大学物理静电场答案

合集下载

大连理工大学大学物理作业2(静电场二)及答案详解

大连理工大学大学物理作业2(静电场二)及答案详解

1.如图所示,把点电荷q +从高斯面外P 移到R 处()OP OR =,O 为S 上一点,则[ ].A 穿过S 的电通量e φ发生改变,O 处E变.B e φ不变,E 变。

.C e φ变,E 不变。

.D e φ不变,E不变。

答案:【B 】[解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说,闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重新分布,或者说改变电荷的分布,因此改变了O 点的场强。

2.半径为R 的均匀带电球面上,电荷面密度为σ,在球面上取小面元S ∆,则S ∆上的电荷受到的电场力为[ ]。

.A 0 .B 22Sσε∆ .C2S σε∆ .D2204SRσπε∆答案:【B 】解:应用高斯定理和叠加原理求解。

如图所示。

面元S ∆上的电荷受到的库仑力是其他电荷在面元S ∆处产生的总电场强度1E与面元S ∆上的电荷量S Q ∆=∆σ的乘积:111E S E Q F∆=∆=σ。

面元S ∆处电场强度E是面元S ∆电荷在此产生的电场强度2E 与其他电荷在面元S∆处产生的总电场强度1E 的矢量和,21E E E+=。

首先,由高斯定理求得全部球面分布电荷在面元S ∆处产生的总电场强度 R E ˆ0εσ=其次,面元S ∆上的电荷量S Q ∆=∆σ对于面元S ∆来说,相当于无限大带电平面,因此,面元S ∆上的电荷量S Q ∆=∆σ在面元S ∆处产生的电场强度为R E ˆ202εσ=由叠加原理,其他电荷在面元S ∆处产生的总电场强度为 R E E E ˆ2021εσ=-=面元S ∆上的电荷量S Q ∆=∆σ受到的库仑力为RS R S E S E Q F ˆ2ˆ2020111εσεσσσ∆=∆=∆=∆= 注:本题可以用叠加原理直接进行计算,太麻烦。

3.如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于[ ]。

.A06q ε .B 012q ε .C24qε .D48q ε答案:【C 】[解] :如果以A 为中心,再补充上7个相同大小的立方体,则组成一个边长为小立方体边长2倍大立方体,点电荷q 位于大立方体的中心。

《大学物理》课后解答题 第五章静电场

《大学物理》课后解答题  第五章静电场

第五章 真空中的静电场一、思考讨论题1、电场强度与电势有什么关系?试回答下列问题,并举例说明: (1)场强为零的地方,电势是否一定为零? (2)电势高的地方,场强是否一定大? (3)电势相等处,场强是否一定相等?(4)已知某一点的电势,可否求出该点的场强?反之如何? 解:(1)不一定。

比如两同种点电荷连线中点,场强为零,电势不为零。

(2)不一定。

匀强电场,场强处处相等,而电势不等。

(3)不一定。

点电荷产生的电场线中,电势相等的地方场强方向不一样。

(4)都不可以求。

2、已知某一高斯面所包围的空间内0=∑q ,能否说明穿过高斯面上每一部分的电通量都是0?能否说明高斯面上的场强处处为0?解:由高斯定理∑⎰=⋅=q S d E S1εψ ,0=∑q 仅指通过高斯面的电通量为零,并非场强一定在高斯面处处为零(高斯面外的电荷也在高斯面上各点产生场强)。

3、已知某高斯面上处处E =0,可否肯定高斯面内0=∑q ,可否肯定高斯面处处无电荷?解:可以肯定。

高斯面上处处E =0,0=⋅⎰S d E S,由高斯定理必有0=∑q 。

4、如图1.1所示,真空中有A 、B 两均匀带电平板相互平行并靠近放置,间距为d (d 很小),面积均为S ,带电分别为+Q 和-Q 。

关于两板间的相互作用力,有人说,根据库仑定律应有:2024dQ f πε=; 又有人说,根据f QE =,应有:SQ f 02ε=。

他们说得对吗?你认为f 应等于多少?解:(1)2024dQ f πε=是错误的,因为库仑定律只适用于点电荷,两个带电平板不能直接用库仑定律计算。

(2)SQ f 02ε=也错误。

因为用sqE 0ε=计算的场强是两带电平板产生的合场强,而Eq F =中的场强是一个带电板的电荷量乘以另一个所产生的场强,而不是合场强。

电荷与图1.1自身产生的场强作用力恒为零。

正确答案是:Sq q S qEdq F 02022εε=⋅==⎰ 5、在无限大带电平面和无限长带电直线的电场中,确定各点电荷时,可否选无穷远处为0势点?为什么?解:不能。

大学物理静电场练习题带标准答案

大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。

试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

大学物理静电场练习题带答案

大学物理静电场练习题带答案

大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。

试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。

大学物理第八章静电场(答案)

大学物理第八章静电场(答案)

第八章 静电场8.1 真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ C ]8.2 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电通量必不为零.[ D ]8.3有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq[ D ]q8.4面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ B ]8.5一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示中正确的是:[ D ]8.6如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]-8.7静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]8.8已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ C ]A8.9 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 2分 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m3分8.10 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.L解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分d EO总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.8.11 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。

大学物理第五章 静电场部分的习题及答案

大学物理第五章 静电场部分的习题及答案

第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。

2024年大学物理静电学题库及答案

2024年大学物理静电学题库及答案

一、选择题:(每题3分) 1、 在坐标原点放一正电荷Q,它在P 点(x =+1,y=0)产生的电场强度为.目前,另外有一个负电荷-2Q ,试问E应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1. (B) x 轴上0<x <1. (C) x 轴上x <0. (D) y 轴上y >0. (E) y 轴上y <0.  [ ]2、一均匀带电球面,电荷面密度为σ,球面内电场强度到处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 到处为零. (B ) 不一定都为零. (C) 到处不为零. (D ) 无法判定 . [ ]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A) . (B) .2012a Q επ206a Qεπ (C). (D ). 203a Q επ20a Qεπ[ ]4、电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度 随位置坐标x变化的关系曲线为:(设场强方向向右为正、向左为负) [ A ]σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置E坐标x 变化的关系曲线为(要求场强方向沿x 轴正向为正、反之为负): [ C] 6、设有一“无限大”均匀带负电荷的平面.取x轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x变化的关系曲线为(要求场强方向沿x 轴正向为正、反之为负): [ B ](B)x7、有关电场强度定义式,下列说法中哪个是正确的? 0/q F E= (A) 场强的大小与试探电荷q0的大小成反比. E(B) 对场中某点,试探电荷受力与q0的比值不因q0而变.F (C ) 试探电荷受力的方向就是场强的方向.F E(D) 若场中某点不放试探电荷q 0,则=0,从而=0. [ B ]F E 8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则  (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q0等于P点处原先场强的数值. (D ) F / q 0与P点处原先场强的数值哪个大无法确定. [ A ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q的电场:.(r 为点电荷到场点的距离) 204rq E επ=(B) “无限长”均匀带电直线(电荷线密度λ)的电场:r rE302ελπ=(为带电直线到场点的垂直于直线的矢量) r(C) “无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E P 0(D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r rR E302εσ= (为球心到场点的矢量) r10、下列几个说法中哪一个是正确的?(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B)在以点电荷为中心的球面上, 由该点电荷所产生的场强到处相同.D IRECTION (C ) 场强可由定出,其中q 为试验电荷,q可正、可负,为q F E / =F试验电荷所受的电场力. (D) 以上说法都不正确. [ ] 11、一电场强度为的均匀电场,的方向与沿x轴正向,E E如图所示.则通过图中二分之一径为R的半球面的电场强度通量为 (A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E . (D) 0. 高斯面内无电荷 [ ]12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定: (A) 高斯面上各点场强均为零. (B ) 穿过高斯面上每一面元的电场强度通量均为零. (C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一个情况,通过高斯面的电场强度通量发生变化: (A) 将另一点电荷放在高斯面外. (B ) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内. (D) 将高斯面半径缩小. [] 14、点电荷Q被曲面S所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S的电场强度通量变化,曲面上各点场强变化. (D ) 曲面S的电场强度通量不变,曲面上各点场强变化. [ ]15、半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ B  ]E Or(D)E ∝1/r 216、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ B ]17、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ B ]18、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R处的电场强度大小为:  (A) . (B). εσ2εσ (C) . ﻩ (D). [04εσ8εσC ](C)(B)(C)(B)19、高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ (A) 适合用于任何静电场. (B) 只适合用于真空中的静电场.  (C ) 只适合用于具备球对称性、轴对称性和平面对称性的静电场. (D) 只适合用于虽然不具备(C)中所述的对称性、但能够找到适宜的高斯面的静电场. [ A]20、依照高斯定理的数学体现式可知下述各种说法中,正确的是: ⎰∑⋅=Sq S E 0/d ε (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B ) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定到处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定到处为零. (D) 闭合面上各点场强均为零时,闭合面内一定到处无电荷. [ ]21、有关高斯定理的了解有下面几个说法,其中正确的是:  (A ) 假如高斯面上到处为零,则该面内必无电荷.E (B) 假如高斯面内无电荷,则高斯面上到处为零. E (C ) 假如高斯面上到处不为零,则高斯面内必有电荷. E (D) 假如高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ] 22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r处的P 点的场强大小E为:(A ). 20214rQ Q επ+(B). ()()2202210144R r Q R r Q -π+-πεε(C) .()2120214R R Q Q -π+ε(D). [ ]2024r Q επ 23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r处的P 点的电场强度大小E 为: (A) .r0212ελλπ+(B). ()()20210122R r R r -π+-πελελ (C) . ()20212R r -π+ελλ (D). [ ]20210122R R ελελπ+π 24、A 和B为两个均匀带电球体,A 带电荷+q ,B 带电荷-q,作一与A同心的球面S为高斯面,如图所示.则 (A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B ) 通过S面的电场强度通量为q / ε0,S 面上场强的大小为. 20π4rq E ε=(C) 通过S 面的电场强度通量为(- q) / ε0,S 面上场强的大小为.20π4rq E ε= (D ) 通过S面的电场强度通量为q / ε0,但S面上各点的场强不能直接由高斯定理求出. [ D ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作二分之一径为R 的闭合球面S,已知通过球面上某一面元∆S 的电场强度通量为∆Φe,则通过该球面其他部分的电场强度通量为(A ) - ∆Φe . (B). e SR Φ∆∆π24(C) . (D) 0.[ A ]e SSR Φ∆∆∆-π2426、半径为R的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ B ](B)(C)E O r(A)E ∝1/r27、静电场中某点电势的数值等于 (A)试验电荷q0置于该点时具备的电势能. (B)单位试验电荷置于该点时具备的电势能. (C)单位正电荷置于该点时具备的电势能. (D )把单位正电荷从该点移到电势零点外力所作的功.  [  ] 28、如图所示,边长为l的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷.(B) 顶点a、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d处都是负电荷.[ ]29、如图所示,边长为 0.3 m 的正三角形a bc,在顶点a处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c处的电场强度的大小E 和电势U 为: (=9×10-9 041επN m /C2)(A) E =0,U =0. (B) E =1000 V/m,U =0. (C) E=1000 V/m,U =600 V. (D ) E= V/m ,U =600 V. [  ]ba 30、如图所示,半径为R 的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的P 点处的电场强度的大小和电势为: (A) E =0,. rQU 04επ= (B) E =0,. RQU 04επ=(C) , .204r QE επ=rQ U 04επ=(D) ,. [ ]204r Q E επ=RQU 04επ=31、有关静电场中某点电势值的正负,下列说法中正确的是: (A ) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选用. (D) 电势值的正负取决于产生电场的电荷的正负. [ C ] 32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为: (A)  . (B) . aQ 034επa Q032επ (C) . (D).  [ ]aQ06επaQ012επ 33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一个带电体产生的. (A) 半径为R的均匀带正电球面. (B) 半径为R 的均匀带正电球体.  (C) 正点电荷. (D) 负点电荷.  [ ] 34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一个带电体产生的. (A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D ) 负点电荷. [ ]35、二分之一径为R 的均匀带电球面,带有电荷Q .若要求该球面上的电势值为零,则无限远处的电势将等于(A) . (B) 0. RQ 0π4ε (C) . (D ) ∞. RQ0π4ε-[ ]36、 真空中有一点电荷Q ,在与它相距为r的a点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为 (A). (B) . 24220r r Qq π⋅πεr r Qq 2420επ (C) . (D) 0. r r Qqππ204ε[ ]37、点电荷-q 位于圆心O 处,A、B 、C、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B、C 、D 各点,则 (A) 从A 到B,电场力作功最大.(B) 从A到C ,电场力作功最大. (C) 从A 到D,电场力作功最大. (D ) 从A到各点,电场力作功相等. [ ]38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A) . (B). aqQ023επaqQ03επ (C) .  (D) . [ ]aqQ0233επaqQ032επ39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置.A3q2 (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负. (D) 试验电荷的电荷大小. [ ] 40、如图所示,直线MN 长为2l ,弧OCD 是以N点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿途径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A) A <0 , 且为有限常量. (B ) A >0 ,且为有限常量. (C) A =∞. (D) A =0. [ ] 41、已知某电场的电场线分布情况如图所示.现观测到一负电荷从M 点移到N点.有人依照这个图作出下列几点结论,其中哪点是正确的? (A) 电场强度EM <EN . (B ) 电势U M <U N. (C) 电势能WM <W N. (D) 电场力的功A >0.[ ] 42、已知某电场的电场线分布情况如图所示.现观测到一负电荷从M 点移到N 点.有人依照这个图作出下列几点结论,其中哪点是正确的? (A) 电场强度E M >E N . (B) 电势UM >U N . (C) 电势能W M <W N . (D ) 电场力的功A >0.- [ ] 43、在电荷为-Q的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为 (A). (B ) . ⎪⎪⎭⎫ ⎝⎛-π-21114r r Q ε⎪⎪⎭⎫ ⎝⎛-π210114r r qQ ε (C). (D) [ ]⎪⎪⎭⎫ ⎝⎛-π-210114r r qQ ε()1204r r qQ -π-ε 44、带有电荷-q的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于 (A) . (B) +qU. dqU- (C) -qU .  (D). [ ]qU 2145、在匀强电场中,将一负电荷从A移到B ,如图所示.则:(A)电场力作正功,负电荷的电势能减少. (B)电场力作正功,负电荷的电势能增加. (C)电场力作负功,负电荷的电势能减少. (D)电场力作负功,负电荷的电势能增加. [ ] 46、 图中实线为某电场中的电场线,虚线表示等势(位)面,-q dO U-E由图可看出: (A) E A >EB >E C ,U A >U B >U C. (B) EA <E B <EC ,U A <U B <U C .  (C) E A >EB >E C,U A <U B <U C . (D) EA <E B <EC ,U A >U B >U C. [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) . (B) . k r m ee rm ke e (C) . (D) . rm kee 2rm kee 2(式中k=1 / (4πε0) )[]48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽视重力作用)运动至相距为r 2,此时每一个电子的速率为 (A ). (B ) . ⎪⎪⎭⎫⎝⎛-21112r r m ke ⎪⎪⎭⎫⎝⎛-21112r r m ke (C) . (D) 电场力做的功是两个电子动能和 ⎪⎪⎭⎫ ⎝⎛-21112r r m k e⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ ]49、相距为r 1的两个电子,在重力可忽视的情况下由静止开始运动到相距为r2,从相距r 1到相距r2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和; (C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力和F合力矩为:M (A) =0,= 0. (B) = 0,0. F MF M≠ (C) 0,=0.(D) 0,0. [ ]F ≠MF ≠M≠ 51、真空中有两个点电荷M 、N,相互间作用力为,当另一点电荷Q移近这两个点电荷F时,M、N两点电荷之间的作用力 (A) 大小不变,方向变化. ﻩ(B) 大小变化,方向不变. (C) 大小和方向都不变. ﻩ(D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴取得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?  (A) 使两金属板相互接近些.  (B) 变化两极板上电荷的正负极性. (C ) 使油滴离正极板远某些. (D) 减小两板间的电势差. []-+53、正方形的两对角上,各置电荷Q ,在其他两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为 (A) Q =-2q . (B) Q =-q .22 (C ) Q =-4q . (D) Q=-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C不动,变化B的位置使B 所受电场力为零时,与AB BC 的比值为  (A) 5. (B) 1/5. (C). (D ) 1/. [ ]5555、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为 (A). (B ) .S q 02εSq 022ε (C ) . (D) . 2022S q ε202Sq ε[ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是: (A) F ∝U . (B) F ∝1/U . (C ) F ∝1/U 2. (D) F ∝U 2. [ ]57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等. (D) F/ q 0与P 点处场强的数值哪个大无法确定. [ ]58、有关高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量为零. D (B) 高斯面上到处为零,则面内必不存在自由电荷. D (C) 高斯面的通量仅与面内自由电荷有关. D(D) 以上说法都不正确. []59、有关静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B ) 任何两条电位移线相互平行. (C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出目前有电介质的空间. [ ]q P60、两个半径相同的金属球,一为空心,一为实心,把二者各自孤立时的电容值加以比较,则 (A) 空心球电容值大. (B) 实心球电容值大. (C) 两球电容值相等.(D ) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________ ________________________________________相同.62、电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量的⎰∙S Ed 值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为的均匀电场中,其对E 称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为__________________. 66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为和1E ,空间各点总场强为=+.目前作一封闭曲面S,2E E 1E 2E 如图所示,则如下两式分别给出通过S的电场强度通量=______________________________, ⎰⋅S E d 1=________________________________.⎰⋅S E d 67、一面积为S的平面,放在场强为的均匀电场中,已知 与平面间的夹角为E E θ(<π/2),则通过该平面的电场强度通量的数值Φe=______________________.68、如图,点电荷q 和-q被包围在高斯面S内,则通过该高斯面的电场强度通量=_____________,式中为⎰⋅S S E d E _________________处的场强.69、二分之一径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(表示r从球心引出的矢径): =______________________(r <R ), ()r E =______________________(r >R ). ()r E70、二分之一径为R 的“无限长”均匀带电圆柱面,其电荷面密度为σ.该圆柱面内、外场强分布为(表示在垂直于圆柱面的平面上,从轴线处引出的矢径): r =______________________(r<R ), ()r E =______________________(r >R ).()r E 71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量的⎰∙S E d 值仅取决于  ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe=_________________.74、图中曲线表示一个球对称性静电场的电势分布,r 123表示离对称中心的距离.这是____________________________________________的电场.75、二分之一径为R 的均匀带电球面,其电荷面密度为σ.若要求无穷远处为电势零点,则该球面上的电势U =____________________. 76、电荷分别为q1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势U=___________ .77、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或 _______________________________________.79、一点电荷q =10-9 C,A、B、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm.若选B 点的电势为零,则A点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85×10-12 C2·N -1·m -2)q 13q80、电荷为-Q 的点电荷,置于圆心O 处,b 、c 、d为同一圆周上的不一样点,如图所示.现将试验电荷+q 0从图中a 点分别沿ab 、ac 、ad 途径移到对应的b、c 、d 各点,设移动过程中电场力所作的功分别用A 1、A2、A 3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不一样的等势面A ,B ,C.已知U A>U B>U C ,且U A-UB =U B -U C ,则相邻两等势面之间的距离的关系是:R B -RA______ R C -R B . (填<,=,>)82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意途径移动到b点,外力所作的功A =______________.84、真空中电荷分别为q 1和q2的两个点电荷,当它们相距为r 时,该电荷系统b的相互作用电势能W=________________.(设当两个点电荷相距无穷远时电势能为零) 85、在静电场中,一质子(带电荷e=1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B点(如图),电场力作功8.0×10-15 J.则当质子沿四分之三的圆弧轨道从B 点回到A点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是______________________________________________ __________________________________,因而静电力属于_________________力.87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表白,静电场是______ ______________________________场.A88、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e=________________________.89、 图示为某静电场的等势面图,在图中画出该电场的电场线. 90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并比较它们的大小.E a ________ E b(填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A的A点,在电场力作用下运动到电势为UB 的B 点.若粒子抵达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为vb ,则小球在a 点的速率vaO U U= ______________________.93、一质子和一α粒子进入到同一电场中,二者的加速度之比,a p ∶a α=________________. 94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e.在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U0,则立方体顶点A 的电势为____________. 96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小) 98、一空气平行板电容器,两极板间距为d,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可当作是孤立的.其中A 球本来带电,B 球不带电,现用一根细长导线将两球连接,则球上分派的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小) 103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q.在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度 =______________.104、二分之一径为R的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________. 105、一平行板电容器,上极板带正电,下极板带负电,其间布满相对介电常量为εr = 2的各向同性均匀电介质,如图所示.在图上大体画出电介质内任一点P 处自由电荷产生的场强 , 束缚电荷产生的场强和总场强.0E E ' E106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d2 = 5c m时的相互作用力相等,则煤油的相对介电常量εr =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内布满相对介电常量为εr的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势U = ________________________________.(1)(2)109、一平行板电容器,两板间布满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D=____________,电场强度的大小E =____________________. 110、一个半径为R的薄金属球壳,带有电荷q,壳内真空,壳外是无限大的相对介电常量为εr的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间布满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是本来的____________倍;电场能量是本来的___________倍. 112、一平行板电容器,充电后与电源保持联接,然后使两极板间布满相对介电常量为εr的各向同性均匀电介质,这时两极板上的电荷是本来的______倍;电场强度是本来的_________倍;电场能量是本来的_________倍.113、在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重叠的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间布满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D=____________,电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________. (填增大或减小或不变) 117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C=______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流电源上,如图所示.今有一块各向同性均匀电介质板迟缓地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,假如二者的半径和总电荷都相等,则带电球面的电场能量W 1与带电球体的电场能量W 2相比,W1________ W2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.122、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O点的电场强度.123、如图所示,一长为10 c m的均匀带正电细杆,其电荷为1.5×10-8 C,试求在杆的延长线上距杆的端点5 c m处的P 点的电场强度.(=9×109 N ·m2/C 2 ) 041επ 124、真空中一立方体形的高斯面,边长a =0.1 m,位于图中所示位置.已知空间的场强分布为: Ex =b x , Ey =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量Lq。

大学物理-静电场(一)(带答案)

大学物理-静电场(一)(带答案)

一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。

B.物体获得了质子。

C.物体失去了电子。

D.物体失去了中子。

【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。

【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。

【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。

在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。

大学物理 科学出版社 第9章 静电场 参考答案

大学物理 科学出版社 第9章 静电场 参考答案

第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌 握电势与电场强度的积分关系。

能计算一些简单问题中的电场强度和电势。

了解电场强度 与电势的微分关系。

2 理解静电场的规律:高斯定理和环路定理。

理解用高斯定理计算电场强度的条件和 方法。

3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。

了解各向同性介质 中D和E之间的关系。

了解介质中的高斯定理。

4 了解电容和电能密度的概念。

9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。

在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。

孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。

电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。

(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。

大学物理静电场习题答案

大学物理静电场习题答案

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE k r r ==πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R==-⎰ππλλθθθπεπε0(1)22R=-λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产图13.1生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=-. ①将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ①图13.4图13.5.场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为图13.7Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry d E r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=.当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=, `0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r rr r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;图13.10图13.11在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = qσd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E rπε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034QE r r R ρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084R rRQQ rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=. 12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为d d nqbnqbU y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求: (1)在两板之间离A板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=0ln8q Lπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②. 由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.图13.18[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR rR r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0, 电荷面密度为 σ = -ε0E ; 地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C·m -3).。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理静电场作业题参考答案

大学物理静电场作业题参考答案

解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

大连理工大学大学物理作业4(静电场四)及答案详解

大连理工大学大学物理作业4(静电场四)及答案详解

作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。

不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。

否则内球壳内得静电场不为零。

如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。

电场强度由内球壳向外得线积分到无限远,不会为零。

即内球壳电势不为零。

这与内球壳接地(电势为零)矛盾。

因此,内球壳外表面一定带电。

设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。

这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。

内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。

2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。

那么,就是[ ]。

该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。

注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。

3.一不带电得导体球壳半径为,在球心处放一点电荷。

大学物理D-04静电场-参考答案

大学物理D-04静电场-参考答案
2
C)
四、计算题 4.4.1.在 x 轴上,有一点电荷 q1 20 10 C ,位于原点,另一点电荷 q2 50 10 C ,位于 x=-10cm 处。试求 x 轴上任一点的电场强度大小。 解:点电荷 q1 和 q2 将 x 轴分为三个区域
6 6
x 0 :在此区域,两个点电荷产生的电场强度的方向都沿 x 轴方向,坐标 x 处的场强为:
2
9
解.: (1)
U A U A1 U A 2
1.8 103V
4 r
q1

q2 4 r d
2
B r d/2 d/2 D
C r
q1
q2
B 点的电势为: U B
U B1 U B 2 0
9
故将电荷 q 2 10 C 从 A 点移动到 B 点电场力的功
W A B (U
A
U
B
)q 1 0 .0 6 0 .0 8
2 2
1 1 ( 4 8 .8 5 1 0 9 0 .0 6
6
)
3 .6 1 0
J
(2)C点的电势为 U C
U C1 U C 2
4 r
q2

q1 4 r d
2 2
U A 1.8 103V
x 0.10m :在此区域,两个点电荷的场强方向相同,都沿 x 轴反方向,坐标 x 处的场强为:
E [
4 0 x
q1
2

q2 2.0 5.0 ] 9.0 104 [ 2 ]V m 1 2 2 4 0 ( x 0.10) x ( x 0.10)
9 9
在 B 点放置点电荷 q2 4.8 10 C 。 4.4.2 在直角三角形 ABC 的 A 点, 放置点电荷 q1 1.8 10 C , 已知 BC=0.04m,AC=0.03m。试求直角顶点 C 处的电场场强 E 。 解:点电荷 q1 和 q2 在 C 处的电场强度 E1 和 E 2 的方向如图所示,大小为

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

大学物理下作业答案.docx

大学物理下作业答案.docx

静电场(一)一. 选择题:1.解:在不考虑边缘效应的情况下,极板间的电场等同于电荷均匀分布,密度为o = ±q/S的两面积无限大平行薄板之间的电场一-匀强电场,一板在另一板处之电场强度为£ = o/(2s0),方向垂直于板面.所以,极板间的相互作用力F =q・E = q2 /(2件)。

故选(B)。

2.解:设置八个边长为a的立方体构成一个大立方体,使A(即Q)位于大立方体的中心.所以通过大立方体每一侧面的电场强度通量均为q/(6&o),而侧面abed是大立方体侧面的1/4,所以通过侧面abed的电场强度通量等于q/(24%).选(C)。

3.解:寸亘•丞=jpdV/£°适用于任何静电场.选(A)。

4.解:选(B)。

5.解:据高斯定理知:通过整个球面的电场强度通=q/&. ■内电荷通过昂、&的电通量相等且大于零; 外电荷对品的通量为负,对&的通量为正. 所以0>1 <0>2 •故(D)对。

二. 填空题:1.解:无限大带电平面产生的电场E= —2&oA L 八(5 2(5 3(5A 区:E A= ------------------ = ------2s0 2s02g0CL L b 2b bB 区:E R = ------------ = ------2s0 2s 02s0C区"c=三+至=至2s n 2s n 2s n2.解:据题意知,P点处场强方向若垂直于OP,则入在P点场强的OP分量与Q在P点的场强E QP一定大小相等、方向相反.即Jcp = ------------- c os——= ----------- =也冲= -------- , O — aA .2%。

3 4%。

4%。

之3. 解:无限长带电圆柱体可以看成由许多半径为r 的均匀带电无限长圆筒叠加而成,因此 其场强分布是柱对称的,场强方向沿圆柱半径方向,距轴线等距各点的场强大学相等。

《大学物理学》习题解答(第11章 静电场)

《大学物理学》习题解答(第11章 静电场)

1
Q L
L
2 0 r 1 4r 2 L2

2 0 r
2
【11.5】一半径为 R 的半圆细环上均匀的分布电荷 Q,求环心处的电场强度。 解取坐标 Oxy ,电荷元 d q d l R d ,由点电荷场强公式
y
d
dl
dq dE eR 4 0 R 2
由于电荷对称分布,场强也对称,则: Ex dEx 0

13
以 1.0 10 C s 的变化率失去电荷,求两球彼此趋近的瞬时相对速率(即
9
1
T q F mg x
l q
dx )是多少? dt
解 (1)如图所示,小球平衡时,
T sin F , T cos mg , F
q
2
4 0 x 2
13
q 2l x , 很小时, tan sin ,因此 x 则 mg tan 2 mg 2l 4 0 x 2 0
E d S E d S ER 2 cos ER 2
S S
z
A F C E O D B
【11.11】边长为 a 的立方体如图所示,其表面分别平行于 xy , yz 和 zx 平 面,立方体的一个顶点为坐标原点。现将立方体置于电场强度
E ( E1 kx)i E2 j 的非均匀电场中, 求立方体各表面及整个立方体表面的
Q d x ,则 L
EP
Qdx Q 1 1 1 Q [ ] 2 2 L 2 4 L ( r x ) 4 0 L r L 2 r L 2 0 4r L2 0
L2
1
(2)若点 P 在棒的垂直平分线上,因对称性, E 沿 x 轴方向的分量叠加为零,因此, E 的方向沿 y 轴, 大小为

大学物理静电场习题答案

大学物理静电场习题答案

[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
R dEx
dq
d
x

dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
O
a aBiblioteka xa 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
Rb Rc Ra A BC
E1=λ1 / 2πε0r,方向由B指向A
B、C间场强分布为 B、A 间电势差
E2=λ2 / 2πε0r,方向由B指向C
1 U BA E1 d r Rb 2 0
Ra
Rb dr 1 Rb r 2 0 ln Ra
Ra
C
B A
E2 E1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理静电场答案【篇一:大学物理静电场试题库】txt>1、下列关于高斯定理的说法正确的是(a) a如果高斯面上e处处为零,则面内未必无电荷。

b如果高斯面上e处处不为零,则面内必有静电荷。

c如果高斯面内无电荷,则高斯面上e处处为零。

d如果高斯面内有净电荷,则高斯面上e处处不为零。

2、以下说法哪一种是正确的(b)a电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 b电场中某点电场强度的方向可由e?fq0确定,其中q0为试验电荷的电荷量,q0可正可负,f为试验电荷所受的电场力c在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 d以上说法都不正确3、如图所示,有两个电2、下列说法正确的是(d)a电场强度为零处,电势一定为零。

电势为零处,电场强度一定为零。

b电势较高处电场强度一定较大,电场强度较小处电势一定较低。

c带正电的物体电势一定为正,带负电的物体电势一定为负。

d 静电场中任一导体上电势一定处处相等。

3、点电荷q位于金属球壳中心,球壳内外半径分别为试判断下r1,r2,所带静电荷为零a,b为球壳内外两点,说法的正误(c)a移去球壳, b点电场强度变大b移去球壳,a点电场强度变大 c移去球壳,a点电势升高 d移去球壳,b点电势升高4、下列说法正确的是(d)列a场强相等的区域,电势也处处相等 b场强为零处,电势也一定为零 c电势为零处,场强也一定为零 d场强大处,电势不一定高a 5、如图所示,一个点电荷q位于立方体一顶点a上,则通过abcdq6?0q12?0q24?0q36?0a b cd6、如图所示,在电场强度e的均匀电场中,有一半径为r的半球面,场强e的方向与半球面的对称抽平行,穿过此半球面的电通量为(c) a 2?r2e b22?re c ?red212?re27、如图所示两块无限大的铅直平行平面a和b,均匀带电,其电荷密度均为?(??0c?m?2),在如图所示的a、b、c三处的电场强度分别为(d) a 0,8、如图所示为一具有球对称性分布的静电场的e~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(b)a 半径为r的均匀带电球面. b半径为r的均匀带电球体.c半径为r的、电荷体密度为??ar(a为常数)的非均匀带电球体 d半径为r的、电荷体密度为??a/r(a为常数)的非均匀带电球体9、设无穷远处电势为零,则半径为r的均匀带电球体产生的电场的电势分布规律为(图中的u0和b皆为常量):(c)??,0,0 b 0,?2?,0,0c?2?0?0?0,?,?d??0,0,??010、如图所示,在半径为r的“无限长”均匀带电圆筒的静电场中,各点的电场强度e的大小与距轴线的距离r 关系曲线为(a)ee or r orrorror r(a)(b) (c)(d)11、下列说法正确的是( d)(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。

?12、在一个带负电的带电棒附近有一个电偶极子,其电偶极距p的方向如图所示。

当电偶极子被释放后,该电偶极子将( b )?a沿逆时针方向旋转直到电偶极距p水平指向棒尖端而停止。

?b沿逆时针方向旋转至电偶极距p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动c沿逆时针方向旋转至电偶极距p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 d沿顺时针方向旋转至电偶极距p水平指向方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动??13、电荷面密度均为??的两块“无限大”均匀带电的平行平板如图(a)放置,其周围空?间各点电场强度e(设电场强度方向向右为正、向左为负)随位置坐标x变化的关系曲线为(b)-(a) (b)习题13(a)图习题13(b)图二填空题1、如图所放置示,在坐标-l处放置点电荷-q,在坐标+l放置+q,在ox轴上取p点,其坐标x(??l),则p点电场强度e的大小为2、如图所示,一点电荷q?10?9c。

abc三点分别与点电荷q相距为10cm、20cm、30cm。

若选b点电势为零,则a点电势为 c点的电势为qql??0x3qabc1、如图所示一无限大均匀带电平面,电荷密度为?,ox轴与该平面垂直,且a、b两点与平面相距为ra和rb,试求a、b两点的电势差va?vb=-?2?0ra?(??2?0rb)。

根据所求结果,选取rb?0处为电势零点,则无限大均匀达式v?-?2?0r最简洁。

?4、如图所示一无限长均匀带电直线,电荷密度为?,ox轴与该直线垂直,且a、b两点与直线相距为ra和rb,试求a、b两点的电势差va?vb=-?2??la?(-?2??lb)。

根据所求结果,选取rb?1m处为电势零点,则无限长均匀带电直线的电势分布表达式v?-?2??l。

?5、有一半径为r的细圆环, 环上有一微小缺口,缺口宽度为d(d?r),环上均匀带正电, 总电量为q,如图所示, 则圆心o处的电场强度大小e?qd8??0r23,6、如图所示两个点电荷分别带电q和2q,相距l,将第三个点电荷放在离点电荷q的距离为l1)处它所受合力为零7、一点电荷q位于正立方体中心,通过立方体没一个表面的电通量是q6?08、真空中有一均匀带电球面,球半径为r,所带电量为q(0),今在球面上挖去一很小面积ds(连同其上电荷),设其余部分电荷仍均匀分布,则挖去以后,球心处电场强度e?qds16??0r249、空间某区域的电势分布为??ax?by,其中ab为常数,则电场强度分布为ex=?2ax,ey=?2by2210、点电荷q1q2q3q4在真空中的分布如图所示,图中s为闭合面,则通过该闭合面的电通量e?ds=sq2?q4?0,式中的e是点电荷q1q2q3q4在闭合面上任一点产生的电场强度的矢量和。

11、电荷量分别为q1q2q3的三个点电荷,分布如图所示,其中任一点电荷所受合力均为零。

【篇二:大学物理答案第五章静电场】14??01/3f?qx22?mgtg??mgsin??mgx2l∴?q2l??2??mg0?????习题5-1图??5-2 设q1,q2在c点的场强分别为e1和e2,则有e1?14??q1r2ac?9?10?491.8?100.03?12?9?1.8?10v?m方向沿ac方向 e2?14??q2r2bc习题5-2图?9?10?方向沿cb方向91.8?100.042?9?2.7?10v?m4?1?∴ c点的合场强e的大小为:e?e1?e2?22(1.8?10)?(2.7?10) ?3.24?10v?m42424?1??tg?1e1e2?tg?11.82.7?33.7?5-3 坐标如题5-3图所示,带电圆弧上取一电荷元dq??dl,它在圆心o处的场强为14??de1??dlr2,方向如题5-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心o处产生的de1和de2在x方向分量相互抵消。

习题5-3图?ex?0,圆心o处场强e的y分量为?ey?2?614???dlr2?sin??2?614???rd?r2sin???3??1?? ?2??0r?2???方向沿y轴正向。

5-4 (1)如题5-4图(a),取与棒端相距d1的p点为坐标原点,x轴向右为正。

设带电细棒电荷元dq??dx至p点的距离x,它在p点的场强大小为14??dep??dxx2方向沿x轴正向习题5-4图(a)各电荷元在p点产生的场强方向相同,于是 ep??dep??4??14????d1dxx2?(d1?l)??11?????d??1d1?l?9?8?9?10?3?10311????? ?2?228?10??8?10?2.41?10v?m?1方向沿x轴方向。

(2)坐标如题5-4图(b)所示,在带电细棒上取电荷元dq??dx与q点距离为r,电荷14??元在q点所产生的场强de?以ex=0,场强de的y分量为?dxr2,由于对称性,场de的x方向分量相互抵消,所dey?desin??14???dxr2sin?因r?d2csc?,x?d2tg????14????????d2ctg?,dx?d2csc?d?2?2∴ dey??dxr2sin???4??0d2习题5-4图(b)sin?d?ey??dey????21?4??0d2sin?d???4??0d2(co?s1?cos?2)?1?其中 cosl/2d?(l/2)222,cos?2??l/2d?(l/2)222代入上式得ey??4??0d2d9l22?(l/2)?82? 方向沿y轴正向。

9?10?3?108?10?2?0.2?(8?10?2)?(0.2/2)2?12?5.27?10v?m3?15-5 带电圆弧长l?2?r?d?2?3.4?0.50?0.02?3.12m,电荷线密度ql?3.12?103.12?9?1.0?10?9c?m?1。

带电圆弧在圆心o处的场强等价于一个闭合带电圆环(线密度为?)和一长为d、电荷线密度为-?的小段圆弧在o处场强的矢量和。

带电闭合圆环在圆心处的场强为零,而dr,∴小段带电圆弧可视为点电荷,所带电量q???d?1.0?1014???90.02?2?102?100.52?11c,故?1圆心处的场强,e?q?r211?9?10?9?0.72v?m,方向由圆心指向空隙中心。

5-6 (1)点电荷q位于一立方体中心,则通过立方体每一面的电通量相等,∴通过每一面的电通量?1为总通量?的16,即?1q?qe?ds??6?06?0?1??e?ds?s16?(2)如果这点电荷移到立方体的一个角上,则电荷q所在顶角的三个面上,因为各点e平行于该面,所以这三个面的电通量均为零,另三个面的电通量相等。

如果要把q全部包围需要有8个立方体,相当于有24个面,每一面上通过的电通量为总通量的??1?1??e?ds?s124??1qqe?ds???24?024?0124,即5-7 解法(一)通过圆形平面的电通量与通过以a为球心,ab?x?r22?r为半径,以圆平面的周界为周界的球冠面的电通量相等,该球冠面的面积s?2?rh,通过整个球面s0?4?r的电通量?0?2q?0,所以通过该球冠面的电通量为???0ss0?q2?rh?04?r2?qh2?0r习题5-7图(a)?q2?0r?rcos?r?q2?0(1?cos?)?q??1?2?0??xx?r22?? ??解法(二)在图形平面上取一同心面元环,设其中半径为r,宽为dr,此面元的面积ds?2?rdr。

设此面元对a点的半张角为?,见图所示,由通量公式可得???s??e?ds?q4??x?r21x?r?? ??2cos?2?rdr?qx2?0?r2rdr(x?r2)3/2?q??1?2?0??22习题5-7(b)图5-8 通过此半球面的电通量与通过以o为圆心的圆平面电通量相等,无限大平面外任一点的场强为?2?0,∴通过该球面的电通量为??e?s??2?0?r2???r2?025-9 设想地球表面为一均匀带电球面,则它所带总电量为??2q??0e?ds???0es???04?re??8.85?10?125?4??(6.4?10)?13062??5.92?10c5-10 设均匀带电球壳内、外半径分别为r1和r2,它所产生的电场具有球对称性,以任意半径r作一与均匀带电球壳同心的高斯球面s,由高斯定理可得???qi2e?ds?4?r?e??0∴ e??qi4??0r2当r?5cm?r1时,?qi?0,∴e1?0r1?r?8cm?r2?qi??r?dv?4?rr1?4?rdr?243??(r?r1)33e2?3??(r?r1)4??0r2333r1??r?? ?2??3?0?r????2?10?5?123?8.85?10?23?(6?10)??2?8?10??22?(8?10)???3.48?104v?m?1r?12cm?r2 43?qi?4333??(r2?r1)∴ e3?3??(r2?r1)4??0r23??(r2?r1)3?0r3233?2?10?5(0.1?0.06)?1233?8.85?10?0.122?4.1?10v?m4?15-11 无限长均匀带电圆柱面产生的电场具有轴对称性,方向垂直柱面,以半径r作一与两无限长圆柱面的同轴圆柱面以及两个垂直轴线的平面所形成的闭合面为高斯面,由高斯定理可得s???qie?ds?2?rle??0∴ e?12???qirl(1)当rr1,?qi?0,e1?0; (2)当r1?r?r2时?qi??l ∴ e2?12???lrl??2??0r;(3)当r?r2时,?qi?0,∴ e3?05-12 见题5-12图所示,由于平面无限大,电荷分布均匀,且对中心面s0(图中虚线)对称,电场分布也应具有均匀性和对称性,即在与带电板平行且位于中心面s0两侧距离相等的平面上场强大小应处处相等,且方向垂直该平面。

相关文档
最新文档