光纤传感器介绍ppt精选课件

合集下载

《光纤传感器》PPT课件

《光纤传感器》PPT课件
用光纤作为探头,接收由被测对象辐射的 光或被其反射、散射的光。
光纤激光多普勒速度计 辐射式光纤温度传感器
返回
上一页
第十七页,共3下3页一。 页
强度调制与解调
利用被测对象引起载波光强度变化,从而实现对被测对 象进行检测的方式。光强度变化可以直接用光电探测 器进行检测, 结构简单、容易实现、成本低。 易受光源波动和连接器损耗变化等的影响
第三十三页,共33页。
传输光纤 出射光纤
标志孔
电路板标志检测
当光纤发出 的光穿过标志孔时, 若无反射,说明电 路板方向放置正确。
第三十页,共33页。
光纤式光电开关应用
遮断型光纤 光电开关
第三十一页,共33页。
光纤式光电开关应用
第三十二页,共33页。
采用遮断 型光纤光电
开关对IC 芯 片引脚进行 检测
内容总结
光纤传感器。r为光纤半径,λ为光波波长。光纤传感器一般可分为两大类:功能型FF和非功 能型NF。功能型FF:利用光纤本身的特性,把光纤作为敏感元件。优点:无需特殊光纤及其他特 殊技术,。利用被测对象引起载波光强度变化,从而实现对被测对象进行检测的方式。便于与 计算机和光纤传输系统相连 ,易于实现系统的遥测和控制。阶跃型:光纤纤芯的折射率分布各 点均匀一致,称为多模光纤。与光纤耦合的电光与光电转换器件
光纤传感器
一、 光纤传感器基础
二、 光调制与解调技术
三、 光纤传感器实例
返回
上一页
第一页,共33下页。一页
第二页,共33页。
第三页,共33页。
一、 光纤传感器基础
9.1.1 光纤波导原理
光纤波导简称光纤,是用透光率高的电介质(石英、玻 璃、塑料等)构成的光通路。

光纤传感器介绍48页PPT

光纤传感器介绍48页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
光纤传感器介绍
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
56、书不仅是生活ቤተ መጻሕፍቲ ባይዱ而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

《光纤传感器》PPT课件

《光纤传感器》PPT课件

光导纤维的主要参数

1. 数值孔径(NA)
2. 光纤模式
3. 传播损耗
返返 回回
上一页 上一页
下一页 下一页
1. 数值孔径(NA)
2 NA sin i n12 n2

反映纤芯接收光量的多少,标志光纤接收性能。
意义:无论光源发射功率有多大,只有 2θi 张角 之内的光功率能被光纤接受传播。
差动式膜片反射型光纤压力传感器
1.输出光纤
2.输入光纤
3.输出光纤
4.胶
5.膜片
I 2 1 Ap A―常数; 两束输出光的光强之比 I 1 1 Ap p―待测量压力
输出光强比I2/I1与膜片的反射率、光源强度等因素均无关
返 回 上一页 下一页
将上式两边取对数,在满足(Ap)2≤1时,得到
传感器的固有频率可表示为
2.56t gE fr p 2 2 R 3 (1 )
式中, ρ――膜片材料的密度; g――重力加速度。 结构简单、体积小、使用方便, 光源不够稳定或长期使用后膜片的反射率有所下降,
其精度就要受到影响。


上一页
下一页

The most commonly used type of fiberoptic sensor is an intensity sensor, where light intensity is modulated by an external stimulus
光纤传感器强度调制
非 干 涉 型
光纤传感器偏振调制
光纤传感器频率调制
注:MM——多模光纤;SM——单模光纤;PM——偏振保持光纤
返 回 上一页 下一页

光纤传感器ppt讲解可修改文字

光纤传感器ppt讲解可修改文字
NA n12 n22
n n 1为纤芯折射率 , 2 为包层折射率
arcsinNA是一个临界角,
θ> arcsinNA,光线进入光纤后都不能传播而在包层消失;
θ< arcsinNA,光线才可以进入光纤被全反射传播。
数值孔径的意义是无论光源发射功率有多大,只有2 张角之内的光被
光纤接受传播。一般希望光纤有大的数值孔径,这样有利于耦合效率的提高。 但数值孔径越大,光信号将产生大的“模色散”,入射光能分布在多个模式 中,各模式速度不同,因此到达光纤远端的时间不同,信号将发生严重的畸
非功能型光纤传感器
传光型光纤传感器的 光纤只当作传播光的媒介, 待测对象的调制功能是由其它光电转换元件实现的, 光纤的状态是不连续的,光纤只起传光作用。
三 介绍几种光纤传感器
1,光纤压力传感器
Y形光纤束的膜片反射型光纤压力传感器如 图。在Y形光纤束前端放置一感压膜片,当膜片 受压变形时,使光纤束与膜片间的距离发生变化, 从而使输出光强受到调制。
6 光纤传感器的类型
光纤传感器按其作用方式一般分为两种类型: 一 功能型光纤传感器, 二 非功能型光纤传感器。
功能型光纤传感器
这类传感器利用光纤本身对外界被测对象具有敏 感能力和检测功能,光纤不仅起到传光作用,而且 在被测对象作用下,如光强、相位、偏振态等光学 特性得到调制,调制后 的信号携带了被测信息。
(3)传输损耗
由于光纤纤芯材料的吸收、散射、光纤弯曲处的辐射损耗等 的影响,光信号在光纤中的传播不可避免地要有损耗,光纤的传输 损耗A可用下式表示
-10 lg I0
A=
I
L
式中 L ——光纤的长度 I0——光纤入射端的光强 I——光纤输出端的光强

光纤传感器原理及应用课件

光纤传感器原理及应用课件
光纤通过全反射原理传递 光信号,具有低衰减、低 色散等优点。
光的干涉与衍射
光纤中光的干涉与衍射现 象可用于传感和调制。
光纤传感器的原理
光纤传感器通过检测光纤中光信号的 变化来感知外界物理量的变化。
外界物理量如温度、压力、磁场等作 用于光纤,导致光纤中光信号的相位 、频率、强度等发生变化,从而感知 外界物理量的变化。
水质监测
光纤传感器可用于监测水体中的化学 物质、温度、浊度和流速等参数,确 保水质安全和生态平衡。
医疗领域
生物医学
光纤传感器可以用于监测生物体内的生理参数,如血压、血氧饱和度和体温等 ,为医疗诊断和治疗提供重要信息。
光学成像
光纤传感器结合光学成像技术,可用于内窥镜、显微镜等领域,提高医疗诊断 的准确性和效率。
光纤传感器原理及应用课件
目 录
• 光纤传感器原理 • 光纤传感器的应用领域 • 光纤传感器的优势与挑战 • 光纤传感器的发展趋势与前景 • 实际应用案例分析
01
光纤传感器原理
光纤的结构与特性
01
02
03
光纤的结构
光纤由中心纤芯、包层和 涂覆层组成,具有低损耗 、高透明度、高带宽等特 性。
光的全反射
成本较高
光纤传感器制造工艺复杂,导致其成 本相对较高。
小型化与集成化难度大
实现小型化与集成化的光纤传感器制 造技术有待突破。
交叉敏感问题
部分光纤传感器可能对不同参数敏感 ,导致测量结果不准确。
04
光纤传感器的发展趋势与 前景
技术创新
光纤传感器的技术不断创新,以 提高其灵敏度、精度和稳定性。
新型光纤材料和制造工艺的应用 ,将进一步优化光纤传感器的性
光纤压力传感器在石油工业中主要用于监测井下压力,具有高精度和高可靠性的特点。它们能够实时传输数据, 帮助工程师及时了解井下情况,优化开采过程,提高石油产量。

光纤传感器ppt

光纤传感器ppt
外界参数温度 压力 振动等引起光纤长度的变化和相位的光 相位变化;从而产生不同数量的干涉条纹;对它的模向移动进 行计数;就可测量温度或压力等
第12章 光纤传感器
反射式光纤位移传感器
➢ 利用光纤实现无接触位移测量 光源经一束多 股光纤将光信号传送至端部;并照射到被测物体 上 另一束光纤接受反射的光信号;并通过光纤 传送到光敏元件上 被测物体与光纤间 距离变化;反射到 接受光纤上;光通 量发生变化 再通 过光电传感器检测 出距离的变化
温度压力光纤传感器
✓ 中心——纤芯;
✓ 外层——包层;
包层
✓ 护套——尼龙料
性质
✓ 光导纤维的导光能力取决于纤芯和包层的性质;
✓ 纤芯折射率N1略大于包层折射率N2N1>N2
第12章 光纤传感器
1光纤的结构和传输原理 ②光纤的传光原理: 光纤的传播基于光的全反射 当光线以不同角 度入射到光纤端面时;在端面发生折射后进入光纤; 光线在光纤端面入射角θ减小到某一角度θc时;光线
第12章 光纤传感器
2光纤的性能几个重要参数 ③传播损耗A
➢ 光纤在传播时;由于材料的吸收 散射和弯曲 处的辐射损耗影响;不可避免的要有损耗
用衰减率A表示:
A10lg(I1/I2)(dB/Km) l
I1 I2:两接收光纤的光强 在一根衰减率为10dB/Km的光纤中;表示当光纤传输
1Km后;光强下降到入射时的1/10
干涉现象 微小弯曲损失
散射损失
双波长透射率 变化
反射角变化
石英系玻璃 旋转圆盘
石英系玻璃 石英系玻璃 薄膜+膜条 C45H78O2+VL2255N
振子
薄膜
生成着色中心
光纤束成像 多波长传输 非线性光学

《光纤传感器》课件

《光纤传感器》课件

频率调制型
通过外界物理量的变化引起光 纤中光的频率变化,从而实现 对外部参数的测量。
相位调制型
通过外界物理量的变化引起光 纤中光的相位变化,从而实现
对外部参数的测量。
光纤传感器的应用领域
工业自动化
用于监测温度、压力、流量、液位等参数, 实现工业过程的自动化控制。
环境监测
用于监测环境中的温度、湿度、压力、气体 浓度等参数,实现环境监测和治理。
光纤传感器在高温、低温或温度变化环境下保持性能的能力。高温度适应性传感器能够在更宽的温度范围内正常 工作,适用于各种恶劣环境。
湿度适应性
光纤传感器在潮湿、干燥或湿度变化环境下保持性能的能力。高湿度适应性传感器能够在更宽的湿度范围内正常 工作,适用于各种环境湿度条件。
05
光纤传感器的发展趋势与挑战
新材料与新技术的应用
光纤传感器
目录
• 光纤传感器概述 • 光纤传感器的技术原理 • 光纤传感器的设计与制造 • 光纤传感器的性能指标 • 光纤传感器的发展趋势与挑战 • 光纤传感器案例分析
01
光纤传感器概述
定义与工作原理
定义
光纤传感器是一种利用光纤作为敏感元件的传感器,能够检测和测量物理量、 化学量和生物量等参数。
新材料
新型光纤材料如掺铒光纤、光子晶体光纤等,具有更高的非线性效应和增益特性,提高了光纤传感器 的性能。
新技术
量子点、纳米线等新型纳米材料的应用,提高了光纤传感器的灵敏度和分辨率。
集成化与小型化的发展趋势
集成化
将多个光纤传感器集成在同一根光纤上,实现多参数、多维度的测量,提高了测量效率 和精度。
小型化
光纤压力传感器的应用案例
总结词
光纤压力传感器在石油、化工、航空航天等 领域有重要应用。

《光纤传感器 》课件

《光纤传感器 》课件
通过化学气相沉积等方法 制备出光纤预制棒,作为 光纤制造的原材料。
拉丝工艺
将光纤预制棒加热软化后 ,通过拉丝机拉制成连续 的光纤。
涂覆与保护
在拉制出的光纤表面涂覆 一层保护涂层,以提高光 纤的机械强度和耐腐蚀性 。
光纤传感器的封装工艺
光纤光栅封装
光纤传感器的密封与保护
将光纤光栅粘贴在特定的封装基底上 ,并使用环氧树脂等材料进行固定和 保护。
光纤传感器的应用领域。
光纤传感器的小型化与集成化
总结词
光纤传感器正朝着小型化与集成化的方向发展,以满 足现代科技领域对传感器尺寸和集成度的要求。
详细描述
随着微纳加工技术和光子集成技术的不断发展,光纤 传感器的小型化与集成化成为可能。小型化的光纤传 感器具有更小的体积和更高的可靠性,集成化的光纤 传感器则能够实现多个传感功能的集成,提高系统的 集成度和智能化程度。
光纤传感器的优点与局限性
优点
高灵敏度、抗电磁干扰、耐腐蚀、可 在恶劣环境下工作、可远程测量等。
局限性
对温度、压力、位移等物理量的测量 可能会受到其他因素的干扰,如弯曲 、振动等;同时,光纤传感器成本较 高,限制了其在某些领域的应用。
03
CHAPTER
光纤传感器的制造工艺
光纤的制备
01
02
03
预制棒制备
光纤传感器
目录
CONTENTS
• 光纤传感器概述 • 光纤传感器的技术原理 • 光纤传感器的制造工艺 • 光纤传感器在各领域的应用 • 光纤传感器的发展趋势与挑战 • 案例分析:光纤传感器在石油工业中的应用
01
CHAPTER
光纤传感器概述
定义与工作原理
定义
光纤传感器是一种利用光纤作为敏感元件的传感器,能够检 测和测量物理量(如温度、压力、位移等)的变化。

《光纤传感器》课件

《光纤传感器》课件

光纤传感器的应 用:广泛应用于 航空航天、医疗、 工业等领域,如 光纤陀螺仪、光 纤温度传感器等
光的调制技术:通过改变光的强度、相位、频率等参数,实现对信息的编码和传 输
光纤传感器的工作原理:利用光的调制技术,将待测物理量转换为光信号,通过 光纤传输到接收端,进行检测和处理
光的调制技术在光纤传感器中的应用:通过光的调制技术,可以实现对温度、压 力、流量等物理量的高精度测量
工作原理:利用光纤对温度敏 感的特性进行测量
特点:精度高、响应速度快、 抗干扰能力强
应用实例:温度监测、温度控 制、温度补偿等
应用领域:广泛应用于工业、医疗、航空航天等领域 工作原理:通过光纤的折射率变化来测量压力 特点:高精度、高灵敏度、抗干扰能力强 应用实例:在飞机发动机、汽车发动机、液压系统中的应用
应用领域:广泛应 用于工业自动化、 机器人、航空航天 等领域
工作原理:利用光 纤的弹性和光学特 性,测量物体的位 移变化
特点:精度高、 响应速度快、抗 干扰能力强
实例:在汽车制造、 机械加工、电子设 备等领域的应用
应用领域:广泛应 用于石油、化工、 食品、医药等行业
工作原理:利用光 纤的折射率变化来 测量液位
提高灵敏度:通过优化光纤结构和材料,提高传感器的灵敏度 降低成本:通过优化生产工艺和材料选择,降低传感器的生产成本 提高稳定性:通过优化传感器设计和材料选择,提高传感器的稳定性和可靠性 提高兼容性:通过优化传感器设计和材料选择,提高传感器与其他设备的兼容性和互操作性
应用领域:工业、医疗、科研 等领域
量测量
应用领域:化 工、环保、食 品、医药等行

工作原理:利 用光纤对光的 敏感性,检测 液体或气体的
浓度

传感与测试技术-光纤传感器ppt课件

传感与测试技术-光纤传感器ppt课件

磁阻位移传感器
运用
磁敏感器:以地球磁场为基准,测量航天器姿 态的敏感器。磁强计本身是用来测量空间环境 中磁场强度的。由于地球周围每一点的磁场强 度都可以由地球磁场模型事先确定,因此利用 航天器上的磁强计测得的信息与之对比便可以 确定出航天器相对于地球磁场的姿态。
热敏传感器〔半导体)
热敏传感器:半导体温度传感器,由金属氧化 物(MnO2 、 CuO 、 TiO2)的粉末按一定比例混 合烧结而成,具有很大的负温度系数。电阻-温 度的关系为
成像系统组成
CCD Camera
Filters
Lens
UV/UwVh/iwtehiteepeipi illumilliunmatiinoantion
Sample
UV/white transillumination
CCD传感器的应用
组成测试仪器,可以测量物位、尺寸、工 件损伤、自动焦点等。
用作光学信息处理装置的输入环节,例如 传真技术。光学文字识别技术(OCR)与图 像识别技术、光谱测量及空间遥感技术、 机器人视觉技术等。
磁敏传感器
霍尔元件 :利用霍尔效应的半导体磁电转换 元件。
霍尔效应:金属或半导体薄片置于磁场中, 当有电流流过时,在垂直于电流和磁场的方 向上将产生电动势。
霍尔效应
B
b FE
FL v
l
d
I VH
霍尔电势
VHkBIB sin
霍尔效应演示
霍尔元件
基于霍尔效应工作的半导体器件称为霍尔元件, 霍尔元件多采用N型半导体材料。霍尔元件越 薄(d越小),kH就越大,薄膜霍尔元件厚度只有 1μm左右。
利用对外界信息具有敏感能力和检测功能的光 纤(或特殊光纤)作传感元件,将“传〞和“感 〞合为一体的传感器。传感器中的光纤是连续 的。

光纤传感器原理及应用ppt课件

光纤传感器原理及应用ppt课件

• 1977年,美国海军研究所(NRL-National Novel Research Laboratory)开始执行光 纤传感器系统计划
光纤传感器问世
• 1983年起,国际光纤传感器会议定期召开, 光纤传感器的研究成为世界研究热点
• 各个发达国家都做了大量的研究工作,具 体如下:
美国
FOSS(Fiber Optic Sensor System) —光纤传感器系统:水声器、磁强计和 其它有关的水下检测设备
• 灵敏度高,抗电磁干扰,耐腐蚀,防爆。 • 无源器件,不干扰被测场。 • 结构简单,体积小,重量轻。 • 便于和计算机连接,可以实现分布式传感和遥测
技术:在整个光纤长度上能连续的获得被测量的响 应,传统的几百个点传感器阵列可以用一条光纤 取代。 • 频带宽,动态范围大。 • 几何形状具有多方面的适用性,便于组合系统, 可以组成任意形状的FOS或FOS阵列,并且可与计 算机连接,实现多功能及智能化。
光纤传感器的基本构成
外界参量
光 光纤 信号 光纤 光探

调制
测器
信号 处理
光源:LD,LED,白炽灯,激光器等 信号调制:待测参量引起光信号强度、波长、频率、
相位或偏振态的变化。 光探测器:PIN,APD,CCD,光电池等。 信号处理:电路、计算机、单片机,计算机系统等。
2.光纤传感器的分类
• 按照传感原理进行划分
2.传感器系统
• 从单一传感器的研究进入到传感器系 统的研究,并与微处理机相结合形成 光纤遥测系统。
3.提高可靠性和稳定性
• 降低成本。 • 特殊光纤:根据实际需要选用新的
材料,设计特殊结构的专用光纤。 • 对基础技作。
• non-resonant wavelengths are transmitted through the device without loss.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易实现,成本低。但灵敏度也较低,用于对灵敏度要被求测不参太数高起的检场测合作。用的
光发送器
是其他敏感元件。
传感型与传光性光 纤光这纤传种传感感器器敏多感都用元于件可工业检测
再分信号成处理光强调光制受信、器相位调液位制、、压力偏、振形变态、温度、
流速、电流、磁场等。
3)拾光调型制光纤以传及感波器长调制等几 种它的形优式点是。性能稳定可靠,
2020/4/25
.
10
光纤的基本知识
850nm窗口,典型的衰减值为2dB/km; 1300nm窗口,典型的衰减值为0.4dB/km; 1550nm窗口,具有最低的衰减,典型值为0.2dB/km。
2020/4/25
.
11
光纤传感器的分类——按功能分
根据光纤在传感器中的作用,光纤传感器分为功能型、 非功能型和拾光型三大类
光发送器
光纤敏感元件
信号处理
光受信器
2020/4/25
.
12
光纤传感器的分类
2)非功能型(或称传光型)光纤传感器
光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能
依靠其他物理性质的功能元件完成。
以多模光导纤维来传输
光纤不连续。此类光纤传感器无需特殊光纤及光 度其信 不他号同特,进殊根行技据测术光量,接,比受而较强对容
2020/90年代后期,光通信带动下的光子产业取 得了巨大的成功,光纤传感器呈产业化发展,在 国际上形成了许多应用领域,即医学和生物、电 力工业、化学和环境、军事和职能结构、石油行 业、汽车行业、船舶、航空航天等领域。
2020/4/25
.
4
光纤传感器的发展
传感器(Sensor,Transducer)是完成信息获 取(检测)、传输和转换的器件。光纤传感器( Optical Fiber Sensor)则是以光纤作为功能材 料的传感器。
1)功能型(全光纤型)光纤传感器
利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传 感元件,将“传”和“感”合为一体的传感器。
光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的 作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“ 感”的功能。
因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提 高灵敏度。
①电绝缘性能好。
②抗电磁干扰能力强。
③非侵入性。
④高灵敏度。
⑤容易实现对被测信号的远距离监控。
光纤传感器可测量位移、速度、加速度、液位、应变、压 力、流量、振动、温度、电流、电压、磁场等物理量
2020/4/25
.
7
光纤传感器的基本原理
光纤传感器的基本原理:光导纤维不仅可以作为光波的 传播介质,而且光波在光纤中传播时表征光波的特征参 量(振幅、相位、偏振态、波长等)因外界因素(如温 度、压力、磁场、电场、位移、转动等)的作用而间接 或直接地发生变化,从而可将光纤用作传感元件来探测 各种物理量。
2020/4/25
.
9
光纤的基本知识
光纤是一种传输光信息的导光纤维,主要由高强度 石英玻璃、常规玻璃和塑料制成。 光纤由纤芯、包层、护套组成。
纤芯
n1
n2
包层
光主要在纤芯中传输,光纤的导光能力 纤 芯 包 层 涂敷层
护套
主要取决于纤芯和包层的折射率,纤芯的
折射率n1稍大于包层的折射率n2,典型
数值是n1=1.46~1.51,n2=1.44~1.50.
6
什么是光纤传感器?
光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期 发展起来的一种基于光导纤维的新型传感器。它是光纤和光通 信技术迅速发展的产物,它与以电为基础的传感器有本质区别 。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感 信息的媒质。因此,它同时具有光纤及光学测量的特点。
2020/4/25
.
14
光纤传感器的分类——强度调制型
强度调制型光纤传感器:
是一种利用被测对象的变化引起敏感元件的折射率、吸收或反射 等参数的变化,而导致光强度变化来实现敏感测量的传感器。
光纤温度传感器
微弯光纤压力传感器
2020/4/25
.
5
光纤传感器与经典传感器的区别
图a 经典测量系统结构
2020/4/25
.
图b 光纤测量系统结构
经典的传感器完成的 是从非电量到电量的 转换。
光纤传感器完成的是 从非光量到光量的转 换。
它们的区别是,光纤 传感器以光作感知信 息的载体,而不是电 ;用光纤传送信息, 而不是导线。
2020/4/25
.
8
光纤的基本知识
1966年,英籍华裔学者高锟(Charles K. Kao)发表 了关于传输介质新概念的论文《光频率介质纤维表面波 导》,指出了利用光纤(Optical Fiber)进行信息传输 的可能性和技术途径,并指明通过“原材料提纯制造出 适合于长距离通信使用的低损耗光纤”这一发展方向, 他奠定了现代光通信——光纤通信的基础。
2020/4/25
.
氙闪光灯
触发 电极
激光束 聚光器 红宝石棒Al 2O3
2
光纤传感器的发展
但是在当时,光纤传感器真正投入实际应用的却不多,这 主要是因为与传统的传感技术相比,光纤传感器的优势是 本身的物性特性而不是功能特性。
因此,光纤传感技术的重要应用之一是利用光纤质轻、径 细、强抗电磁干扰、抗腐蚀、耐高温、信号衰减小,集信 息传感与传输于一体等特点,解决常规检测技术难以完全 胜任的测量问题。
光纤干涉测量技术
第二讲 光纤传感器介绍
2020/4/25
.
1
光纤传感器的发展
20世纪60年代,激光使得利用
光的各种属性(干涉、衍射、偏 振、反射、吸收和发光等)的光 检测技术,作为非接触、高速度、 高精确度的检测手段获得了飞速 的发展。
20世纪70年代,由于光纤不但具 有良好的传光特性,而且其本身 就可用来进行信息传递,无需任 何中间媒体就能把测量值与光纤 内的光特性变化联系起来,因此 ,在20世纪80年代光纤传感器就 已显示出广阔的应用前景。
用光纤作为探头,接收由被测对 象辐射的光或被其反射、散射的光。
结构简单,造耦价合低器廉. 光缺发点送是器灵敏度低。
光纤 被测对象
其典型例子如光纤激光多普勒速度计 信号 光受
、辐射式光纤温度传感器等。
处理 信器
2020/4/25
.
13
光纤传感技术的分类——按调制方式分
强度调制型 偏振调制型 相位调制型 波长调制型
相关文档
最新文档