已知点A(3+2a,3a −5),点A 到两坐标轴的距离相等,点A 的坐标为_____.16. 如图,在矩形ABCD 中,AB =6cm ,点E 、F 分别是边BC 、AD 上一点,将矩形ABCD 沿EF 折叠,使点C 、D 分别落在点C′、D′处.若C′E ⊥AD ,则EF 的长为______ cm .三、解答题(本大题共10小题,共102.0分)17.计算:√12−|1−√3|+(7+π)0.18.已知:y与x+1成正比例,当x=−2时,y=−4。
泰州市八年级上册期末数学试卷(附答案)[推荐].doc
2019-2020学年江苏省泰州市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 .8.(3分)如果分式的值为零,那么x= .9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 km .10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .11.(3分)若+(1﹣y )2=0,则= .12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有 人.13.(3分)如图,直线y 1=x+n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x+n <mx ﹣1的解集为 .14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .15.(3分)分式的值是正整数,则整数m= .16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<2【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7【解答】解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么x= 3 .【解答】解:由题意,得x﹣3=0且x2+1≠0,解得 x=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距 5 km.【解答】解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.10.(3分)如果点P坐标为(3,﹣4),那么点P到x轴的距离为 4 .【解答】解:点P(3,﹣4)到x轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则= 2 .【解答】解:∵+(1﹣y)2=0,∴x﹣4=0,1﹣y=0,[]解得:x=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60 人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=x+n与y2=mx﹣1相交于点N,则关于x的不等式x+n<mx﹣1的解集为x<﹣1 .【解答】解:观察图象,可知x+n<mx﹣1的解集为x<﹣1.故答案为 x<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而,∴AD=AF ,DE=FE .在Rt △ABF 中,AB=3cm ,AF=5cm ,∴BF==4cm ,∴CF=BC ﹣BF=1cm .设EC=xcm ,则EF=ED=(3﹣x )cm ,在Rt △CEF 中,EF 2=CE 2+CF 2,即(3﹣x )2=x 2+12, 解得:x=. 故答案为:.15.(3分)分式的值是正整数,则整数m= 1 .【解答】解:由题意可知:2m ﹣1=1或2或4, 当2m ﹣1=1时,∴m=1,符合题意当2m ﹣1=2时,∴m=,不符合题意,当2m ﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .【解答】解:∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称,∴OP=OP 1=OP 2=,∠AOP=∠AOP 1,∠BOP=∠BOP 2,∵∠AOB=45°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=90°, ∴△P 1OP 2是等腰直角三角形,∴P 1P 2==2,设EF=x ,∵P 1E==PE ,∴PF=P2F=﹣x ,由轴对称可得,∠OPE=∠OP 1E=45°,∠OPF =∠OP 2F=45°, ∴∠EPF=90°,∴PE 2+PF 2=EF 2,即()2+(﹣x )2=x 2,解得x=.故答案为:.[]三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程:+2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2x ﹣8=1﹣x , 解得:x=4,经检验x=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.[xxk]【解答】解:(1)∵y+2与x成正比,∴设y﹣2=kx,将x=1、y=﹣6代入y+2=kx得﹣6+2=k×1,∴k=﹣4,∴y=﹣4x﹣2(2)∵点(a,2)在函数y=﹣4x﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为xm2,则甲队每天单独完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的根,且符合题意,[]∴2x=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?【解答】解:(1)当x=0时,y=b,∴一次函数图象与y轴的交点坐标为(0,b);当y=x+b=0时,x=﹣b,∴一次函数图象与y轴的交点坐标为(﹣b,0).∴×|b|×|﹣b|=2,解得:b=±2.(2)∵函数y=x+b的图象交y轴于正半轴,∴一次函数为y=x+2,∵y的值是正数,∴x+2>0,解得x>﹣2.故当x>﹣2时,y的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= 3 ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣90x+450,当y=180时,x=3(h),∴a=3,故答案为:3;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=135x﹣225(3≤x≤5);(3)3≤x≤5时,y乙减y甲等于100千米,即135x﹣225﹣(﹣90x+450)=100,解得x=,∴当x为时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为O B中点,∴D(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。
姜堰数学八年级上试卷答案
一、选择题(每题3分,共30分)1. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 2 < b + 2D. a - 2 > b - 2答案:A2. 下列各组数中,互为相反数的是()A. 3和-3B. 0和-2C. 2和-1D. -5和5答案:D3. 若x^2 - 5x + 6 = 0,则x的值为()A. 2和3B. 1和4C. 2和-3D. -1和6答案:A4. 在直角坐标系中,点P(-2, 3)关于y轴的对称点坐标为()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)答案:A5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 - 1D. y = 5x^3答案:B6. 若一个三角形的三个内角分别为30°,60°,90°,则这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形答案:B7. 下列数中,是偶数的是()A. 3B. 4C. 5D. 6答案:B8. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D9. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 矩形D. 圆答案:D10. 下列数中,是完全平方数的是()A. 16B. 18C. 20D. 22答案:A二、填空题(每题5分,共20分)11. 若a + b = 7,a - b = 3,则a = ______,b = ______。
答案:a = 5,b = 212. 已知一元二次方程x^2 - 5x + 6 = 0,其两个根的乘积为 ______。
姜堰八年级期末数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 3.14B. √2C. -5D. 1/32. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²3. 若a、b是实数,且a² + b² = 0,则下列说法正确的是()A. a = 0 且 b = 0B. a ≠ 0 且 b ≠ 0C. a = 0 或 b = 0D. a 和 b 可以为任意实数4. 下列各函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = x²5. 下列各数中,属于有理数的是()A. √9B. √16C. √25D. √366. 下列各数中,是偶数的是()A. 2B. 3C. 5D. 77. 下列各数中,是质数的是()A. 9B. 11C. 15D. 178. 若m、n是实数,且m² + n² = 1,则下列说法正确的是()A. m = 1 且 n = 0B. m ≠ 1 且n ≠ 0C. m = 0 或 n = 0D. m 和 n 可以为任意实数9. 下列各函数中,是二次函数的是()A. y = x² + 2x + 1B. y = 2x + 1C. y = x² - 2x + 1D. y = x³ + 110. 下列各数中,是整数的是()A. 3.14B. -2.5C. 5D. -5二、填空题(每题5分,共50分)11. 已知a² = 25,则a = _______。
12. 若a² + b² = 9,则(a + b)² = _______。
2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷
2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)下列图案中,不是轴对称图形的是( )A .B .C .D . 2.(3分)在2、0.3、227-、38中,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.(3分)下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,134.(3分)已知点(1,3)P m +在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m -D .1m -5.(3分)如图,已知ABC ∆的三条边和三个角,则甲、乙、丙三个三角形中和ABC ∆全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙6.(3分)下列图象中,可以表示一次函数y kx b =+与正比例函数(y kbx k =,b 为常数,且0)kb ≠的图象的是( )A .B .C .D .二、填空题(本大题共有10小题,每小题3分,计30分)7.(3分)4的平方根是 . 8.(3分)3.145精确到百分位的近似数是 .9.(3分)(1,3)P -关于x 轴对称的点Q 的坐标是 .10.(3分)已知一次函数(1)2y k x =-+,若y 随x 的增大而减小,则k 的取值范围是 .11.(3分)已知等腰三角形的顶角是80︒,那么这个三角形的一个底角是 ︒. 12.(3分)已知一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,则方程组32y kx y x b =+⎧⎨=+⎩的解为 . 13.(3分)如图,ABC ∆中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则AEG ∆周长为 .14.(3分)如图,函数3y x =-和4y ax =+的图象相交于点(,3)A m ,则不等式34x ax ->+的解集为 .15.(3分)若点(2,25)P a a -+到两坐标轴的距离相等,则a 的值为 .16.(3分)如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,则OE 的长为 .三、解答题(本大题共10小题,计102分)17.(10分)(1)计算:02|13|(2019)(2)π-+-+-(2)解方程:2416x =18.(8分)已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.19.(8分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与ABC ∆关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积.20.(8分)如图,ABC ∆中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =.21.(10分)如图,四边形ABCD 中,5AC =,4AB =,12CD =,13AD =,90B ∠=︒.(1)求BC 边的长;(2)求四边形ABCD 的面积.22.(10分)一次函数(0)y kx b k =+≠的图象为直线l .(1)若直线l 与正比例函数2y x =的图象平行,且过点(0,2)-,求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.23.(10分)如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB AC ⊥,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.24.(12分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()s km 与所用时间()t h 之间的函数关系.试根据函数图象解答下列问题:(1)小明在途中停留了 h ,小明在停留之前的速度为 /km h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t h =时,两人同时到达乙地,求t 为何值时,两人在途中相遇.25.(12分)已知ABC∆.(1)在图中用直尺和圆规作出B∠的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD,OE 求证:OD OE=;(3)如图,在(1)的条件下,点E、F分别是AB、BC边上的点,且BEF∆的周长等于BC 边的长,试探究ABC∠的数量关系,并说明理由.∠与EOF26.(14分)如图,一次函数4(0)=+≠的图象与x轴交于点A,与y轴交于点B,y kx k k且经过点(2,)C m.(1)当92m=时;①求一次函数的表达式;②BD平分ABO∠交x轴于点D,求点D的坐标;(2)若AOC∆为等腰三角形,求k的值;(3)若直线42y px p=-+也经过点C,且24p<,求k的取值范围.2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:D.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(32、0.3、227-38()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.3是循环小数,属于有理数;227-382,是整数,属于有理数.2共1个.故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.3.(3分)下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、2226810+=,能构成直角三角形,是正整数,故是勾股数;C 、222468+≠,不能构成直角三角形,故不是勾股数;D 、22251213+=,能构成直角三角形,是正整数,故是勾股数;故选:C .【点评】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知ABC ∆的三边满足222a b c +=,则ABC ∆是直角三角形4.(3分)已知点(1,3)P m +在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m -D .1m -【分析】根据第二象限点的坐标的特点,得到关于m 的不等式,解可得答案.【解答】解:点(1,3)P m +在第二象限,则10m +<,解可得1m <-.故选:A .【点评】此题要求学生能根据各个象限点的坐标特点,列出关于m 的不等式;进而求解.5.(3分)如图,已知ABC ∆的三条边和三个角,则甲、乙、丙三个三角形中和ABC ∆全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙【分析】根据全等三角形的判定一一判断即可【解答】解:根据SAS 可以判定甲与ABC ∆全等,根据ASA 可以判定丙与ABC ∆全等, 故选:B .【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)下列图象中,可以表示一次函数y kx b =+与正比例函数(y kbx k =,b 为常数,且0)kb ≠的图象的是( )A .B .C .D .【分析】根据一次函数的图象与系数的关系,由一次函数y kx b =+图象分析可得k 、b 的符号,进而可得k b 的符号,从而判断y kbx =的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A 、由一次函数y kx b =+图象可知0k <,0b >,0kb <;正比例函数y kbx =的图象可知0kb <,故此选项正确;B 、由一次函数y kx b =+图象可知0k >,0b >;即0kb >,与正比例函数y kbx =的图象可知0kb <,矛盾,故此选项错误;C 、由一次函数y kx b =+图象可知0k <,0b >;即0kb <,与正比例函数y kbx =的图象可知0kb >,矛盾,故此选项错误;D 、由一次函数y kx b =+图象可知0k >,0b <;即0kb <,与正比例函数y kbx =的图象可知0kb >,矛盾,故此选项错误;故选:A .【点评】此题主要考查了一次函数图象,注意:一次函数y kx b =+的图象有四种情况: ①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象.二、填空题(本大题共有10小题,每小题3分,计30分)7.(3分)4的平方根是 2± .【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x a =,则x 就是a的平方根,由此即可解决问题.【解答】解:2(2)4±=,4∴的平方根是2±.故答案为:2±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)3.145精确到百分位的近似数是 3.15 .【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:3.145精确到百分位的近似数是3.15,故答案为:3.15.【点评】本题考查近似数和有效数字,解答本题的关键是明确题意,利用四舍五入法解答本题.9.(3分)(1,3)P -关于x 轴对称的点Q 的坐标是 (1,3)-- .【分析】坐标平面内两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数,点P 关于x 轴对称,可得出点Q 的坐标.【解答】解:根据坐标平面内两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数的特点,得出点P 关于x 轴对称的点Q 的坐标为(1,3)--,故答案为(1,3)--.【点评】本题考查了坐标平面内两个点关于x 轴对称的特点,横坐标不变,纵坐标互为相反数,难度适中.10.(3分)已知一次函数(1)2y k x =-+,若y 随x 的增大而减小,则k 的取值范围是 1k < .【分析】一次函数y kx b =+,当0k <时,y 随x 的增大而减小.据此列不等式解答即可.【解答】解:一次函数(1)2y k x =-+,若y 随x 的增大而减小,10k ∴-<,解得1k <,故答案为:1k <.【点评】本题主要考查了一次函数的性质.一次函数y kx b =+,当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.11.(3分)已知等腰三角形的顶角是80︒,那么这个三角形的一个底角是 50 ︒.【分析】利用两底角相等和三角形内角和为180︒可求得底角.【解答】解:设底角为x ︒,由三角形内角和定理可得80180x x ++=,解得50x =,所以一个底角为50︒,故答案为:50.【点评】本题主要考查等腰三角形的性质,由底角相等结合三角形内角和定理得到关于底角的方程是解题的关键.12.(3分)已知一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,则方程组32y kx y x b =+⎧⎨=+⎩的解为 12x y =-⎧⎨=⎩. 【分析】根据两函数交点即为两函数组成的方程组的解,从而求出答案.【解答】解:一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,∴方程组32y kx y x b =+⎧⎨=+⎩的解为12x y =-⎧⎨=⎩. 故答案为12x y =-⎧⎨=⎩. 【点评】本题主要考查了一次函数与二元一次方程组的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.13.(3分)如图,ABC ∆中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则AEG ∆周长为 5 .【分析】根据线段的垂直平分线的性质得到EA EB =,GA GC =,根据三角形的周长公式计算,得到答案.【解答】解:DE 是AB 的垂直平分线,EA EB ∴=,同理,GA GC =,AEG ∴∆周长5EA EG GA EB EG GC BC =++=++==,故答案为:5.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.(3分)如图,函数3y x =-和4y ax =+的图象相交于点(,3)A m ,则不等式34x ax ->+的解集为 1x <- .【分析】以交点为分界,结合图象写出不等式34x ax ->+的解集即可.【解答】解:函数3y x =-经过(,3)A m ,33m ∴=-,解得1m =-,∴点A 的坐标为(1,3)-,由图可知,不等式34x ax >+的解集为1x <-.故答案为1x <-.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A 点坐标以及利用数形结合的思想.15.(3分)若点(2,25)P a a -+到两坐标轴的距离相等,则a 的值为 1-或7- .【分析】根据点到两坐标轴的距离相等,即点的横纵坐标相等或互为相反数,计算即可.【解答】解:根据题意,得:225a a -=+或2250a a -++=,解得:1a =-或7a =-,故答案为:1-或7-.【点评】本题主要考查点的坐标,解决此题的关键是明确:当点的横纵坐标相同或互为相反数的时候,到两坐标轴的距离都是相等的,注意不要漏解.16.(3分)如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,则OE 的长为 3 .【分析】连接A D ',AD ,根据矩形的性质得到4BC OA ==,3OC AB ==,90C B O ∠=∠==︒,求得3CD =,1BD =,根据折叠的性质得到A D AD '=,A E AE '=,根据全等三角形的性质得到1AC BD '==,根据勾股定理即可得到结论.【解答】解:连接A D ',AD ,四边形OABC 是矩形,8BC OA ∴==,6OC AB ==,90C B O ∠=∠=∠=︒,3CD DB =,6CD ∴=,2BD =,CD AB ∴=,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,A D AD ∴'=,A E AE '=,在Rt △A CD '与Rt DBA ∆中,CD AB A D AD =⎧⎨'=⎩, Rt ∴△Rt DBA(HL)A CD '≅∆,2AC BD ∴'==,4AO ∴'=,222A O OE A E '+=',2224(8)OE OE ∴+=-,3OE =,故答案为3.【点评】本题考查了翻折变换(折叠问题),矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,计102分)17.(10分)(1)计算:02|13(2019)(2)π+--(2)解方程:2416x =【分析】(1)根据绝对值的性质,非0实数的0次幂以及非0实数的负整数次幂计算即可;(2)利用直接开平方法计算即可.【解答】解:(1)原式3112++32=;(2)2416x =,24x =,解得12x =,22x =-.【点评】本题考查的是实数的运算及解一元二次方程,熟知解一元二次方程的方法是解答此题的关键.18.(8分)已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.【分析】(1)利用待定系数法求出一次函数解析式,代入计算即可.(2)利用函数表达式,依据x 的取值范围,即可得到y 的取值范围.【解答】解:(1)y 与(2)x -成正比例,∴设(2)y k x =-,0k ≠,由题意得,2(12)k -=-,解得,2k =,y ∴与x 的函数表达式为24y x =-;(2)当2x =时,2240y =⨯-=,当1x =-时,246y =--=-,∴当12x -<<时,y 的取值范围为:60y -<<.【点评】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.19.(8分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与ABC ∆关于y 轴对称;(2)点A 的对称点1A 的坐标为 (3,5)- ;(3)求△111A B C 的面积.【分析】(1)依据轴对称的性质,即可得到△111A B C ,使它与ABC ∆关于y 轴对称;(2)依据点A 的对称点1A 的位置,即可得到坐标;(3)依据割补法进行计算,即可得出△111A B C 的面积.【解答】解:(1)如图所示,△111A B C 即为所求;(2)如图所示,点A 的对称点1A 的坐标为(3,5)-;故答案为:(3,5)-;(3)由题可得,△111A B C 的面积为11144142423162437222⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点评】本题主要考查了利用轴对称变换作图,解题的关键是熟练掌握对称轴的性质.20.(8分)如图,ABC ∆中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =.【分析】根据等腰三角形的性质得出BDA CEA ∠=∠,进而利用全等三角形的判定方法即可得出ABD ACE ∆≅∆,则结论可得出.【解答】证明:AD AE =,ADE AED ∴∠=∠,BDA CEA ∴∠=∠,在ABD ∆和ACE ∆中B C BDA CEA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD ACE AAS ∴∆≅∆.BD CE ∴=,BE CD ∴=.【点评】本题考查了全等三角形的判定与性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.21.(10分)如图,四边形ABCD 中,5AC =,4AB =,12CD =,13AD =,90B ∠=︒.(1)求BC 边的长;(2)求四边形ABCD 的面积.【分析】(1)5AC =,4AB =,90B ∠=︒,由勾股定理可得3BC =;(2)由已知可得ACD ∆是直角三角形,四边形ABCD 的面积11345123622=⨯⨯+⨯⨯=. 【解答】解:(1)5AC =,4AB =,90B ∠=︒,3BC ∴=; (2)12CD =,13AD =,ACD ∴∆是直角三角形,∴四边形ABCD 的面积11345123622=⨯⨯+⨯⨯=. 【点评】本题考查三角形的面积;熟练掌握勾股定理,灵活运用勾股定理是解题的关键.22.(10分)一次函数(0)y kx b k =+≠的图象为直线l .(1)若直线l 与正比例函数2y x =的图象平行,且过点(0,2)-,求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.【分析】(1)根据平行线的性质得出2k =,再把点(0,2)-代入求出b 即可;(2)先求出一次函数y kx by =+轴的交点,再利用三角形的面积公式得到关于b 的方程,解方程即可求出b 的值.【解答】解:(1)根据题意得:2k =,2y x b ∴=+,把点(0,2)-代入得:2b =-,∴一次函数的解析式为22y x =-;(2)令0x =,则y b =,函数图象与两坐标轴围成的三角形面积为3,∴13||32b⨯⨯=,即||2b=,解得:2b=±.【点评】本题考查两条直线相交或平行问题,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性.23.(10分)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC 长分别为13米、20米.(1)若拉索AB AC⊥,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.【分析】(1)根据勾股定理即可得到结论;(2)根据勾股定理即可得到结论.【解答】解:(1)AB AC⊥,90BAC∴∠=︒,AB、AC长分别为13米、20米,22221320569BC AB AC m∴=++,答:固定点B、C569m;(2)21BC=,21BD CD∴=-,AD BC⊥,2222AB BD AC CD∴-=-,22221320(21)BD BD∴-=--,5BD∴=,222213512AD AB BD∴=--=.【点评】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.24.(12分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()s km 与所用时间()t h 之间的函数关系.试根据函数图象解答下列问题:(1)小明在途中停留了 2 h ,小明在停留之前的速度为 /km h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t h =时,两人同时到达乙地,求t 为何值时,两人在途中相遇.【分析】(1)由图象中的信息即可得到结论;(2)利用待定系数法解答即可;(3)根据题意求出小华的速度,再列方程解答即可.【解答】解:(1)小明在途中停留了2h ,小明在停留之前的速度为10/km h ;故答案为:2;10;(2)设线段BC 的函数表达式为s kt b =+,420535k b k b +=⎧⎨+=⎩, 解得1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为1540s t =-;(3)甲乙两地的距离为:2015(64)50+⨯-=(千米),小华的速度为:50(61)10(/)km h ÷-=,10(1)20t -=,解得3t =.答:t为3时,两人在途中相遇.【点评】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,理解问题的过程,并能通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.25.(12分)已知ABC∆.(1)在图中用直尺和圆规作出B∠的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD,OE 求证:OD OE=;(3)如图,在(1)的条件下,点E、F分别是AB、BC边上的点,且BEF∆的周长等于BC 边的长,试探究ABC∠与EOF∠的数量关系,并说明理由.【分析】(1)利用尺规根据要求作出点O即可.(2)构造全等三角形解决问题即可.(3)结论:2180=.首先证明EOF ABC∠+∠=︒.在CB上取一点D,使得CD BE∆≅∆,推出EOF FODOFE OFD SSS()∠=∠,再证明四边形BEOD对角互补即可解决问题.【解答】解:(1)如图1中,点O即为所求.(2)如图1中,连接OC.=,OB OC∴∠=∠,OBC OCB∠=∠,EBO OBC∴∠=∠,EBO DCO=,=,BO COBE CD∴∆≅∆,()OBE OCD SAS∴=.OE OD(3)如图2中,结论:2180∠+∠=︒.EOF ABC理由:在CB上取一点D,使得CD BE=.由(2)可知:OE OD=,++==++,BE BF EF BC BF DF CD∴=,EF DF=,OF OF∴∆≅∆,()OFE OFD SSS∴∠=∠,EOF FOD∆≅∆,OBE OCDBEO ODC∴∠=∠,∠+∠=︒,180ODC BDOBEO BDO∴∠+∠=︒,180∴∠+∠=︒,EOD ABC180∴∠+∠=︒.EOF ABC2180【点评】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(14分)如图,一次函数4(0)y kx k k=+≠的图象与x轴交于点A,与y轴交于点B,且经过点(2,)C m.(1)当92m=时;①求一次函数的表达式;②BD平分ABO∠交x轴于点D,求点D的坐标;(2)若AOC∆为等腰三角形,求k的值;(3)若直线42y px p=-+也经过点C,且24p<,求k的取值范围.【分析】(1)①由待定系数法可求解析式;②如图1,过点D作DE AB⊥于E点,可证BED BOD∆≅∆,可得DE DO=,3BE BO==,由勾股定理可求解;(2)由两点距离公式可求解;(3)由两个解析式组成方程组可求m与p的关系,即可求解.【解答】解:(1)①当92m=时,∴点9 (2,)2 C,∴9242k k=+,34k∴=,∴一次函数的表达式为:334y x=+,②如图1,过点D作DE AB⊥于E点,一次函数334y x =+的图象与x 轴交于点A ,与y 轴交于点B , ∴点(0,3)B ,点(4,0)A -4AO ∴=,3BO =,221695AB AO BO ∴=+=+, BD 平分ABO ∠,ABD DBO ∴∠=∠,且BD BD =,90BED BOD ∠=∠=︒,()BED BOD AAS ∴∆≅∆DE DO ∴=,3BE BO ==,2AE ∴=,222AD DE AE =+,22(4)4DO DO ∴-=+,32DO ∴=, ∴点3(2D -,0); (2)一次函数4(0)y kx k k =+≠的图象与x 轴交于点A ,04kx k ∴=+,4x ∴=-,∴点(4,0)A -4AO ∴=,AOC ∆为等腰三角形4AO CO ∴==,22(20)(0)16m ∴-+-=,m ∴=±∴点(2,C ±,24k k ∴±=+k ∴=; (3)直线42y px p =-+与一次函数4y kx k =+交于点C ,∴24242m k k m p p =+⎧⎨=-+⎩ 31p k ∴=-+,24p <,2314k ∴-+<, 113k ∴-<-. 【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,两点距离公式,勾股定理等知识,灵活运用这些性质进行推理是本题的关键.。
泰州市姜堰区八年级(上)期末考试数学试题及答案(精美版)
2019~2020学年度第一学期期末考试八年级数学试题(考试时间:120分钟满分:150分)命题人:八年级数学命题组审校:初中数学学科工作室一、选择题(3分×6=18分)1.下列四个图形中,是轴对称图形的是A.B.C.D.2.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)3.线段a、b、c的长度分别如下,能够以a、b、c为边长构成直角三角形的一组是A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6 4.已知△ABC中AB=AC,∠B=50°,则∠C的度数为A.50°B.65°C.80°www D.50°或65°5.下列调查中,适宜采用普查方式的是A.了解一批圆珠笔的寿命B. 检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D. 了解全国九年级学生的身高现状6.一次函数y=kx+b(k≠0)的图像如图所示,则不等式kx+b-2>0的解集为A.x>-1 B.x<-1 C.x>2 D.x>0二、填空题(3分×10=30分)7.比较大小:“>”或“<”).8.若分式15x有意义,则x的取值范围是.9.从某校七年级学生中抽取100名学生,调查该校七年级学生双休日用于做数学作业的时间,调查中的样本容量是________________.10.某市在一次扶贫助残活动中,共捐款3185800元,将3185800用科学记数法表示为________________(精确到万位).11.Rt △ABC 中,∠C =90°,点D 是AB 边的中点,则ABCD=__________. 12.若点A 的坐标(x ,y )满足条件(x -3)2+||y +2=0,则点A 在第________象限.13. 已知一次函数y =(m +4)x +2,若y 随x 的增大而减小,则m 的取值范围是__________. 14.某班围绕“舞蹈、乐器、声乐、其他四个项目中,你最喜欢哪项活动(每人限选一项)”的问题,对全班50名学生进行问卷调查,根据调查结果绘制成如图所示的扇形统计图,则该班喜欢乐器的学生有_______名.第14题图 第15题图 第16题图15.在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A 沿纸箱表面爬到顶点B ,那么它所爬行的最短路线的长是 .16.如图,点A 、B 的坐标分别为(0,3)、(4,6),点P 为x 轴上的一个动点,若点B 关于直线AP 的对称点B '恰好落在坐标轴上....,则点B '的坐标为________________. 三、解答题17.(12分)计算:(1 (2)222b a ab a b a b a b++-+-;18.(8分)解方程:12211x x x +=-+.19.(8分)小明用15元买软面笔记本,小丽用20元买硬面笔记本.每本硬面笔记本比软面笔记本贵1元,如果小明和小丽买到的笔记本数量相同,那么软面笔记本和硬面笔记本每本各多少元?20.(8分)如图,△ABC中,AB=AC,∠C=70°,作AB的垂直平分线交AB于E,交AC于D,求∠DBC的度数.21. (10分)如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.(1)求△ABC的周长.(2)判断△ABC的形状并加以证明。
泰州市姜堰区八年级上学期期末
2019~2020学年度第一学期期末考试八年级数学试题(满分:150分考试时间:120分钟)注意请将所有题目的答案填到答题纸上,答在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分)1.下列图案中不是轴对称图形的是A B C D2.我国2016年10月17日7时30分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是393000米,用科学计数法表示,其结果为A.3.93×105米B.3.9×105米C.3.93×104米D.3.9×104米3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA4.若分式11-x有意义,则的取值范围是A.≠1 B.=1 C.>1D.<15.一次函数y=m+|m﹣1|的图象过点(0,2),且y随的增大而减小,则m的值为A.﹣1 B.1 C.3 D.﹣1或36.下列命题:aa=33)1(;aa=2)2(;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数包括正实数和负实数两类,其中正确命题的个数有A.1个B.2个C.3个D.4个二、填空题:(本大题共10小题,每小题3分,计30分)7.49的算术平方根是.8.如果分式xx--242的值为零,那么=.9.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC 直角三角形.(填“是”或“不是”)10.若031=-+-yx,则_____=xy.11.若点A(),21a a+在第一、三象限的两坐标轴夹角的平分线上,则a= .第3题图12.某班在一次适应性考试中,分数段在140-150分的频率为0.2,在此分数段共有8人,则该班有人.13.如图,平面直角坐标系oy 中,直线y 1=1+b 1的图像与直线y 2=2+b 2的图像相交于点(―1, ―3),当y 1<y 2时,实数的取值范围为 .14.底角为45°的等腰三角形一边长为4cm ,则此等腰三角形的底边长= cm .15.在△ABC 中,AB=2cm ,AC=1cm ,AD 平分∠BAC ,则△ABD 与△ACD 的面积之比是__________.16.如图,在平面直角坐标系oy 中,点A (0,6),点B (-8,0),过A 点的直线交轴于点C ,当△ABC 是以AB 为底的等腰三角形时,直线AC 对应的函数关系式为 .三、解答题(本大题共10小题,共102分.)17.(本题8分)(1)计算:()21333π-⎛⎫-+- ⎪⎝⎭(2)解方程:x x --21—21-x =318.(本题8分)已知3+81=0,求代数式423--x x ÷⎪⎭⎫ ⎝⎛--+252x x 的值.19.(本题10分)某初级中学围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(每位学生必须从“羽毛球、跳绳、足球、篮球、其他”五个选项中选一项且只能选填一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?第9题图x2x+b 2第13题图 第16题图(2)本次抽样调查中,最喜欢篮球活动的有多少名学生?占被调查人数的百分比是多少? (3)若该校九年级共有300名学生,图2是根据该校各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?20.(本题10分)在平面直角坐标系oy 中,点A 、B 、C 的坐标分别为(-1,0)、(-2,3)、(-3,1). (1)作出△ABC 关于轴对称的 △A 1B 1C 1 ,直接写出B 1、C 1两点的坐标:B 1( , )C 1( , ) .(2)写出△ABC 的面积,S △ABC = . (3)在y 轴上找一点D ,使得BD+DA 的值最小, 求D 点的坐标.21.(本题10分)已知y 与4+2成正比例,当=3时,y =14. (1)求y 与之间的函数表达式;(2)若点),2(1y 与),1(2y 在该函数图像上,比较1y 与2y 的大小关系.图2七年级22.(本题10分)如图,在△ABE 中,AB=AE ,C 、D 是BE 边上两点且AC=AD , 求证:BC=DE .23.(本题10分)网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?24.(本题10分)如图,△ABC 中,AD 是△ABC 的边BC 上的高,E 、F 分别是AB 、AC 的中点,AC=13、AB=20、BC=21. (1)求四边形AEDF 周长; (2)求△ABC 的面积.25.(本题12分)某蔬菜基地要把一批新鲜蔬菜运往外地,有汽车和火车两种运输方式可供选择,其中汽车运输的主要参考数据如下表:第24题图火车运输总费用y 2(元)与运输路程(m)之间的函数图像如上图所示:(1)请分别写出汽车、火车运输的总费用y 1(元)、y 2(元)与运输路程(m)之间的函数关系; (2)若蔬菜基地先由汽车把蔬菜运往60m 外的中转站再用火车运送(中转时间忽略不计),写出运输总费用y 与运输总路程(m)之间的函数关系,并求出当运输总路程为200m 时的总费用; (3)若只选择一种运输方式,你认为哪种运输方式运输的总费用较少?并说明理由.26.(本题14分)如图所示,在平面直角坐标系oy 中,直线y =3+3交轴于点B ,交y 轴于点A ,过点C (1,0)作轴的垂线l ,将直线l 绕点C 按逆时针方向旋转,旋转角为α(0°<α<180°). (1)当直线l 与直线y =3+3平行时,求出直线l 的解析式;(2)若直线l 经过点A ,①求线段AC 的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y 轴交于D 点,当△ABD 、△ACD 、△BCD 均为等腰三角形时,直接写出符合条件的旋转角α的度数.备用图(1)备用图(2)八上期末数学参考答案一、 选择题1、B2、A3、B4、A5、A6、B 二、填空题7、78、-29、是 10、3 11、-1 12、40 13、<-114、4或24(或写成82) 15、21 16、6724+=x y 三、解答题17、(1)()21333π-⎛⎫-+- ⎪⎝⎭759351=-+-+=(2)=2 检验:当=2时,-2=0. ∴=2是增根,原方程无解。
姜堰市八年级(上)期末数学试题(含答案).doc
姜堰市2019—2020学年度第一学期期终测试八年级数学试题(时间:120分钟 总分:150分)一、选择题:(每题3分共24分)1.在平面直角坐标系中,点M (-2,3)落在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.估算7的值是 ( ) A .在1和2之间 B .在2和3之间 C .在3和4之间 D .在4和5之间3.在平行四边形、矩形、等边三角形、正方形四种图形中,既是轴对称图形又是中心对称图形的有 ( )A .1个B .2个C .3个D .4个4.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数2,3,2,2,6,7,6,5,则这组数据的中位数为 ( ) A .4 B .4.5 C .3 D .2 5.若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y << B .321y y y >> C .231y y y << D .132y y y >>6.一个长为4cm ,宽为3cm 的矩形被直线分成面积为x ,y 两部分,则y 与x 之间的函数关系只可能是 ( )7.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y ,则下列图象能大致反映y 与x 的函数关系的是 ( )8.一次函数5+=x y 的图象经过点P (a ,b )和Q (c ,d ),则a (c -d )-b (c -d )的值为( )A .9B .16C .25D .36.二、填空题(每题3分,共30分)9.9的平方根为 .10.等腰三角形的两边长分别为4cm 和9cm ,则第三边长为 cm . 11.已知点A (2a +5,-4)在二、四象限的角平分线上,则a = . 12.一组数据4、6、8、x 、7的平均数为6,则x = .13.在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 . 14.等腰梯形的腰长为5,它的周长是22,则它的中位线长为 .学校: 班级: 姓名: 考试号:__________________……………………………………密…………………………………封………………………………………线…………………………………………………15.在平面直角坐标系中,把直线12+=x y 向上平移一个单位后,得到的直线解析式为 . 16.如图,一束光线从点A (3,3)出发,经过y 轴上点(0,1)反射后经过点B (1,0),则光线从点A 到 点B 经过的路径长为 .17.如图,OA ,BA 分别表示甲、乙两名学生运动时路程s与时间t 的关系。
姜堰市溱潼二中2019-2020学年八年级(上)期末数学试题及答案【推荐】.doc
2019—2020学年度姜堰区溱潼二中第一学期七年级期末考试 八年级数学试题(满分:150分 考试时间:120分钟)一、选择题(每小题3分,共18分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的空格内.)1.25的值为B .5- A .5C .5±D .252.若n m <<2,且m ,n 为相邻的整数,则n m +的值为A .2B .3C .4D .5 3.已知点A 4(-,1y ),B (2,)2y 都在直线221+-=x y ,则1y 、2y 大小关系是 A .21y y > B .21y y = C .21y y < D .不能比较4.分别以下列四组数为一个三角形的三边长:①6,8,10;②13,5,12 ③1,2,3; ④9,40,41;其中能构成直角三角形的有A .1组B .2组C .3组D .4组5.将一张圆形纸片对折后再对折,得到图①,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是A .B .C .D .6.在平面直角坐标系中,已知点A (2,2),在坐标轴上确定点B ,使AOB ∆为等腰三角形,则符合条件的点B 共有A .5个B .6个C .7个D .8个二、填空题(每题3分,共30分)7.9的平方根是 .8.点A (-3,2)关于x 轴对称的点的坐标为 .9.姜堰区溱湖风景区2013年接待游客的人数为289700人次,将这个数字精确到万位,并用科学记数法表示为 .10.在△ABC 中,∠C =90°,AC =3,BC =4,则斜边AB 上的高为 . 11.如图,b kx y +=()0≠k 的图像,则0>+b kx 的解集为 . 12.等腰三角形一个内角等于70o ,则它的底角为 .图①13.如图,把Rt △ABC (∠C =90°)折叠,使A 、B 两点重合,得到折痕ED •,若CE =DE ,则∠A 等于________°.线32+-=x y 沿y 轴向上平移两个单位后,14.在平面直角坐标系中,把直得到的直线的函数关系式为____________________.15.在平面直角坐标系中,若点M (2,3)与点N (2,y )之间的距离是4,则y 的值是 . 16.一次函数b kx y +=1与a x y +=2的图像如图,则下列结论:①k <0 ;②a >0;③当3=x 时,a x b kx +=+;④当x <3时,y 1<y 2中, 正确的序号有 .三、解答题(共102分)17.(本题共2小题,每小题6分,共12分)(1)计算:3089)1(3+-++-π (2)已知:16)1(2=+x ,求x ;18.(本题8分)若一次函数kx y 2=与b kx y +=(0≠k ,)0≠b 的图像相交于点2(,)4-. (1)求k 、b 的值;(2)若点m (,)n 在函数b kx y +=的图像上,求222n mn m ++的值。
2020-2021学年江苏省泰州市姜堰区八年级上学期期末数学复习卷 (含答案解析)
2020-2021学年江苏省泰州市姜堰区八年级上学期期末数学复习卷一、选择题(本大题共6小题,共18.0分)1.4的平方根是()A. −2B. 2C. ±2D. 162.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,√2D. 5,12,233.要反映无锡市一周内每天的最高气温的变化情况,宜采用()A. 折线统计图B. 扇形统计图C. 条形统计图D. 频数分布直方图4.如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为()A. 50°B. 60°C. 70°D. 80°5.下列命题是假命题的是()A. 平行四边形的对边相等B. 平行四边形的对角相等C. 平行四边形的对边平行D. 平行四边形的对角线相等6.如图,在同一直角坐标系中,函数y1=3x和y2=−2x+m的图象相交于点A,则不等式0<y2<y1的解集是()A. 0<x<1B. 0<x<C. 1<x<D. 1<x≤二、填空题(本大题共10小题,共30.0分)7.由四舍五入得到的近似数3.90精确到_________位.8.将一次函数y=x−1的图象向下平移3个单位得到的函数关系式为_____.9.点P(−3,5)关于x轴的对称点的坐标是_______.10.若直角三角形的两小边为5、12,则第三边为______.11.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于______.12.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长是__________.13.已知▱ABCD中,∠A比∠B小20°,那么∠C的度数是______ 度.14.如图,点E是正方形ABCD的边BC延长线上的一点,且CE=AC,若AE交CD于点F,则∠AFC=______ °.15.已知点P(2,3)在一次函数y=2x−m的图象上,则m=_______.16.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(−2,0),B(0,1),则直线BC的函数表达式为________.三、计算题(本大题共1小题,共6.0分)3+√(−2)2;17.(1)计算:(−1)0+√8(2)解方程:4x2−9=0.四、解答题(本大题共9小题,共72.0分)18.已知y−1与x+2成正比例,且x=−1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m−1,m+1),求m的值.19.某校八(1)班同学为了解某区家庭月均用水情况,随机调查了该小区部分家庭月均用水量,并将调查数据进行如下整理,请解答以下问题:(1)这里采用的调查方式是______(填“普查”或“抽样调查”),样本容量是______;(2)m=______,n=______,并把如图所示的频数分布直方图补充完整;(3)若将这些家庭月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”所对应扇形的圆心角的度数是_____;(4)若该小区有1000户家庭,求该小区月均用水量超过10t的家庭大约有多少户.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(−2,2),B(0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(−2,−6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为______.21.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒1cm的速度沿折线A−C−B−A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在AB上,求出t为何值时,△BCP为等腰三角形.22.“五⋅一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.23.甲、乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA(l货)表示货车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)货车的速度为______ 千米/时,轿车在CD段的速度为______ 千米/时;(2)求线段CD(l轿)对应的函数解析式并直接写出x的取值范围.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间第二次与轿车相遇.24.在矩形ABCD中,连接AC,AC的垂直平分线交AC于点O,分别交AD、BC于点E、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.25.如图,在△ABC中,∠C=90∘,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.x+2分别交x、y轴于A、B两点.26.如图1,直线y=13(1)求S △ AOB;(2)如图2,若点P是直线y=−x−1上的动点,当直线y=−x−1平分∠APB时,求点P的坐标;(3)若直线y=mx−2m与直线AB交于点M,与x轴交于点N,若∠AMN≤135°,求m的取值范围;-------- 答案与解析 --------1.答案:C解析:解:∵±2的平方等于4,∴4的平方根是:±2.故选:C.首先根据平方根的定义求出4的平方根,然后就可以解决问题.此题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键.2.答案:C解析:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.解:A.42+52≠62,故不是直角三角形,错误;B.62+82≠112,故不是直角三角形,错误;C.12+12=(√2)2,故是直角三角形,正确;D.52+122≠232,故不是直角三角形,错误.故选C.3.答案:A解析:这是一道考查各种统计图的优点的题目,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解:根据题意,得要求直观反映无锡市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选A.4.答案:C解析:此题主要考查了旋转的性质,三角形的内角和定理以及等腰三角形的性质.利用旋转的性质以及等腰三角形的性质得出∠AC′C的度数.解:由已知:∠C′AC=40°;又根据旋转的性质可得:AC=AC′,所以∠AC′C=∠C=70°,故选C.5.答案:D解析:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A.平行四边形的对边相等,故A说法正确,故A是真命题;B. 平行四边形的对角相等,故B说法正确,故B是真命题;C.平行四边形的对边平行,故C说法正确,故C是真命题;D.平行四边形的对角线不相等,故D说法错误,故D是假命题.故选D.6.答案:C解析:本题考查了一次函数与一元一次不等式,一次函数的图象和性质的有关知识,先利用y1=3x得到,0),然后A(1,3),再求出m得到y2═−2x+5,接着求出直线y2═−2x+m与x轴的交点坐标为(52写出直线y2═−2x+m在x轴上方和在直线y1=3x下方所对应的自变量的范围.解:当x=1时,y1=3x=3,则A(1,3),把A(1,3)代入y2═−2x+m得−2+m=3,解得m=5,,所以y2═−2x+5,解方程−2x+5=0,解得x=52,0),则直线y2═−2x+m与x轴的交点坐标为(52所以不等式0<y2<y1的解集是1<x<5.2故选C.7.答案:百分解析:本题考查了近似数和有效数字.“经过四舍五入得到的数叫近似数”;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.根据近似数的精确度求解.解:近似数3.90精确到百分位.故答案为百分.8.答案:y=x−4解析:本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b 发生变化.解析式变化的规律是:左加右减,上加下减.根据“上加下减”的平移规律解答即可.将一次函数y=x−1的图象向下平移3个单位后,得到的图象对应的函数关系式为y=x−1−3,即y=x−4.故答案为:y=x−4.9.答案:(−3,−5)解析:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(−3,5)关于x轴的对称点的坐标是(−3,−5),故答案为(−3,−5).10.答案:13解析:解:∵直角三角形的两小边为5、12,∴第三边=√52+122=13,故答案为:13.根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.11.答案:20解析:解:连接AC、BD,在Rt△ABD中,BD=√AB2+AD2=10,∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH//BD,EH=12BD=5,同理,FG//BD,FG=12BD=5,GH//AC,GH=12AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为:20.本题考查的是中点四边形,三角形中位线定理、菱形的判定定理等知识.连接AC、BD,根据勾股定理求出BD,根据三角形中位线定理、菱形的判定定理得到四边形EHGF 为菱形,根据菱形的性质计算周长.12.答案:12解析:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故答案为12.13.答案:80解析:运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.根据两直线平行同旁内角互补结合已知可求得∠A与∠B的度数,再根据平行四边形的对角相等,从而得到答案.解:∵ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,又∠A=∠B−20°∴∠A=80°,∠B=100°∴∠C=80°故答案为80.14.答案:112.5本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角求出∠E=22.5°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=1×45°=22.5°,2在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:112.5.15.答案:1解析:此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.根据待定系数法求得一次函数的解析式,解答即可.解:∵一次函数y=2x−m的图象经过点P(2,3),∴3=4−m,解得m=1,故答案为:1.x+116.答案:y=−13本题主要考查待定系数法及全等三角形的判定和性质,构造全等三角形求得C 点坐标是解题的关键.过C 作CD ⊥x 轴于点D ,则可证得△AOB≌△CDA ,可求得CD 和OD 的长,可求得C 点坐标,利用待定系数法可求得直线BC 的解析式.解:如图,过C 作CD ⊥x 轴于点D ,∵∠CAB =90°,∴∠DAC +∠BAO =∠BAO +∠ABO =90°,∴∠DAC =∠ABO ,在△AOB 和△CDA 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC∴△AOB≌△CDA(AAS),∵A(−2,0),B(0,1),∴AD =BO =1,CD =AO =2,∴C(−3,2),设直线BC 的解析式为y =kx +b ,∴{−3k +b =2b =1, 解得{k =−13b =1,∴直线BC 的解析式为y =−13x +1,故答案为y =−13x +1. 17.答案:解:(1)原式=1+2+2=5;(2)4x 2=9x 2=94x=±3.2解析:【试题解析】此题考查实数的运算,掌握零指数幂、立方根、算术平方根、平方根的定义是解题关键.(1)先计算零指数幂、立方根、平方根,再进行加减运算;(2)先移项,再利用平方根的定义进行解答.18.答案:解:(1)∵y−1与x+2成正比例,∴设y−1=k(x+2),∵x=−1时,y=3,∴3−1=k(−1+2),解得:k=2,∴y与x的关系式为:y=2x+5;(2)把点(m−1,m+1)代入y=2x+5中,得m+1=2(m−1)+5,解得:m=−2.解析:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.(1)根据y−1与x+2成正比例,设y−1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(m−1,m+1)代入一次函数解析式求出m的值即可.19.答案:(1)抽样调查;50;(2)12;0.08;如图,(3)72°;(4)1000×(0.32+0.2+0.04+0.08)=640(户),答:该小区月均用水量超过10t的家庭大约有640户.解析:本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.(1)先用第组的频数除以它的频率得到样本容量;(2)计算50×0.24得到m,计算4÷50得到n,再补全直方图;(3)360°乘以“15<x≤20”的频率即可得;(4)在样本中,用水量超过10t的家庭为后4组,于是用后4组的频率和乘以1000可估计该小区月均用水量超过10t的家庭数.解:(1)这里采用的调查方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.24=12,n=4÷50=0.08,故答案为12,0.08;(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角的度数是360°×0.2=72°,故答案为:72°;(4)见答案.20.答案:↵解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)(0,−2)解析:解:(1)见答案.(2)见答案.(3)将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为:(0,−2).故答案为:(0,−2).(1)直接利用关于点对称的性质得出△ABC的对应点进而求出即可;(2)利用平移的性质得出平移规律进而得出答案;(3)利用旋转对称图形得出对应点的连线的交点进而得出答案.此题主要考查了平移变换和旋转变换,根据题意得出对应点位置是解题关键.21.答案:解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC=√102−62=8,如图,连接BP,当PA=PB时,PA=PB=t,PC=8−t,在Rt△PCB中,PC2+CB2=PB2,即(8−t)2+62=t2,,解得:t=254∴当t=25时,PA=PB;4(2)①如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷1=20(s);②如图4,若点P在AB上,当CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷1=21.2(s);③如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=1AB=5,2∴AC+CB+BP=8+6+5=19,∴t=19÷1=19(s);综上所述,当t 为20s 或21.2s 或19s 时,△BCP 为等腰三角形.解析:本题考查了等腰三角形的性质、勾股定理、熟练掌握等腰三角形的性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.(1)设存在点P ,使得PA =PB ,此时PA =PB =t ,PC =8−t ,根据勾股定理列方程即可得到t 的值;(2)若点P 在AB 上,根据P 移动的路程易得t 的值;分三种情况讨论:①当BP =BC =6时,△BCP 为等腰三角形,易得t 的值;②当CP =CB =6,作CD ⊥AB 于D ,根据面积法求得CD ,根据勾股定理求得BD ,易得t 的值;③当PC =PB 时,△BCP 为等腰三角形,作PD ⊥BC 于D ,根据等腰三角形的性质得BD =CD ,则可判断PD 为△ABC 的中位线,则AP =12AB =5,易得t 的值; 22.答案:解:(1)设y 1=k 1x +80,把点(1,95)代入,可得95=k 1+80,解得k 1=15,∴y 1=15x +80(x ≥0);设y 2=k 2x ,把(1,30)代入,可得30=k 2,即k 2=30,∴y 2=30x(x ≥0);(2)当y 1=y 2时,15x +80=30x ,解得x =163;当y 1>y 2时,15x +80>30x ,解得x <163;当y 1<y 2时,15x +80<30x ,解得x >163;∴当租车时间为163小时,选择甲乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.解析:(1)根据函数图象中的信息,分别运用待定系数法,求得y 1,y 2关于x 的函数表达式即可;(2)当y 1=y 2时,15x +80=30x ,当y 1>y 2时,15x +80>30x ,当y 1<y 2时,15x +80<30x ,分求得x 的取值范围即可得出方案.本题主要考查了一次函数的应用,解题时注意:求正比例函数y =kx ,只要一对x ,y 的值;而求一次函数y =kx +b ,则需要两组x ,y 的值.23.答案:(1)80;120(2)线段CD(l 轿)对应的函数解析式为y =kx +b ,(2.5≤x ≤4.5),∵C(2.5,160)、D(4.5,400)在其图象上,∴{2.5k +b =1604.5k +b =400, 解得:{k =120b =−140, ∴线段CD(l 轿)对应的函数解析式为y =120x −140,(2.5≤x ≤4.5);(3)设x 小时后两车第二次相遇,根据题意,得:120(x −4.5)+80x =400,解得:x =4.7(小时),答:出发4.7小时后轿车再次与货车相遇.故答案为:(1)80,120.解析:解:(1)货车速度为:400÷5=80(km/ℎ),轿车在CD 段的速度为:400−1604.5−2.5=120(km/ℎ);(2)(3)见答案(1)根据图形中点的坐标的意义,再结合速度=路程÷时间,即可得出结论;(2)设线段CD 对应的函数解析式为y =kx +b ,由待定系数法求出其解即可;(3)设x 小时后两车第二次相遇,根据:货车行驶路程+轿车从乙地返回后所行驶路程=甲、乙两点距离,列出方程,解方程可得.本题考查了一次函数的实际应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,解答时求出函数的解析式是关键.24.答案:(1)证明:∵四边形ABCD是矩形,∴AD//BC,AD=BC,∴∠EAO=∠FCO,∵EF是AC的垂直平分线,∴AO=CO,∠EOA=∠FOC=90°,在△AEO和△CFO中,{∠EOA=∠FOCAO=CO∠EAO=∠FCO,∴△AEO≌△CFO,∴AE=CF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则BF=8−x,在Rt△ABF中,AF2=BF2+AB2,即x2=42+(8−x)2,解得x=5.∴菱形AECF的边长为5,∴菱形AECF的周长为4×5=20.解析:本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定与性质、勾股定理、线段垂直平分线的性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.(1)由矩形的性质得出AD//BC,∠EAO=∠FCO,证明△AEO≌△CFO,得出AE=CF,证出四边形AECF是平行四边形,再由对角线AC⊥EF,即可得出结论;(2)设AF=CF=x,则BF=8−x,在Rt△ABF中,根据勾股定理得出方程,解方程可得x的值,进而即可求得结果.25.答案:证明:连接CD.∵DE⊥AC,DF⊥BC,∴∠CED=90°,∠CFD=90°,∵∠ACB=90°,∴四边形CEDF是矩形,∵AC=BC,D是AB中点,∴DC平分∠ACB,∵DE⊥AC,DF⊥CB,∴DE=DF,∴四边形CEDF是正方形.解析:本题考查矩形、正方形的判定,等腰三角形的性质,角平分线的性质等知识,解题的关键是熟练掌握正方形的判定方法,属于中考常考题型.连接CD,首先证明四边形CEDF是矩形,再证明DE=DF即可解决问题.26.答案:解:(1)把x=0代入y=13x+2,得y=2,∴B(0,2),把y=0代入y=13x+2,得13x+2=0,解得x=−6,∴A(−6,0),∴OA=6,OB=2,∵OA⊥OB,∴S△AOB=12OA·OB=6;(2)直线y =−x −1交x 、y 轴于S 、T 两点,过S 作SQ ⊥x 轴交PQ 于点Q ,∵S(−1,0),T(0,−1),∴OS =OT =1,∴∠TSO =∠OTS =45°,∴∠ASP =∠QSP =135°,∵∠APS =∠QPS ,PS =PS ,∴△ASP≌△QSP ,∴QS =AS =5,∴Q(−1,5),设直线PQ 的解析式为y =kx +2,把Q(−1,5)代入,得−k +2=5,∴k =−3,∴直线PQ 的解析式为y =−3x +2,联立两解析式得{y =−3x +2y =−x −1, 解得{x =32y =−52,∴ P(32,−52);(3)∵y ==mx −2x =m(x −2),∴无论m 为何值,当x =2时y =0,∴N(2,0),当∠AMN =135°时,过N 作NG ⊥MN 交AB 于点G ,过M 作ME ⊥x 轴于E ,过G 作GF ⊥x 轴于F ,∵∠MEN =∠NFG ,∠ENM =∠FGN ,MN =NG ,∴△MEN≌△NFG , ∴ME =NF ,EN =FG ,设ME =NF =a ,EN =FG =b ,则M(2−b,a),N(2+a,b),代入y =13x +2,得{a =13(2−b )+2b =−13(2+a )+2 解得{a =85b =165, ∴ M(−65,85),把M (−65,85)代入y =mx −2m ,可得m =−12,经分析可得m≤−12或0<m<13或m>1313.解析:本题为一次函数综合题,熟练掌握一次函数图象上点的坐标特征,待定系数法求一次函数解析式,全等三角形的判定定理与性质定理是解决此题的关键.(1)分别把y=0,x=0代入直线解析式,求出A、B的坐标,从而求出OA,OB的长,然后由三角形的面积公式求解即可;(2)设直线y=−x−1交x、y轴于S、T两点,过S作SQ⊥x轴交PQ于点Q,则△ASP≌△QSP,所以QS=AS=5,所以Q(−1,5),然后用待定系数法求出PQ的解析式,然后联立y=−x−1,解方程组即可得到P的坐标;(3)由y=mx−2m=m(x−2),可得无论m为何值,当x=2时y=0,所以N(2,0),当∠AMN=135°时,过N作NG⊥MN交AB于点G,过M作ME⊥x轴于E,过G作GF⊥x轴于F,则△MEN≌△NFG,所以ME=NF,EN=FG,设ME=NF=a,EN=FG=b,则M(2−b,a),N(2+a,b),代入y=13x+2,求出M的坐标,再把M的坐标代入y=mx−2m即可.。
姜堰初二期末数学试卷答案
1. 下列各数中,有理数是()A. √2B. πC. √-1D. 2/3答案:D解析:有理数是可以表示为两个整数比的数,而2/3正好是两个整数的比,所以选D。
2. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. ab > 0D. a/b > 0答案:A解析:由于a > b,那么a - b的结果必然大于0,所以选A。
3. 在下列各函数中,定义域为实数集的是()A. y = √(x - 2)B. y = 1/xC. y = x^2D. y = log2(x)答案:C解析:x^2的定义域为实数集,其他选项的定义域都有限制。
4. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a ≥ 0C. a < 0D. a ≤ 0答案:A解析:二次函数开口向上,说明a > 0。
5. 若等差数列{an}的公差d = 3,首项a1 = -5,则第10项an的值为()A. 22B. 25C. 28D. 30答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d,代入公式得an = -5 + (10 - 1) × 3 = 28。
6. 已知等比数列{an}的第三项a3 = 8,公比q = 2,则第一项a1 = ________。
答案:2解析:等比数列的通项公式为an = a1 q^(n-1),代入公式得8 = a1 2^(3-1),解得a1 = 2。
7. 若方程2x^2 - 5x + 3 = 0的两根为x1和x2,则x1 + x2 = ________。
答案:5/2解析:根据韦达定理,x1 + x2 = -b/a,代入系数得x1 + x2 = 5/2。
8. 已知函数f(x) = 3x - 2,若f(x) > 0,则x的取值范围是 ________。
_江苏省泰州市姜堰区2020-2021学年八年级上学期期末数学试卷 解析版
2020-2021学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个图形中,是轴对称图形的是()A.B.C.D.2.下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点3.下列长度的三条线段能组成直角三角形的是()A.B.,C.32,42,52D.4,5,64.已知点(﹣1,y1)、(3,y2)在一次函数y=﹣x+2的图象上,则y1、y2、0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y15.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.y=|x|D.|y|=x6.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.4的平方根是.8.已知一个直角三角形的两直角边长分别为3和4,则斜边长是.9.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.10.如图,BD、CE是等边三角形ABC的中线,则∠EFD=.11.请你写出一个图象过点(0,2)且y随x的增大而减小的一次函数的表达式:.12.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.x/h012345y/m3 3.3 3.6 3.9 4.2 4.5根据表格中水位的变化规律,则y与x的函数表达式为.14.如图,已知B中的实数与A中的实数之间的对应关系是某个一次函数.若用y表示B 中的实数,用x表示A中的实数,则a=.15.一次函数y=kx+b(k≠0)的图象如图所示,则一元一次不等式﹣kx+2k+b>0的解集为.16.在平面直角坐标系中,对于两点A、B,给出如下定义:以线段AB为直角边的等腰直角三角形称为点A、B的“对称三角形”.一次函数y=﹣x+4的图象与x轴、y轴分别交于点A和点B,在第一象限内,点A,B的“对称三角形”的另一个顶点坐标为.三、解答题(本大题共10小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:﹣;(2)求x的值:4x2﹣25=0.18.已知y﹣2与x+1成正比例,且x=2时,y=8.(1)写出y与x之间的函数关系式;(2)当x=﹣4时,求y的值.19.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.某学校举办一次乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例.当x=10时,y=1200,当x=40时,y=2400.(1)求y与x之间的函数关系式;(2)学校一学年举行了两次乒乓球比赛,共花费3600元,那两次共有多少名运动员参加比赛?22.如图,Rt△ABC中,∠ACB=90°.(1)作AB边的垂直平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,BC=8cm,求BD的长.23.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:(从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明)24.学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:如图,在△ABC中,AB=AC=10,BC=12,AD∥BC,CD⊥AD,BD和AC相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.25.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为,a=;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?26.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,E(1,1)为平面内一点.(1)点E是否在一次函数y=﹣2x+3的图象上?说明理由;(2)一次函数y=﹣x+b的图象经过E点,与x轴交于C点.①求BC的长;②求证:AB平分∠OBC;③正比例函数y=kx的图象与一次函数y=﹣2x+3的图象交于P点,O、P到一次函数y=﹣x+b的图象的距离相等,直接写出符合条件的k值.2020-2021学年江苏省泰州市姜堰区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共6小题)1.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.2.下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选:C.3.下列长度的三条线段能组成直角三角形的是()A.B.,C.32,42,52D.4,5,6【分析】根据勾股定理的逆定理,可以判断各个选项中的三条边的长度能否构成直角三角形.【解答】解:()2+()2=()2,故选项A符合题意;()2+()2≠()2,故选项B不符合题意;(32)2+(42)2≠(52)2,故选项C不符合题意;42+52≠62,故选项D不符合题意;故选:A.4.已知点(﹣1,y1)、(3,y2)在一次函数y=﹣x+2的图象上,则y1、y2、0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】把﹣1和3代入一次函数解析式中,即可算出y1与y2的值,即可得出答案.【解答】解:当x=﹣1时,y1=﹣(﹣1)+2=3,当x=3时,y2=﹣3+2=﹣1,∵﹣1<0<3,∵y2<0<y1.故选:D.5.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.y=|x|D.|y|=x【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、∵对于x的每一个取值,y都有唯一确定的值,故A正确;B、∵对于x的每一个取值,y都有唯一确定的值,故B正确;C、∵对于x的每一个取值,y都有唯一确定的值,故C正确;D、∵对于x的每一个取值,y没有唯一确定的值,故D错误;故选:D.6.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【解答】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=(180°﹣∠CAE)=70°,∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.二.填空题(共10小题)7.4的平方根是±2.【分析】根据平方根的定义,求非负数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.8.已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,斜边长==5,故答案为:5.9.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.10.如图,BD、CE是等边三角形ABC的中线,则∠EFD=120°.【分析】利用等边三角形的性质得到BD⊥AC,CE⊥AB,∠A=60°,然后利用四边形的内角和可计算出∠EFD的度数.【解答】解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.11.请你写出一个图象过点(0,2)且y随x的增大而减小的一次函数的表达式:y=﹣x+2(答案不唯一).【分析】由图象经过点(0,2),则b=2,又y随x的增大而减小,只要k<0即可.【解答】解:设函数y=kx+b(k≠0,k,b为常数),∵图象经过点(0,2),∴b=2,又∵y随x的增大而减小,∴k<0,可取k=﹣1.这样满足条件的函数可以为:y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=﹣10.【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:由题意,得a=﹣3,b=﹣4,2a+b=﹣6+(﹣4)=﹣10,故答案为:﹣10.13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.x/h012345y/m3 3.3 3.6 3.9 4.2 4.5根据表格中水位的变化规律,则y与x的函数表达式为y=0.3x+3.【分析】根据记录表由待定系数法就可以求出y与x的函数表达式.【解答】解:设y与x的函数表达式为y=kx+b,由记录表得:,解得:.故y与x的函数表达式为y=0.3x+3.故答案为:y=0.3x+3.14.如图,已知B中的实数与A中的实数之间的对应关系是某个一次函数.若用y表示B 中的实数,用x表示A中的实数,则a=1.【分析】设一次函数解析式为y=kx+b(k≠0),将x,y的两对对应值代入计算,即可得到函数解析式,进而得出a的值.【解答】解:设一次函数解析式为y=kx+b(k≠0),把,代入可得,,解得,∴y=2x﹣3,∴当x==2时,y=2×2﹣3=1,∴a=1,故答案为:1.15.一次函数y=kx+b(k≠0)的图象如图所示,则一元一次不等式﹣kx+2k+b>0的解集为x<4.【分析】根据函数图象可以得到一次函数y=kx+b(k≠0)的图象交x轴于点(﹣2,0),y随x的增大而增大,从而可以得到k和b的关系,k>0,然后即可得到不等式﹣kx+2k+b >0的解集.【解答】解:由图象可得,一次函数y=kx+b(k≠0)的图象交x轴于点(﹣2,0),y随x的增大而增大,∴﹣2k+b=0,k>0,∴b=2k,∴不等式﹣kx+2k+b>0可以化为﹣kx+2k+2k>0,解得x<4,故答案为:x<4.16.在平面直角坐标系中,对于两点A、B,给出如下定义:以线段AB为直角边的等腰直角三角形称为点A、B的“对称三角形”.一次函数y=﹣x+4的图象与x轴、y轴分别交于点A和点B,在第一象限内,点A,B的“对称三角形”的另一个顶点坐标为(12,8),(4,12).【分析】先求出点A,B的坐标,再通过三角形全等即可求出C的坐标,即可得出结论.【解答】解:如图1,过点C作CD⊥x轴于D,令x=0,得y=4,令y=0,得x=8,∴A(8,0),B(0,4),∴OA=8,OB=4,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠BAO=∠ACD,∵∠BOA=∠ADC=90°,∴△ABO≌△CAD(AAS),∴AD=BO=4,CD=AO=8,∴OD=12,∴C(12,8);如图2,过点C作CD⊥y轴于D,同理:△ABO≌△BDC(AAS),∴CD=BO=4,BD=AO=8,∴OD=12,∴C(4,12);综上,点A,B的“对称三角形”的另一个顶点坐标为(12,8),(4,12);故答案为(12,8),(4,12).三.解答题17.(1)计算:﹣;(2)求x的值:4x2﹣25=0.【分析】(1)本题涉及零开立方、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先把﹣25移到等号右边,再两边同时除以4,然后求的平方根即可.【解答】解:(1)原式=4﹣2+=2;(2)4x2﹣25=0.x2=,x=±.18.已知y﹣2与x+1成正比例,且x=2时,y=8.(1)写出y与x之间的函数关系式;(2)当x=﹣4时,求y的值.【分析】(1)设y﹣2=k(x+1)(k为常数,k≠0),把x=2,y=8代入求出k即可;(2)把x=﹣4代入y=2x+4,即可求出答案.【解答】解:(1)∵y﹣2与x+1成正比例,∴设y﹣2=k(x+1)(k为常数,k≠0),把x=2,y=8代入得:8﹣2=k(2+1),解得:k=2,即y﹣2=2(x+1),即y=2x+4,∴y与x之间的函数关系式是y=2x+4;(2)当x=﹣4时,y=2×(﹣4)+4=﹣4.19.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.【分析】根据立方根与算术平方根的定义得到5x+y+2=27,2x+3=25,则可计算出x=11,y=﹣30,然后计算x﹣2y+10后利用平方根的定义求解.【解答】解:因为2x+3的算术平方根是5,5x+y+2的立方根是3,所以,解得,所以x﹣2y+10=81,所以x﹣2y+10的平方根为.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).21.某学校举办一次乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例.当x=10时,y=1200,当x=40时,y=2400.(1)求y与x之间的函数关系式;(2)学校一学年举行了两次乒乓球比赛,共花费3600元,那两次共有多少名运动员参加比赛?【分析】(1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=3600,即可求得x的值.【解答】解:(1)设y=kx+b,根据题意得:,解得,∴y=40x+800;(2)在y=40x+800中y=3600,解得x=50,答:两次共有50名运动员参加比赛.22.如图,Rt△ABC中,∠ACB=90°.(1)作AB边的垂直平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,BC=8cm,求BD的长.【分析】(1)利用基本作图,作AB的垂直平分线得到D点;(2)先利用勾股定理计算出AC=6,再根据线段的垂直平分线的性质得到DA=DB,设BD=x,则AD=x,CD=8﹣x,利用勾股定理得到(8﹣x)2+62=(8﹣x)2,然后解方程即可.【解答】解:(1)如图,点D为所作;(2)在Rt△ABC中,∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵点D在AB的垂直平分线上,∴DA=DB,设BD=x,则AD=x,CD=8﹣x,在Rt△ACD中,(8﹣x)2+62=(8﹣x)2,解得x=,即BD的长为.23.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:(从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明)【分析】(1)根据等腰直角三角形的性质和全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵∠BAC=∠DAE=90°,∴∠DAE+∠DAB=∠BAC+∠DAB,即∠BAE=∠CAD,在△BAE与△CAD中,,∴△BAE≌△CAD(SAS),∴BE=CD;(2)∵BE=CD,又∵BE=CE,∴CE=CD,又∵AD=AE,∴CA垂直平分DE,∴DE⊥AC(可得①),又∵∠BAC=90°,∴DE∥AB(可得②).24.学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:如图,在△ABC中,AB=AC=10,BC=12,AD∥BC,CD⊥AD,BD和AC相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.【分析】以BC为x轴,过A点垂直于BC的直线为y轴,建立平面直角坐标系,则B(﹣6,0),C(6,0),OB=OC=6,AD=OC=6,CD=OA=8,得A(0,8),D(6,8),由待定系数法求出直线AC和BD的解析式,进而求出点P的坐标,即可解决问题.【解答】解:以BC为x轴,过A点垂直于BC的直线为y轴,建立平面直角坐标系,如图所示:则B(﹣6,0),C(6,0),OB=OC=6,AD=OC=6,∴CD=OA===8,∴A(0,8),D(6,8),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣x+8,同理得:直线BD的解析式为y=x+4,解方程组得:,∴P(2,),∴△BPC的面积=×12×=32.25.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为2000m,a=14;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?【分析】(1)根据图象可知甲、乙两地的距离为2000m,根据以相同的速度原路返回,可知a=24﹣10=14;(2)设y与x解析式为y=kx+b,把(14,2000)与(24,0)代入求出k与b的值,即可确定出解析式;(3)先求出小明骑自行车的速度,再根据题意列方程解答即可.【解答】解:(1)由图象可知,甲、乙两地的距离为2000m;a=24﹣10=14;故答案为:2000m;14;(2)设y=kx+b,把(14,2000)与(24,0)代入得:,解得:k=﹣200,b=4800,则y=﹣200x+4800;(3)小明骑自行车的速度为:2000÷10=20(m/min),根据题意,得(200+100)x=2000﹣200或(2000+100)=2000+200或200(x﹣4)=2000﹣200,解得x=6或x=或x=23,答:小明从甲地出发6小时或小时或23小时,与小红相距200米.26.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,E(1,1)为平面内一点.(1)点E是否在一次函数y=﹣2x+3的图象上?说明理由;(2)一次函数y=﹣x+b的图象经过E点,与x轴交于C点.①求BC的长;②求证:AB平分∠OBC;③正比例函数y=kx的图象与一次函数y=﹣2x+3的图象交于P点,O、P到一次函数y=﹣x+b的图象的距离相等,直接写出符合条件的k值.【分析】(1)将点E坐标代入解析式可求解;(2)①分别求出点B,点C坐标,由勾股定理可求解;②由“SSS”可证△ABD≌△ABC,可得∠ABD=∠ABC,可得结论;③分两种情况讨论,全等三角形的性质和平行线的性质可求解.【解答】解:(1)在,理由如下:∵当x=1时,y=﹣2×1+3=1,∴点E在一次函数y=﹣2x+3的图象上;(2)①∵一次函数y=﹣x+b的图象经过E点,∴1=﹣+b,∴b=,∴y=﹣x+,当y=0时,x=4,∴点C(4,0),∴OC=4,∵一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,∴点A(,0),点B(0,3),∴OB=3,OA=,∴BC===5;②如图,取点D(0,﹣2),连接AD,∴BD=BO+OD=5=BC,∵AO=,∴AC=4﹣=,AD===,∴AD=AC,在△ABD和△ABC中,,∴△ABD≌△ABC(SSS),∴∠ABD=∠ABC,∴AB平分∠OBC;③当点O,点P在直线AB的同侧时,∵O、P到一次函数y=﹣x+的图象的距离相等,∴OP与直线y=﹣x+平行,∴k=﹣,当点O,点P在直线AB的异侧时,过点O作OH⊥CE于H,过点P作PQ⊥CE于Q,直线y=kx交CE于F,∵O、P到一次函数y=﹣x+的图象的距离相等,∴OH=PQ,又∵∠PFQ=∠OFH,∠PQF=∠OHF,∴△PQF≌△OHF(AAS),∴PF=OF,∵直线y=kx的图象与直线y=﹣2x+3的图象交于P点,∴,∴,∴点P(,),∴点F坐标为(,),∵点F在一次函数y=﹣x+上,∴=﹣×+,∴k=13,综上所述:k=﹣或13.。
江苏省泰州市2019-2020学年数学八上期末模拟考试试题(1)
江苏省泰州市2019-2020学年数学八上期末模拟考试试题(1)一、选择题1.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x 千米/小时,则方程可列为( ) A .180x +4060=1801.5x B .180x -4060=1801.5xx- C .1801.5x x - +1=180x ﹣4060D .1801.5x x - +1=180x +40602.关于x 的方程32211x m x x --=++有增根,则m 的值为( ) A.2B.7-C.5D.5-3.化简222a aa++的结果是()A .-aB .-1C .aD .1 4.已知ab =﹣2,a ﹣3b =5,则a 3b ﹣6a 2b 2+9ab 3的值为( ) A .﹣10B .20C .﹣50D .405.下列各式中,能用完全平方公式分解的个数为( ) ①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+. A.1个 B.2个 C.3个 D.4个6.下列运算中,正确的是( )A .22a a a ⋅=B .224()a a = C .236a a a ⋅= D .2323()a b a b =⋅ 7.在平面直角坐标系中,点(2,-3)关于x 轴的对称点坐标是( )A .(2,3)B .(-2,-3)C .(-2,3)D .(-3,2)8.如图,矩形ABCD 中,AB=7,BC=4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB,BC 于点E,F;再分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H,作射线BH,交DC 于点G,则DG 的长为( )A .1B .112C .3D .2129.如图,在△ABC 中,已知AB=AC ,D 、E 两点分别在边AB 、AC 上.若再增加下列条件中的某一个,仍不能判定△ABE ≌△ACD ,则这个条件是( )A.BE ⊥AC ,CD ⊥ABB.∠AEB=∠ADCC.∠ABE=∠ACDD.BE=CD10.已知在Rt △ABC 中,∠C =90°,∠A =60°,AC =2,则AB 的值为( )A .B .C .4D .111.如图, DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A.EC FA =B.DC BA =C.D B ∠=∠D.DCE BAF ∠=∠12.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于1MN 2的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为()4a,3b 1-,则a 与b 的数量关系为()A .4a 3b 1-=B .4a b 1+=C .4a b 1-=D .4a 3b 1+=13.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( ) A .五边形B .六边形C .七边形D .八边形14.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .1415.如图,在△ABC 中,中线AD 、CE 相交于点G ,AG=6,则AD 的长为( )A.18B.9C.8D.3二、填空题16.用科学记数法表示:0.0000000210=___.17.已知多项式225x mx ++是完全平方式,且0m >,则m 的值为__________. 【答案】1018.如图,在Rt ABC ∆中,AC BC =,090ACB ∠=,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于点G ,交AC 于点F ,且EG AE =,分别延长CE 、BG 交于点H ,若EH 平分AEG ∠,HD 平分CHG ∠。
2024届江苏省泰州市姜堰市八年级数学第一学期期末学业质量监测试题含解析
2024届江苏省泰州市姜堰市八年级数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是()A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠42.在平面直角坐标系中,等腰△ABC 的顶点A 、B 的坐标分别为(0,0)、(2,2),若顶点C 落在坐标轴上,则符合条件的点C 有()个.A .5B .6C .7D .83.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80809090则这四名同学四次数学测试成绩最稳定的是()A .甲B .乙C .丙D .丁4.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为().A .()100910092,2B .()100910092,2-C .()100910102,2--D .()100910102,2-5.一个四边形,截一刀后得到的新多边形的内角和将A .增加180°B .减少180°C .不变D .不变或增加180°或减少180°6.下列说法不正确的是()A .调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B .一组数据2,2,3,3,3,4的众数是3C .如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是7D .一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是27.如果x 2+2ax+b 是一个完全平方公式,那么a 与b 满足的关系是()A .b =a B .a =2b C .b =2aD .b =a 28.等腰三角形的一外角是130°,则其底角是()A .65°B .50°C .80°D .50°或65°9.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是()A .2V V t x x +=B .4V V t x x +=C .11224V V t x x⋅+⋅=D .24V V t x x +=10.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积()A .4a 2B .4a 2﹣abC .4a 2+abD .4a 2﹣ab﹣2b 2二、填空题(每小题3分,共24分)11.如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示2,设点B 所表示的数为m 2m 的值为______.12.如图,在四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,分别以DC ,BC ,AB 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=64,S 1=9,则S 1的值为_____.13.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a +b ),宽为(a +b )的长方形,则需要A 类卡片_____张,B 类卡片_____张,C 类卡片_____张.14.如图,一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,则关于x 的不等式1x b kx +>-的解集为__________.+x x -+1x =___________.16.分解因式:x 3y-xy=______.17.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.18.如图,小明站在离水面高度为8米的岸上点C 处用绳子拉船靠岸,开始时绳子BC 的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了______米(BD 的长)(假设绳子是直的).三、解答题(共66分)19.(10分)已知:如图,∠1=∠2,∠3=∠4求证:AC=AB.20.(6分)过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =6,AC =10,EC =254,求EF 的长.21.(6分)计算:(1)()()2211x x x x ---+(2)()()222299n m m n -++(3)2244112a a a a a -+-⨯--22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点,A C 的坐标分别为(4,5),(1,3)--.(1)请作出ABC 关于y 轴对称的A B C '''V ;(2)在y 轴上找一点P ,使PA PC +最小;(3)在x 轴上找一点Q ,使QA QB -最大.23.(8分)已知:如图,点E C ,在线段BF 上,//AC DF AC DF BE CF ==,,.求证://AB DE .24.(8分)问题背景:如图1,在四边形ABCD 中,∠ABC =90°,AB =CB =DB ,DB ⊥AC .①直接写出∠ADC 的大小;②求证:AB 1+BC 1=AC 1.迁移应用:如图1,在四边形ABCD 中,∠BAD =60°,AB =BC =CD =DA =1,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE 、CF .①求证:△CEF 是等边三角形;②若∠BAF =45°,求BF 的长.25.(10分)(习题再现)课本中有这样一道题目:如图,在四边形ABCD 中,E F M ,,分别是AB CD BD ,,的中点,AD BC =.求证:EFM FEM ∠=∠.(不用证明)(习题变式)(1)如图,在“习题再现”的条件下,延长AD BC EF AD ,,,与EF 交于点N ,BC 与EF 交于点P ,求证:ANE BPE ∠=∠.(2)如图,在ABC ∆中,AC AB >,点D 在AC 上,AB CD =,E F ,分别是BC AD ,的中点,连接EF 并延长,交BA 的延长线于点G ,连接GD ,60EFC ∠= ,求证:90AGD ∠=o .26.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.2、D【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.3、C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.4、B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【详解】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2018=504×4+2,∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.5、D【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.6、A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5)÷2=(4+1+4+5)÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【点睛】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、D【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵x1+1ax+b是一个完全平方公式,∴b=a1.故选D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8、D【分析】等腰三角形的一外角是130°,则可分两种情况讨论,①是底角的邻补角为130°,②是顶角的邻补角为130°,再计算底角即可.【详解】解:如图所示,△ABC是等腰三角形,AC=AB,∠CAD与∠ACE为△ABC的两个外角,①若∠CAD=130°,则∠CAD=∠ACB+∠ABC又∵∠ACB=∠ABC,∴∠ACB=∠ABC=65°,②若∠ACE=130°,则∠ACB=180°-130°=50°,所以底角为50°或65°,故答案为:D.【点睛】本题考查了等腰三角形分类讨论的问题,解题的关键是明确等腰三角形的一外角是130°,可分两种情况讨论.9、C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx⋅,再求出后一半容积注水的时间为124Vx⋅,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为12Vx⋅,后一半容积注水的时间为124Vx⋅,即可列出方程为11224V V tx x⋅+⋅=,故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程.10、B【分析】根据阴影部分面积=大长方形的面积-小长方形的面积,列出算式,再根据整式的混合运算顺序和运算法则计算可得.【详解】解:余下的部分的面积为:(2a+b)(2a-b)-b(a-b)=4a2-b2-ab+b2=4a 2-ab ,故选B .【点睛】本题主要考查整式的混合运算,解题的关键是结合图形列出面积的代数式,并熟练掌握整式的混合运算顺序和运算法则.二、填空题(每小题3分,共24分)11、2-【分析】由点向右直爬2个单位,即2+,据此即可得到.【详解】解:由题意,∵点A 表示,∴点B 表示2,即2m =+,(2)2=+=-;故答案为:2.【点睛】本题考查了实数与数轴的对应关系,理解向右移动是增大是关键.12、2【分析】由已知可以得到+31214S S S +=,代入各字母值计算可以得到解答.【详解】解:如图,过A 作AE ∥DC 交BC 于E 点,则由题意可知∠ABC+∠AEB=90°,且BE=AD=12BC ,AE=DC ,∴三角形ABE 是直角三角形,∴222AB AE BE +=,即22214AB DC BC +=,∴3123211116497444S S S S S S +=∴=-=⨯-=,,故答案为2.【点睛】本题考查平行四边形、正方形面积与勾股定理的综合应用,由已知得到三个正方形面积的关系式是解题关键.13、211【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【详解】解:长为2a +b ,宽为a +b 的矩形面积为(2a +b )(a +b )=2a 2+1ab +b 2,∵A 图形面积为a 2,B 图形面积为b 2,C 图形面积为ab ,∴需要A 类卡片2张,B 类卡片1张,C 类卡片1张.故答案为:2;1;1.【点睛】本题考查了多项式与多项式的乘法运算的应用,正确列出算式是解答本题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.14、x >-1.【分析】根据一次函数的图象和两函数的交点横坐标即可得出答案.【详解】∵一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,交点横坐标为:x=-1,∴不等式1x b kx +>-的解集是x >-1.故答案为:x >-1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.15、1有意义,∴x ⩾0,−x ⩾0,∴x=0,=1故答案为116、(1)(1)xy x x +-【详解】原式=xy (x 2﹣1)=xy (x+1)(x ﹣1),故答案为:xy (x+1)(x ﹣1)17、55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.18、1【分析】在Rt △ABC 中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD=AB-AD 可得BD 长.【详解】在Rt △ABC 中:∵∠CAB=10°,BC=17米,AC=8米,∴15AB ===(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,∴171710CD =-⨯=(米),∴6AD ===(米),∴1569BD AB AD =-=-=(米),答:船向岸边移动了1米.故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.三、解答题(共66分)19、见解析【解析】试题分析:根据邻补角的定义证得∠ADB=∠ADC ,再利用ASA 证明△ABD△ACD ,根据全等三角形的性质即可得结论.试题解析:证明:∵∠3=∠4,∴∠ADB=∠ADC (等角的补角相等),在△ABD 与△ACD 中,12ADB ADC AD AD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD △ACD (ASA ),∴AC=AB .20、(1)证明见解析;(2)152.【分析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ACB =∠DAC ,∵O 是AC 的中点,∴AO =CO ,在△AOF 和△COE 中,ACB DAC AO CO AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC×AB =12AC×EF ,又∵AB =6,AC =10,EC =254,∴254×6=12×10×EF ,解得EF =152.【点睛】考核知识点:菱形性质.理解性质是关键.21、(1)231x x -+(2)4481m n -(3)21a a -+【分析】(1)根据整式的乘法运算法则即可求解;(2)根据平方差公式即可求解;(3)根据分式的乘法运算法则即可求解.【详解】(1)()()2211x x x x ---+=22221x x x x-+--=231x x -+(2)()()222299n m m n -++=4481m n -(3)2244112a a a a a -+-⨯--=()()2(2)1112a a a a a --⨯+--=21a a -+【点睛】此题主要考查整式与分式的运算,解题的关键是熟知其运算法则.22、(1)图见解析;(2)P 点见解析;(3)Q 点见解析.【分析】(1)先描出对应点,再依次连接即可;(2)C 点关于y 轴对称点为'C ,所'PA PC PA PC +=+最短为'AC ,(3)根据三角形两边之差小于第三边,可得QA QB AB -≤(当Q 在AB 的延长线上等号成立),由此可得Q 点.【详解】解:(1)A B C '''V 如图所示;(2)如图,连接'AC 与y 轴交于P ,此时PA+PC 最小;(3)延长AB 与x 轴交于Q ,此时QA QB -最大.【点睛】本题考查坐标与图形变换——轴对称,三角形三边关系.熟知轴对称的性质是解答此题的关键.23、见解析.【分析】根据题意先证明△ABC ≌△DEF ,据此求得∠ABC=∠DEF ,再利用平行线的判定进一步证明即可.【详解】∵//AC DF ,∴∠ACB=∠DFE ,∵BE=CF ,∴BE+EC=CF+EC ,即:BC=EF ,在△ABC 与△DEF 中,∵AC=DF ,∠ACB=∠DFE ,BC=EF ,∴△ABC ≌△DEF (SAS ),∴∠ABC=∠DEF ,∴AB ∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键.24、问题背景①∠ADC =135°;②证明见解析;迁移应用:①证明见解析;②BF =.【分析】问题背景①利用等腰三角形的性质以及三角形的内角和定理即可解决问题.②利用面积法解决问题即可.迁移应用①如图1中,连BD ,BE ,DE .证明EF =FC ,∠CEF =60︒即可解决问题.②过B 作BH ⊥AE 于H ,设BH =AH =EH =x ,利用面积法求解即可.【详解】问题背景①∵BC =BD =BA ,BD ⊥AC ,∴∠CBD =∠ABD 12=∠ABC =45°,∴∠BCD =∠BDC 12=(180°﹣45°)=67.5°,∠BDA =∠BAD =67.5°,∴∠ADC =∠BDC +∠BDA =135°.②如图1中,设AB =BC =a ,∴S △ABC 212a =∵BE ⊥AC ,∠BCA =∠BAC =45°,∴BE =AE =CE 12AC =∵S △ABC 21124AC BE AC =⋅=,∴12a 114=AC 11a 1=AC 1,∴AB 1+BC 1=AC 1迁移应用:①证明:如图1中,连BD,BE,DE.∵AD=AB=BC=CD=1,∴△ABD≌△BCD(SSS),∴∠BAD=∠BCD∵∠BAD=60°,∴△ABD和△CBD为等边三角形∵C沿BM对称得E点,∴BM垂直平分CE,∴设∠CBF=∠EBF=α,EF=CF,∴∠BEC=90°﹣α,∴∠ABE=110°﹣1α,∴∠BAE=∠BEA=30°+α,∴∠AEC=110°,∴∠CEF=60°,∴△CEF为等边三角形②解:易知∠BFH=30°当∠BAF=45°时,△ABE为等腰直角三角形过B作BH⊥AE于H,∴设BH=AH=EH=x,∴S△ABE12=⋅1x⋅x=x1S△ABE12=⋅1x⋅x=1,∴x1=1,即x=∵BF=1BH,∴BF.【点睛】本题属于四边形综合题,考查了解直角三角形等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会利用面积法解决问题,属于中考常考题型.25、(1)见解析;(2)见解析【分析】(1)根据中位线的性质及平行线的性质即可求解;(2)连接BD ,取BD 的中点H ,连接EH FH ,,根据中位线的性质证明AFG ∆为等边三角形,再根据AF FD=得到GF FD =,得到30FGD FDG ∠=∠=︒,即可求解.【详解】解:(1)∵E F M ,,分别是AB CD BD ,,的中点,∴MF BP ,12MF BC =,MFE BPE ∠=∠.∴ME AN ∥,12ME AD =,MEF ANE ∠=∠.∵AD BC =,∴ME MF =,∴EFM FEM ∠=∠,∴ANE BPE ∠=∠.(2)连接BD ,取BD 的中点H ,连接EH FH ,.∵,E F ,,H 分别是BC AD ,,BD 的中点∴HF BG ,12HF AB =,HFE FGA ∠=∠.∴HE AC ,12HE CD =,60HEF EFC ∠=∠=︒.∵AB CD =,∴HE HF =,∴60HFE EFC ∠=∠=︒,∴60AGF ∠=︒,∵60AFG EFC ∠=∠=︒,∴AFG ∆为等边三角形.∴AF GF =,∵AF FD =,∴GF FD =,∴30FGD FDG ∠=∠=︒,∴603090AGD ∠=︒+︒=︒.【点睛】该题以三角形为载体,以考查三角形的中位线定理、等腰三角形的判定等重要几何知识点为核心构造而成;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.26、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.。
江苏省泰州市八年级(上)期末数学试卷(含答案)
江苏省泰州市八年级(上)期末数学试卷(含答案)一、选择题1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--2.下列四组线段a ,b ,c ,能组成直角三角形的是( )A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c = 3.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92°B .88°C .44°D .88°或44° 5.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm 6.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD7.下列图案中,属于轴对称图形的是( )A .B .C .D .8.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对9.10的说法中,错误的是( )A 10B .3104<C .1010D 10是10的算术平方根10.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( ) A .(﹣3,﹣2) B .(﹣2,﹣3) C .(3,2) D .(3,﹣2) 二、填空题11.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.12.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 .13.若3a 的整数部分为2,则满足条件的奇数a 有_______个.14.36的算术平方根是 .15.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.16.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.17.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________18.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.19.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.20.若分式2223x x -+的值为零,则x 的值等于___. 三、解答题21.求下列各式中的x :(1)()2116x -=;(2)321x +=.22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是25的整数部分,求2a b c +-的平方根.24.已知△ABC 中,AB =17,AC =10,BC 边上得高AD=8,则边BC 的长为________25.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .四、压轴题26.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.27.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.28.如图,在平面直角坐标系中,直线AB 经过点A (32,32)和B (23,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 的横坐标为3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.29.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G是EF的中点.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x=-+沿x轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x=-++,整理得:32y x=--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.2.B解析:B【解析】【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.A.12+22≠32,不能组成直角三角形,故此选项错误;1 ,能组成直角三角形,故此选项正确;B.222C.32+22≠42,不能组成直角三角形,故此选项错误;D.42+52≠62,不能组成直角三角形,故此选项错误.故选:B.【点睛】本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.3.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.4.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.5.C解析:C【解析】【分析】全等图形中的对应边相等.根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.6.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.7.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.8.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.9.C解析:C【解析】试题解析:A是无理数,说法正确;B、3<4,说法正确;C、10,故原题说法错误;D是10的算术平方根,说法正确;故选C.10.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.二、填空题11.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.12.4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+解析:4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+∠BDE=90°,∴∠BDE=∠C,又∵∠ADB=∠C,∴∠ADB=∠BDE,∴在△ABD和△EBD中A DEBADB BDEBD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DE=AD=4,即DP的最小值为4.13.9【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案. 【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a 的取值范围,即可得到答案.【详解】2,则a 的取值范围 8<a <27所以得到奇数a 有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.14.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.15.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 16.【解析】【分析】在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,构造全等三角形△OBP ≌△RPQ (AAS );然后根据全等三角形的性质、坐标与图形性质求得Q ( 解析:5,33⎛⎫ ⎪⎝⎭【解析】【分析】在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,构造全等三角形△OBP ≌△RPQ (AAS );然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ 的解析式,所以将点N 代入该解析式来求m 的值即可.【详解】解:在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR ,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M (-1,0),∴OP=OM=1,∴BP=BM ,∴∠OBP=∠OBM=∠ABN ,∴∠PBQ=∠OBA=45°,∴PB=PQ ,∴△OBP ≌△RPQ (AAS ),∴RQ=OP=1,PR=OB=4,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.17.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.18.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:∴菱形的面积=AE•故答案为:【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.20.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x=2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题21.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.22.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x ,那么乙的件数为:200-x ,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x )得到:y=-0.1x+100所以y 与x 之间的函数表达式为y=-0.1x+100(2)设甲的件数为x ,那么乙的件数为:200-x ,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y 随x 的增大而减小所以当利润最大时,x 值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.23.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.24.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD 、CD ,分两种情况,容易得出BC 的长.【详解】 分两种情况:① 如图1所示:∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°,2222222217815,1086BD AB AD CD AC AD =-=-==-=-=∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD -CD=15-6=9;综上所述:BC 的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.25.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.四、压轴题26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.27.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.28.(1)y +2;(2)△AOD 为直角三角形,理由见解析;(3)t =23.【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH,即2(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:3=220k b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y=﹣3x +2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y+2,故点C,1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30° 故点C1),则OC =2,则点C 是AB 的中点,故∠COB =∠DBO =30°,则∠AOC =30°,∠DOC =60°, OQ =CP =t ,则OP =OC ﹣PC =2﹣t ,①当OP =OM 时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=3(2﹣t)=QH,OQ=QH+OH=32(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t=23;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=23或23.【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.29.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC=,利用AAS得到AFH CAD∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD=,再EK AD⊥,交DG延长线于点K,同理可得到AD EK=,等量代换得到FK EH=,再由一对直角相等且对顶角相等,利用AAS得到FHG EKG≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1)∵FH AG⊥,90AEH EAH∴∠+∠=︒,90FAC∠=︒,90FAH CAD∴∠+∠=︒,AFH CAD∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S112=AC•NE,S212=AB•CD,∴12S ACS AB=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。
姜堰初二期末考试试卷数学
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -52. 若a=3,b=-2,则|a-b|的值为()A. 5B. 1C. 2D. 03. 已知数轴上A、B两点对应的坐标分别为-3和2,则AB线段的长度为()A. 5B. 3C. 2D. 14. 若方程x-2=3的解为x=5,则方程x+2=?的解为()A. 3B. 7C. 5D. 15. 在直角坐标系中,点P(-2,3)关于x轴的对称点为()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)6. 若a、b是方程2x^2-5x+3=0的两个实数根,则a+b的值为()A. 2B. 3C. 5D. 87. 下列函数中,自变量x的取值范围正确的是()A. y=x^2(x≤0)B. y=x^2+1(x∈R)C. y=√x(x≥0)D. y=1/x(x≠0)8. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形9. 若等腰三角形的底边长为4,腰长为6,则该三角形的面积为()A. 12B. 18C. 24D. 3010. 下列各数中,是负数的是()A. -2B. 2C. 0D. -1/2二、填空题(每题3分,共30分)11. 若|a|=5,则a的值为_________。
12. 在数轴上,点A的坐标为-3,点B的坐标为2,则AB线段的长度为_________。
13. 若方程2x+3=0的解为x=-3/2,则方程x-3=?的解为_________。
14. 已知直角三角形的两条直角边分别为3和4,则该三角形的斜边长为_________。
15. 若a、b是方程x^2-5x+6=0的两个实数根,则a^2+b^2的值为_________。
16. 函数y=√x(x≥0)的定义域为_________。
17. 在直角坐标系中,点P(2,-3)关于y轴的对称点为_________。
精选泰州市八年级上册期末数学试卷(含答案解析)
2019-2020学年江苏省泰州市八年级(上)期末测试数学试卷一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.(3分)点P(2,﹣3 )关于x轴的对称点是()A.(﹣2,3 )B.(2,﹣3 )C.(﹣2,3 )D.(2,3)3.(3分)下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,134.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有个.9.(3分)若y=x﹣b是正比例函数,则b的值是.10.(3分)一次函数y=2x+1的图象不经过第象限.11.(3分)近似数3.0×102精确到位.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是.14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是.三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w 元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是,因变量是;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC= ,∠DEC= ;点D从B向C运动时,∠BAD 逐渐变(填“大”或“小”),∠BAD ∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.25.(12分)如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动. (1)求直线AB 的解析式. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的?若存在求出此时点M 的坐标;若不存在,说明理由.26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△BEC ≌△CDA ; 【模型应用】(2)①已知直线l 1:y=x+4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转45o 至直线l 2,如图2,求直线l 2的函数表达式;②如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为(8,﹣6),点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线y=﹣2x+6上的动点且在第四象限.若△APD 是以点D 为直角顶点的等腰直角三角形,请直接写出点D 的坐标.2019-2020学年江苏省泰州市八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.(3分)点P(2,﹣3 )关于x轴的对称点是()A.(﹣2,3 )B.(2,﹣3 )C.(﹣2,3 )D.(2,3)【解答】解:点P(2,﹣3 )关于x轴的对称点是(2,3).故选:D.3.(3分)下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13【解答】解:A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.4.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.【解答】解:∵()2=6∴6的平方根为,故答案为:.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有 4 个.【解答】解:在,2π,﹣2,0,0.454454445…,﹣,中,无理数有2π、0.454454445…、﹣、这4个,故答案为:4.9.(3分)若y=x﹣b是正比例函数,则b的值是0 .【解答】解:由题意得:﹣b=0,解得:b=0,故答案为:0.10.(3分)一次函数y=2x+1的图象不经过第四象限.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.11.(3分)近似数3.0×102精确到十位.【解答】解:近似数3.0×102精确十位,故答案为:十.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为 1 .【解答】解:∵|3+x|+=0,∴3+x=0且y﹣2=0,则x=﹣3、y=2,所以原式=(﹣3+2)2018=(﹣1)2018=1,故答案为:1.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是(4,2).【解答】解:∵点A(﹣4,0),点B(0,1),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移1个单位,∴点B的对应点的坐标为(4,2).故答案为:(4,2);14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为 5 .【解答】解:∵62+82=100,102=100,∴62+82=102,∴这个三角形是直角三角形,∴最长边上的中线长为5,故答案为:5.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是等腰三角形的底边上的中线、底边上的高重合.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是0<a<2 .【解答】解:当P在直线y=2x+2上时,a=2×(﹣1)+2=﹣2+2=0,当P在直线y=2x+4上时,a=2×(﹣1)+4=﹣2+4=2,则0<a<2.故答案为:0<a<2三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.【解答】解:﹣12018+()﹣2﹣+=﹣1+4﹣5﹣3=﹣5.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.【解答】解:(1)(x﹣1)2=16∴x﹣1=±4,即x﹣1=4或x﹣1=﹣4,解得x=5或﹣3;(2)x3+2=1,∴x3=﹣1,解得x=﹣1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)【解答】解:(1)有以下答案供参考(每个图画对得(2分),共4分)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.【解答】证明:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w 元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?【解答】解:(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:;(2)由题意得:w=14x+15(10﹣x)=150﹣x,∵w随x增大而减小,∴当x=3时,=150﹣3=147,即最多花147元.W最大值23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是离家时间,因变量是离家距离;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.【解答】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离,故答案为:离家时间、离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;(3)当1≤t≤2时,设s=kt+b,将(1,10)、(2,30)代入,得:,解得:,∴s=20t﹣10,当s=20时,有20t﹣10=20,解得t=1.5,由图象知,当t=4时,s=20,故当t=1.5或t=4时,小李与家相距20km;(4)小李这次出行的平均速度为=12(km/h).24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC= 25°,∠DEC= 115°;点D从B向C运动时,∠BAD逐渐变大(填“大”或“小”),∠BAD = ∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.【解答】解:(1)当∠BDA=115°时,∠EDC=180°﹣115°﹣40°=25°,在△DEC中,∠DEC=180°﹣∠EDC﹣∠C=115°,由图形可知,点D从B向C运动时,∠BAD逐渐变大,∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,∠B=∠ADE=40°,∴∠BAD=∠EDC,故答案为:25°,115°,大,=;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.25.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S △OAC =×6×4=12;(3)设OA 的解析式是y=mx ,则4m=2,解得:m=,则直线的解析式是:y=x ,∵当△OMC 的面积是△OAC 的面积的时,∴当M 的横坐标是×4=1,在y=x 中,当x=1时,y=,则M 的坐标是(1,); 在y=﹣x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5). 当M 的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M 的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC 中,∠AC B=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△BEC ≌△CDA ; 【模型应用】(2)①已知直线l 1:y=x+4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转45o 至直线l 2,如图2,求直线l 2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.【解答】解:(1)证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);于C,过C作CD⊥y轴于D,(2)①如图2,过点B作BC⊥AB,交l2∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,:y=x+4中,若y=0,则x=﹣3;若x=0,则y=4,∵直线l1∴A(﹣3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(﹣4,7),设l的解析式为y=kx+b,则2,解得,的解析式:y=﹣7x﹣21;∴l2②D(4,﹣2),().理由:当点D是直线y=﹣2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12﹣2x=8﹣x,解得x=4,∴﹣2x+6=﹣2,∴D(4,﹣2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=E F﹣DE=8﹣x,同理可得:△ADE≌△DPF,则AE=DF,即:2x﹣12=8﹣x,解得x=,∴﹣2x+6=﹣,∴D(,﹣),此时,ED=PF=,AE=BF=,BP=PF﹣BF=<6,符合题意.--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 .8.(3分)如果分式的值为零,那么x= .9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 km .10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .11.(3分)若+(1﹣y )2=0,则= .12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有 人.13.(3分)如图,直线y 1=x+n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x+n <mx ﹣1的解集为 .14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .15.(3分)分式的值是正整数,则整数m= .16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<2【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7【解答】解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么x= 3 .【解答】解:由题意,得x﹣3=0且x2+1≠0,解得 x=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距 5 km.【解答】解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.10.(3分)如果点P坐标为(3,﹣4),那么点P到x轴的距离为 4 .【解答】解:点P(3,﹣4)到x轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则= 2 .【解答】解:∵+(1﹣y)2=0,∴x﹣4=0,1﹣y=0,解得:x=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60 人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=x+n与y2=mx﹣1相交于点N,则关于x的不等式x+n<mx﹣1的解集为x<﹣1 .【解答】解:观察图象,可知x+n<mx﹣1的解集为x<﹣1.故答案为 x<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而来,∴AD=AF,DE=FE.在Rt△ABF中,AB=3cm,AF=5cm,∴BF==4cm,∴CF=BC﹣BF=1cm.设EC=xcm,则EF=ED=(3﹣x)cm,在Rt△CEF中,EF2=CE2+CF2,即(3﹣x)2=x2+12,解得:x=.故答案为:.15.(3分)分式的值是正整数,则整数m= 1 .【解答】解:由题意可知:2m﹣1=1或2或4,当2m﹣1=1时,∴m=1,符合题意当2m﹣1=2时,∴m=,不符合题意,当2m﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .【解答】解:∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称,∴OP=OP 1=OP 2=,∠AOP=∠AOP 1,∠BOP=∠BOP 2,∵∠AOB=45°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=90°, ∴△P 1OP 2是等腰直角三角形,∴P 1P 2==2,设EF=x ,∵P 1E==PE ,∴PF=P2F=﹣x ,由轴对称可得,∠OPE=∠OP 1E=45°,∠OPF =∠OP 2F=45°, ∴∠EPF=90°,∴PE 2+PF 2=EF 2,即()2+(﹣x )2=x 2,解得x=.故答案为:.三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2x﹣8=1﹣x,解得:x=4,经检验x=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.【解答】解:(1)∵y+2与x成正比,∴设y﹣2=kx,将x=1、y=﹣6代入y+2=kx得﹣6+2=k×1,∴k=﹣4,∴y=﹣4x﹣2(2)∵点(a,2)在函数y=﹣4x﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为xm2,则甲队每天单独完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的根,且符合题意,∴2x=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?【解答】解:(1)当x=0时,y=b,∴一次函数图象与y轴的交点坐标为(0,b);当y=x+b=0时,x=﹣b,∴一次函数图象与y轴的交点坐标为(﹣b,0).∴×|b|×|﹣b|=2,解得:b=±2.(2)∵函数y=x+b的图象交y轴于正半轴,∴一次函数为y=x+2,∵y的值是正数,∴x+2>0,解得x>﹣2.故当x>﹣2时,y的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= 3 ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣90x+450,当y=180时,x=3(h),∴a=3,故答案为:3;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=135x﹣225(3≤x≤5);(3)3≤x≤5时,y乙减y甲等于100千米,即135x﹣225﹣(﹣90x+450)=100,解得x=,∴当x为时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为O B中点,∴D(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。