氯化氢合成

氯化氢合成
氯化氢合成

氯化氢合成、冷冻工艺介绍

第一章氯化氢合成岗位任务

1.氯化氢合成的任务

调节氢气与氯气配比,通过燃烧合成合格的氯化氢气体,供转化工序使用,或用水吸收制成合格的盐酸。

2.罐区岗位任务

将转化回收酸及二合一工业酸回收至罐区贮槽,然后利用二合一工业酸将回收酸配制成浓度≥28%的盐酸送盐酸解析。

第二章氯化氢合成岗位工作原理

1.反应方程式

H2+Cl2 2HCl↑+44.126J

2H2+O2 2H2O+Q

3Cl2+2Fe 2FeCl3+Q

2.氢气的纯度对合成反应的影响

如果氢气纯度低,氢气中必定含有较多的空气和水分。当氢气中含氧达到5%以上时则形成氢气与氧气的爆炸混合物,不利于安全生产。氢气中含少量水分,虽然可以促进氢气与氯气的合成反应,但含水分过高则会造成合成炉等设备的腐蚀。此外,更重要的是,氢气纯度(主要含氮气、氧气)将影响到合成和干燥后产品氯化氢的纯度,降低石墨换热器的传热系数,最终影响到氯乙烯合成和精馏系统的收率。造成精馏尾气放空惰性气体量和含氯乙烯与乙炔浓度的增加。

3.氯气的纯度对合成反应的影响

若氯气纯度低,氯气中必定含有较多的氢气与水分,当氯气中含氢量达到5%以上时,则形成氢气与氯气的爆炸混合物,不利于安全生产。含水分和纯度对氯乙烯生产的影响如2所述4.氢气与氯气的配比对合成反应的影响

根据氢气与氯气反应方程式,两者理论是按照1﹕1分子比合成的,但工业上都是控制氢气过量的。一般在氯化氢合成中控制分子比为氢气﹕氯气=(1.05~1.1)﹕1。在合成盐酸的合成炉中,氢气过量还多些。氢气过量最多不能超过10%,不然会造成产品氯化氢纯度下降,乃至影响氯乙烯收率。而氢气过量超过20%则有可能形成爆炸混合物,不利于安全生产。

但如果氯气过量,则游离氯易与炉壁以及冷却管等反应生成黄色结晶氯化铁而腐蚀设备。游离氯还将在降膜式吸收塔中与水反应生成次氯酸,对不透性石墨起缓慢的局部氧化作用。即使少量的游离氯,也将在氯乙烯合成的混合器中与乙炔发生气相反应,生成极易爆炸的氯乙炔,造成氯乙烯合成系统的爆炸。因此,为杜绝氯化氢中产生游离氯,合成反应中严格控制氢气过量并控制在5—10%,并随时注意氯、氢流量和视镜中燃烧火焰的颜色变化。

第三章工艺流程

1.氯化氢合成工艺流程

来自氯氢处理工序的氯气、氢气,经氯气、氢气缓冲罐、氢气阻火器进入二合一合成炉内燃烧,生成氯化氢气体自炉顶排出,经空气冷却管、氯化氢缓冲罐进入石墨冷却器,冷却后的氯化氢送至转化工序。

流程方框图

电解----氢气缓冲罐-----阻火器---(电解---氯气缓冲罐)合成炉----空冷管----氯化氢缓冲罐---石墨冷---转化&降膜吸收

2.制酸的工艺流程

合成的氯化氢气体从石墨冷却器出口经降膜吸收系统,大部分氯化氢被稀酸吸收,生成盐酸

储存。一部分未吸收的氯化氢经尾气吸收塔吸收后,下酸到降膜吸收塔,未被尾气吸收塔吸收的气体经水力喷射器回到循环液槽,最后少量的尾气氯化氢经碱洗塔被碱液吸收。未被吸收的尾气放空。

制酸流程方框图

石墨冷---降膜吸收塔---(尾气吸收塔)--盐酸槽----盐酸泵---储罐

氯化氢合成工艺流程图

氯化氢制酸工艺流程图

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111 111111111111111111111111

第四章工艺指标

H2:Cl2(体积比):(1.05~1.1):1

点炉负压:-0.20~-1.36Kpa(纸放在炉门口不落下来)

出酸浓度:25~31%

下酸温度:≤55℃

炉内含氢:≤0.067%

氢气纯度:≥98% 氢气含氧≤0.4%

氯气纯度:≥90% 氯中含氢≤1%

氯化氢纯度:90-95%(单通时≥85%)无游离氯

热水槽温度:65~85℃

夹套水温度:70~99℃

石墨冷却器进气温度:110~180℃

合成炉出口温度:400~600℃

石墨冷却器出口温度:≤40℃

氯化氢总管温度:≤40℃

氯化氢总管压力:≤70KPa

成品酸浓度:≥28%

第二节氯化氢合成主要危险化学物质

1.氯气(Cl2)

1.1理化特性

氯气为黄绿色,有刺激性气味,比空气重(为空气重度的2.5倍),在阳光及高温下与易燃气体混合时易发生燃烧、爆炸,吸入少量Cl2会刺激咽、鼻,引起胸部疼痛和咳嗽,吸入大量Cl2会引起窒息死亡。

主要参数如下

分子量70.907

沸点-33.9℃

凝固点-100.5℃

重度 3.214千克/立方米(标准状态)

比热0.115卡/克℃(20℃)

粘度129微泊(17℃)

汽化潜热72.95千卡/千克(常压下)

临界压力76.1绝压

临界温度144℃

导热系数0.0062千卡/米时℃(标准状态)

氯气可溶于水,0℃和20℃时溶解度分别为1.47%和0.73%,溶解热为5.28千卡/克分子,氯气溶于水后生成腐蚀性的次氯酸、盐酸和存在一部分游离氯。

1.2对人体的危害

最高容许浓度:1mg/m3。

主要危害:对眼睛、呼吸道粘膜有刺激作用。

急性中毒症状:轻者有流泪、咳嗽、胸闷、咳少量痰,出现气管和支气管炎的表现;中度中毒发生支气管肺炎或间质性肺水肿,病人除有上述症状的加重外,出现呼吸困难、轻度紫钳等。重者发生肺水肿、昏迷和休克,可出现气胸、纵隔气肿等并发症。吸气极高浓度的氯气,可引起迷走神经反射性心跳停或喉头痉挛而发生“电击样”死亡。皮肤接触液氯和高浓度氯,在暴露部位可有灼伤后急性皮炎。

慢性中毒症状:长期低浓度接触,可引发慢性支气管炎支气管哮喘等;可引起职业性痤疮及牙齿酸蚀症。

1.3急救措施

皮肤接触:立即脱去被污染的衣服,用大量流动的清水冲洗,就医。

眼睛接触:立即提起上眼皮,用大量流动清水或生理盐水彻底冲洗,就医。

吸入:迅速脱离现场至空气新鲜处。呼吸心跳停止时,立即进行人工呼吸和胸外心脏按压术,就医。

1.4预防措施

工程控制:严加密闭,局部排风和全面通风。

呼吸系统防护:空气中浓度超标时,佩带自吸过滤式防毒面具。紧急事态抢救,建议佩带空气呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿防毒物渗透工作服。

手防护:戴橡胶手套。

其他:工作现场严禁吸烟,进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。进入罐或限制性空间或其他高浓度区作业,必须有人监护。

1.5消防措施

本品不燃。消防人员必须佩带过滤式防毒面具或隔离式呼吸器,穿全身防火防毒服,在上风处灭火。切断气源,喷水冷却容器,可能的话将容器从火场移至空旷处。

灭火剂:雾状水、泡沫、干粉。

1.6泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并立即进行隔离,小泄漏时隔离150m,大泄漏时隔离450m,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,用管道将泄漏物导至还原剂(酸式硫酸钠或酸式碳酸钠)溶液。也可以将漏气钢瓶浸入石灰浮液中。漏气容器要妥善处理,修复、检验后再用。

1.7储运注意事项

不燃有毒压缩气体。储存于阴凉、通风仓间内。仓内温度不宜超过30℃。远离火种、热源,防止阳光直射。应与易燃或可燃物、金属粉末、醇类、醚类、氢气等分开存放。不可混储混运。液氯储存要建低于自然地面的围堤。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。运输按规定路线行驶。

本品(液氯)单台储量在10吨及以上;或总储量在50吨及以上为重大化学危险源,应制定《化学事故应急救援预案》,班组员工应积极参加事故演习。

2.氢气(H2)

2.1理化特性

氢气在常温常压下时无色、无嗅、无味的,比空气轻得多的气体。

氢气在在水中溶解度很小,在标准状态下,每升水中只能溶解21.5毫升的氢气。氢气和氧气在常温下如无特殊条件,几乎不反应。但在800℃高温下,或合成炉点火时,氢气和原料气带入的氧气反应生成水。

氢气属于极易自燃和爆炸的气体,氢气和氯气、空气、氧气以及氯化氢在一定范围内混合,都可能产生爆炸性混合物。

氢气在空气和氧气中自燃点分别为530℃和450℃,氢气和空气的爆炸混合物属于快速爆炸物,最适合的混合比是35%,爆炸延迟时间只有0.01秒。和乙炔气一样,在氢气中通入氮气、二氧化碳或水蒸汽等惰性气体,可以降低其爆炸危险性.

2.2对人体的危害

症状:在高浓度时,由于空气中氧气分压降低会引起窒息。在很高的分压下,氢气可呈现出麻痹作用。

2.3急救措施

迅速脱离现场至空气新鲜处。保持呼吸通畅。如呼吸困难,给输氧。如停止呼吸,立即人工呼吸、就医。

2.4预防措施

工程控制:密闭系统,通风,防爆电话与照明。

呼吸系统防护:一般不需要特殊防护。高浓度接触时可佩带空气呼吸器。

眼睛防护:一般不需要特殊防护。

手防护:戴一般作业手套。

身体防护:穿防静电工作服。

其他:工作现场严禁吸烟,避免高浓度吸入。

2.5消防措施

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

2.6泄漏应急处理

本品泄漏时,要迅速撤离泄漏污染区人员至上风处,并进行隔离150m,严格限制出入。切断火源,尽可能切断泄漏源,合理通风,加速扩散。

2.7储运注意事项

本品储存于阴凉、通风仓间内。仓内温度不宜超过30℃。远离火种、热源,防止阳光直射。应与氧气、压缩空气、氧化剂等分开存放。切忌混储混运。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。配备相应品种和数量的消防器材。禁止使用易产生火花的机械设备和工具。

3.氯化氢(HCl)

3.1理化特性

氯化氢有毒,有刺激性气体,对眼和呼吸道黏膜有强烈的刺激作用,设备管道要防止泄漏,作业人员要佩带防护用品,极易溶于水。干燥的氯化氢无腐蚀性,但遇水时具有强腐蚀性3.2对人体的危害

最高容许浓度:15mg/m3

主要危害:对眼睛、呼吸道粘膜有刺激作用。

急性中毒症状:出现头晕、头昏、恶心、眼痛、咳嗽、声音沙哑、呼吸困难、胸闷、胸痛、有的咳血。

慢性中毒症状:长期较高浓度接触,可引发慢性支气管炎,胃肠功能障碍,牙齿酸蚀症。

3.3急救措施

皮肤接触:立即脱去被污染的衣服,用大量流动的清水冲洗。至少15分钟。就医。

眼睛接触:立即提起上眼皮,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸心跳停止时,立即进行人工呼吸和胸外心脏按压术。就医。

3.4预防措施

工程控制:密闭操作,注意通风。

呼吸系统防护:空气中浓度超标时,佩带自吸过滤式防毒面具。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿耐酸碱工作服。

手防护:戴橡胶手套。

其他:工作毕,淋浴更衣。

3.5消防措施

本品不燃。但与其它物品接触引起火灾时,切断气源。消防人员必须穿戴好全身防护服,喷水冷却容器,可能的话将容器移至空旷处。

灭火剂:雾状水。

3.6泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

3.7储运注意事项

本品储存于阴凉、干燥、通风良好的仓间。应与碱类、金属粉末、卤素(氟、氯、溴)、易燃或可燃物等分开存放。不可混储混运。搬运时要轻装轻卸,防止包装及容器损坏。分装和搬运作业要注意个人防护。运输按规定路线行驶。

4.烧碱(NaOH)

4.1 理化特性

NaOH为白色不透明固体,易潮解。能与酸反应并放热,本品不燃烧,遇水和水蒸汽大量放热,形成强腐蚀性液体。

4.2对人体的危害

最高容许浓度:0.5mg/m3

主要危害:本品有强烈的刺激和腐蚀性。粉尘刺激眼和呼吸道,腐蚀鼻中膜;皮肤和眼直接接触会引起灼伤;误服咳造成消化道灼伤,粘膜糜烂和出血休克。

4.3急救措施

皮肤接触:立即脱去被污染的衣服,用大量流动的清水冲洗。至少15分钟。就医。

眼睛接触:立即提起上眼皮,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸,就医。

食入:误服者用水漱口,给饮牛奶或蛋清。就医。

4.4预防措施

工程控制:密闭操作。

呼吸系统防护:可能接触其粉尘时,佩带自吸过滤式防尘口罩。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿耐酸碱工作服。

手防护:戴橡胶手套。

其他:工作现场严禁吸烟或进食或饮水。工作毕,淋浴更衣,注意个人清洁卫生。

4.5消防措施

用水后沙土扑救,但必须防止物品遇水产生飞溅,造成灼伤。

4.6泄漏应急处理

隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。小量泄漏:避免扬尘,用洁净的铲子收集于干燥、洁净、有盖的容器中,也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:收集回收或运至废物处理场所处置

4.5消防措施。

用水后沙土扑救,但必须防止物品遇水产生飞溅,造成灼伤。

第八章重要设备简图及参数

1 本岗位设备

本岗位主要设备有:氢气缓冲罐、氯气缓冲罐、氢气阻火器、合成炉、降膜吸收器、石墨冷却器、尾气吸收塔、水流喷射器、盐酸储罐、成品盐酸槽、循环酸槽、循环酸泵、循环水加压泵、循环水缓冲槽、热水槽、卧式冷却器、热水泵、盐酸泵、成品盐酸泵、碱循环泵、氯气吸收塔。

2 本岗位重要设备简图及参数

2.1 合成炉

设备内夹套内

最高工作压力: 0.2MPa 0.35MPa

设计压力:0.22MPa 0.375 MPa

耐压试验压力:0.275 MPa 0.47 MPa

换热面积:27M2

全容积:15.5M3

规格:Φ2000*9085

材质:钢

合成炉简图Array

2.2 块孔式石墨冷

公称面积:48M2

允许温度:-30~150℃

允许压力:纵向:0.5 MPa

横向:0.3 MPa

外形尺寸:160*1000*2948mm

材质:CS、石墨

块孔式石墨冷却器

2.3 降膜吸收塔

气体入口温度:≤170℃

公称面积:40M2

产品酸出口温度:≤50℃

外形尺寸:Φ830*5025mm 允许压力管程:0.3 MPa

壳程:0.1 MPa

材质:CS、石墨

降膜吸收器设备图

1.氟冰机组岗位任务

氟冰机系统-35℃冷媒水供转化脱水、加压精馏。

氟冰机系统0℃冷媒水供转化、乙炔、聚合、精馏。

氟冰机系统10℃冷媒水供氯氢处理。

第二章工作原理

1.螺杆式制冷压缩机组的组成及工作原理

1.1 螺杆式制冷压缩机的组成

螺杆式制冷压缩机组包括:螺杆式制冷压缩机、气路系统、油路系统和控制系统,这些设备(除启动柜之外)装在同一公共底座上,构成机组。气路系统包括:吸气截止阀、吸气过滤器、吸气止回阀、排气止回阀、排气截止阀等。

油路系统包括:高效油分离器、油冷却器、油粗过滤器、油泵、油精过滤器、恒压阀、回油过滤器等。

控制系统包括:启动柜、控制台。

2. 氟冰机组结构组成和工作原理

2.1 工作原理

R22(氟利昂)在蒸发器管外流动吸收管内载冷剂的热量,并不断蒸发,当到达蒸发器出口时全部变成气体,经回气管路被吸入压缩机。经压缩后的气体进入冷凝器冷凝为饱和液体并有一定的过冷,放出的热量被冷却水带走,过冷液体再经过过滤器除去杂质,经节流装置节流后变为低温低压液体和一部分闪发气体,进入蒸发器再循环。

2.2 机组设备机构

压缩机组

螺杆制冷剂压缩机属于容积式制冷压缩机,它利用一对相互啮合的阴、阳转子在机体内作回转运动,周期性的改变转子每对齿槽间的容积来完成吸气、压缩、排气过程。

压缩机组包括压缩机、电动机、油分离器、油冷却器、油过滤器、油泵、油压调节阀、吸气过滤器、止逆阀等部件。

氟冰机机组原理图

·冷凝器

其作用是将高压气体冷凝成高压液体。其热量被管内流动的水带走,通过冷却塔传递出去。冷凝器经过一段时间运行以后,由于水质的原因,应清洗冷凝器水路管道,清洗时将二端水盖拆开,用铜刷将每根管内水污清洗干净,长期停车不用时,务必将泄水阀打开,将存水放净。

·蒸发器

蒸发器型式为满液式蒸发器,它的作用是使管外流动的工质与管内载冷剂进行充分热交换。工质蒸发为气体从而将冷量传递给载冷剂。

2.3能量调节

能量调节是由能量调节装置、油管路、四通阀组成,操作四通阀即可达到增荷与减荷的目的。第三章工艺流程

1.工艺流程简述

R22在蒸发器管外流动吸收管内载冷剂的热量,被冷却后的载冷剂送往各用冷单位。R22在吸收载冷剂的热量后不断蒸发,当到达蒸发器出口时全部变成气体,经回气管路被吸入压缩机。经压缩后的气体进入冷凝器冷凝为饱和液体并有一定的过冷,放出的热量被冷却水带走,过冷液体再经过过滤器除去杂质,经节流装置节流后变为低温低压液体和一部分闪发气体,进入蒸发器再循环。

氟系统流程图

第四章工艺指标

1.冷冻岗位主要工艺指标

CaCl2·2H2O:≥67%

CaCl2盐水比重:1275~1295Kg/m3

乙二醇盐水比重:≥1030 Kg/m3

盐水送出压力:≥0.4MPa

氟系统冷冻0 ℃盐水温度: 0±5 ℃

氟系统-35 ℃盐水温度: -25~-35 ℃

氯化氢合成及盐酸合成技术方案

氯化氢合成及盐酸合成技术方案. 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案

天成化工氯化氢合成技术方案 编号:ntxqlhqhc-2012-12-30 买方:天成化工 卖方:南通星球石墨设备有限公司日期:二0一二年十二月三十日 一.装置配置描述 2 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案

1.1.根据用户的要求,为用户选用我公司生产的组合式二合一副产蒸汽石墨合成炉,生产HCl气体高纯盐酸及普通盐酸。 1.2.按SZL-1500型组合式二合一副产蒸汽石墨氯化氢合成炉。配置,数量:4台,开3备1。 1.3.设置配套盐酸吸收系统:5套其中一套是专门用来生产高纯盐酸,4套用来生产工业盐酸。采用二级降膜吸收+尾气塔吸收,满足高纯盐酸和普通盐酸的生产。 1.4操作弹性范围:30%~110%。 1.5年操作时间:按8000小时/年设计。1.6产能: (1)、高纯盐酸:35000吨/年 (2)、氯化氢:120000吨/年 3 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案 二.主产品及副产品技术规格 2、1,31%高纯盐酸规格: 指标名称单标准要求

总酸度HCmg31mg/LL钙质量浓(C计 mg0.2mg/LL镁质量浓(M计mg0.05mg/LL 铁质量浓度(F计mg0.3mg/LL游离 mg20mg/LL 蒸发残渣mg/ 15 ≤mg/L L 外观为无色透明液体

2.2.工业盐酸: 指标名称单位标准 要求31 )总酸度(HCl ≥0.006 铁质量浓度(以% ≤计)Fe 0.005 % 硫酸盐(以SO4≤计)0.0001 % 砷 4 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案 灼烧残渣≤% 0.08 0.005 %计氯化(C≤2.3.氯化氢气体:96%(vol) 纯度:≥

马来酸依那普利合成工艺设计

马来酸依那普利合成设计 1产品简介 1.1中英文名称,分子式,结构式 中文名:马来酸依那普利 别名:苯丁酯脯酸,苯酯丙脯氨酸,苯酯丙脯酸,益压利,悦宁定;MSD ,Renitec 化学名:N -[(S)-1-(乙氧羰基)-3-苯丙基]-L-丙氨酰-L-脯氨酸(Z)-2-丁烯二酸盐 英文名:EnalaprilMaleate 分子式:202825444C H N O C H O · 结构式: 1.2物化性质 物理性质:白色鳞片状结晶或结晶性粉末;无臭,微有引湿性。在甲醇中易溶,在水中略溶,在乙醇或丙酮中微溶,在氯仿中几乎不溶。比旋度取本品,精密称定,加甲醇制成每1mL 中含10mg 的溶液,依法测定,比旋度为-40°至-44°。m.p.143~144.5(伴有分解)。pH (1%水)=2.6。pKa1(25℃)=3.0,pKa2(25℃)=5.4。 化学性质:偶见尿素氮、肌酐或谷丙转氨酶、谷草转氨酶轻度上升。若出现白细胞减少或血管神经性水肿(尤其发生于喉部者)需立即停药。与利尿药同用可致严重低血压,用本品前停用利尿药或增加钠摄入可减少低血压可能。本品与利钾利尿药同用可减少钾丢失,但与保钾利尿药同用可使血钾增高。本品与锂同用可致锂中毒,但停药后毒性反应即消失。与其他降压药,尤其是利尿药合用,降压作用增强,故使用本品前应停用利尿药或从小剂量开始。本品能使血钾升高,不宜与保钾利尿

药或补钾制剂合用。 1.3用途 本品为血管紧张素转换酶抑制剂,口服后在体内水解成依那普利拉(Enalaprilat)。后者抑制血管紧张素转换酶,降低血管紧张素Ⅱ含量,造成全身血管舒张,引起降压。依那普利是前体药物,其乙酯部分在肝内被迅速水解,转化成它的有效代谢物-依那普利拉发挥降压作用,口服依那普利约68%被吸收,与食物同服,不影响它的生物利用度,服药后一小时,血浆依那普利浓度可达峰值。服药后3.5~4.5小时,依那普利拉血浆浓度可达峰值,半衰期为11小时,肝功能异常者依那普利转变成依那普利拉的速度延缓,依那普利给药20分钟后广泛分布全身、肝、肾、胃和小肠药物浓度最高。大脑浓度最低,日服两次,两天后,依那普利拉与血管紧张素转换酶结合达到稳态,最终半衰期延长为30~35小时,依那普利拉主要由肾脏排泄。严重肾功能不全病人(肌酐清除率低于30ml/min)可出现药物蓄积,本药能用血液透析法除去。 1.4应用前景分析 临床采用依苏与硝苯地平缓释片联合治疗中重度高血压50例,所有患者治疗前停用对血压有影响的药物,用药前连续非同日3次血压和心率的平均值做为治疗前的血压及心率,用药后每日测血压2~3次,取疗程最后3天血压的平均值作为治疗后血压。所有病人依那普利用5mg,2次/日,硝苯地平缓释片10mg,2次/日。2~3周调整药物剂量使血压达到理想水平(150/90mmHg)。4周为1疗程。治疗前后检查血、尿常规,血脂、血糖、心电图、肝功能、肾功能。结果显示,本组50例,显效28例,有效20例,无效2例,总有效率96%。用药过程中其中头痛头晕3例,干咳2例,恶心1例,乏力1例,持续1~2周自行消失。本品用于治疗各期原发性高血压。肾血管性高血压。各级心力衰竭。对于症状性心衰病人,也适用于:提高生存率;延缓心衰的进展;减少因心衰而导致的住院。预防左心室功能不全病人冠状动脉缺血事件,适用于:减少心肌梗塞的发生率;减少不稳定型心绞痛所导致的住院。

氯化氢合成与吸收工艺设计及运行总结

氯化氢合成与吸收工艺设计及运行总结 王真贝,黄建成 (江苏扬农化工集团,江苏扬州225000) [关键词]:氯化氢合成石墨二合一氯化氢吸收设备选型运行情况 [摘要]:对扬农化工集团产能扩建项目中盐酸合成工艺的设计过程进行了简要的概述。对于设备选型以及后期运行情况进行了分析,并对生产过程出现的异常现象以及处理办法进行了描述。 Hydrogen chloride synthesis and absorption of process design and operation summary Wang Zhenbei*,Huang Jiancheng (Jiangsu Yangnong Chemical Industry Co.,Ltd., Jiangsu Yangzhou 225000,China) [key words]: hydrogen chloride synthetic graphite hydrochloric acid absorption type equipment operation [Abstract]: the design process of the synthesis of hydrochloric acid production capacity expansion project Yangnong Chemical Industry Co.,Ltd., in brief. For equipment selection and post operation are analyzed, the abnormal phenomenon and appeared on the production process and processing method are described. 1、前言 盐酸是氯碱化工的主要产品之一,目前盐酸合成工艺多数采用合成和吸收两大操作单元组成。合成炉是制造氯化氢气体或盐酸的主要设备。过去工艺上应用比较广泛的是钢制合成炉,而近期均以石墨合成炉为主。由于石墨材料具有耐腐蚀、耐高温、传热效率高等优点,其应用越发广泛。配合夹套冷却的合成炉可以降低炉内氯化氢温度,提高生产能力,甚至可以利用反应热副产蒸汽。[1] 扬农化工集团氯碱分厂离子膜以及隔膜电解工艺碱产能为12万吨/年,配套产生氯气3.5万吨/年,盐酸工段作为氯气平衡的工段之一,采用氢气和氯气反应生成氯化氢,再用吸收水吸收产生32%盐酸作为产品出售。原来盐酸工段有φ700的合成炉2台,单套产能为1.5万吨/年,为满足集团产能扩大的发展需求,新增1台φ1200的石墨二合一氯化氢合成炉,炉体采用内衬石墨,外体钢制的合成炉,配套吸收系统。此类合成工艺具有以下特点:1、炉体温度低 (530±30)℃;2、设备寿命长,平均使用寿命约2年;3、制造及安装方便;4、吸收效率高;5、操作弹性较大;6、系统三废产生量少。 2、工艺设计要求 合成炉选用石墨合成炉。本次设计是在扬农集团多年积累的设计经验、运行的基础上,设计出工艺合理、设备优选、产能以及质量满足要求的φ1200石墨二合一氯化氢合成炉。 3、工艺参数计算 本合成工艺设计按照年产2.5万吨32%盐酸,年生产天数330天计算。合成炉系统工艺由合成炉本体、空冷管道(配马槽通冷水冷却)、石墨冷却器、三级吸收塔、水流泵等部分组成。具体工艺流程见图1。

氯化氢合成

氯化氢合成、冷冻工艺介绍 第一章氯化氢合成岗位任务 1.氯化氢合成的任务 调节氢气与氯气配比,通过燃烧合成合格的氯化氢气体,供转化工序使用,或用水吸收制成合格的盐酸。 2.罐区岗位任务 将转化回收酸及二合一工业酸回收至罐区贮槽,然后利用二合一工业酸将回收酸配制成浓度≥28%的盐酸送盐酸解析。 第二章氯化氢合成岗位工作原理 1.反应方程式 H2+Cl2 2HCl↑+44.126J 2H2+O2 2H2O+Q 3Cl2+2Fe 2FeCl3+Q 2.氢气的纯度对合成反应的影响 如果氢气纯度低,氢气中必定含有较多的空气和水分。当氢气中含氧达到5%以上时则形成氢气与氧气的爆炸混合物,不利于安全生产。氢气中含少量水分,虽然可以促进氢气与氯气的合成反应,但含水分过高则会造成合成炉等设备的腐蚀。此外,更重要的是,氢气纯度(主要含氮气、氧气)将影响到合成和干燥后产品氯化氢的纯度,降低石墨换热器的传热系数,最终影响到氯乙烯合成和精馏系统的收率。造成精馏尾气放空惰性气体量和含氯乙烯与乙炔浓度的增加。 3.氯气的纯度对合成反应的影响 若氯气纯度低,氯气中必定含有较多的氢气与水分,当氯气中含氢量达到5%以上时,则形成氢气与氯气的爆炸混合物,不利于安全生产。含水分和纯度对氯乙烯生产的影响如2所述4.氢气与氯气的配比对合成反应的影响 根据氢气与氯气反应方程式,两者理论是按照1﹕1分子比合成的,但工业上都是控制氢气过量的。一般在氯化氢合成中控制分子比为氢气﹕氯气=(1.05~1.1)﹕1。在合成盐酸的合成炉中,氢气过量还多些。氢气过量最多不能超过10%,不然会造成产品氯化氢纯度下降,乃至影响氯乙烯收率。而氢气过量超过20%则有可能形成爆炸混合物,不利于安全生产。 但如果氯气过量,则游离氯易与炉壁以及冷却管等反应生成黄色结晶氯化铁而腐蚀设备。游离氯还将在降膜式吸收塔中与水反应生成次氯酸,对不透性石墨起缓慢的局部氧化作用。即使少量的游离氯,也将在氯乙烯合成的混合器中与乙炔发生气相反应,生成极易爆炸的氯乙炔,造成氯乙烯合成系统的爆炸。因此,为杜绝氯化氢中产生游离氯,合成反应中严格控制氢气过量并控制在5—10%,并随时注意氯、氢流量和视镜中燃烧火焰的颜色变化。 第三章工艺流程 1.氯化氢合成工艺流程 来自氯氢处理工序的氯气、氢气,经氯气、氢气缓冲罐、氢气阻火器进入二合一合成炉内燃烧,生成氯化氢气体自炉顶排出,经空气冷却管、氯化氢缓冲罐进入石墨冷却器,冷却后的氯化氢送至转化工序。 流程方框图 电解----氢气缓冲罐-----阻火器---(电解---氯气缓冲罐)合成炉----空冷管----氯化氢缓冲罐---石墨冷---转化&降膜吸收 2.制酸的工艺流程 合成的氯化氢气体从石墨冷却器出口经降膜吸收系统,大部分氯化氢被稀酸吸收,生成盐酸

三氯氢硅及合成工艺

三氯氢硅及合成 一、三氯氢硅的基本性质 三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 二、三氯氢硅的用途 用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联

剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。 三、三氯氢硅生产工艺 1、主要化学反应方程式为: Si + 3HCl = SiHCl3 + H2 Si + 4HCl = SiHCl4 + 2H2 2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下: 用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。 氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进入隔膜压缩机加压,再经机后水冷凝器、-35℃盐水冷凝器冷凝,液体经机后产品计量罐计量后进入中间产品贮罐,不凝气送尾气变压吸附回收系统回收微量的三氯氢硅和氯化氢,氢气从尾气淋洗塔顶放空。变压吸附装置吸附的三氯氢硅和氯化氢定期用干式真空泵抽真空解析、并用隔膜压缩机加压送至硫酸液循

氯化氢合成及盐酸合成技术方案

天成化工氯化氢合成技术方案 编号:ntxqlhqhc-2012-12-30 买方:天成化工 卖方:南通星球石墨设备有限公司 日期:二0一二年十二月三十日 一.装置配置描述 1.1.根据用户的要求,为用户选用我公司生产的组合式二合一副产蒸汽石墨合成炉,生产HCl气体

高纯盐酸及普通盐酸。 1.2.按SZL-1500型组合式二合一副产蒸汽石墨氯化氢合成炉。配置,数量:4台,开3备1。 1.3.设置配套盐酸吸收系统:5套其中一套是专门用来生产高纯盐酸,4套用来生产工业盐酸。采用二级降膜吸收+尾气塔吸收,满足高纯盐酸和普通盐酸的生产。 1.4操作弹性范围:30%~110%。 1.5年操作时间:按8000小时/年设计。 1.6产能: (1)、高纯盐酸:35000吨/年 (2)、氯化氢:120000吨/年 二.主产品及副产品技术规格 2、1,31%高纯盐酸规格: 2.2.工业盐酸:

2.3.氯化氢气体: 纯度:≥96%(vol) H2≤3.5%(vol) 水≤0.5% 压力:0.15-0.2MPa 2.4.副产蒸汽:压力:0.5MPa 三.合成炉及吸收器的能力描述 3.1.HCL合成炉:单台合成炉正常生产氯化氢能力120t/d,对应387td普通盐酸能力。 3.2.配套吸收系统,普通盐酸共4套,单套吸收装置吸收能力满足387t/d的盐酸产量,高纯盐酸一套,每天吸收能力满足:105t/d,年产高纯盐酸35000吨/年。 3.3.所有尾气达标排放,达到GB16297-1996标准的要求。 四.工艺情况及控制方案建议 4.1工艺简述: 干燥的尾氯(或原氯)经缓冲罐及稳压阀稳定压力在设定值,干燥的氢气经缓冲罐和稳压阀稳定在设定值,氯气、氢气以设定好的比例值进入合成炉进行燃烧反应,合成氯化氢。氢气与氯气流量分别自动检测并由比例调节器自动跟踪调节,确保氯氢配比,合成的氯化氢气体可以去界外也可以去降膜吸收器、尾气吸收塔吸收制普通盐酸,其中一部分氯化氢气体去高纯盐酸吸收系统制取高纯盐酸。当使用尾氯时,尾氯不足的情况下由原氯自动补充。 制取高纯盐酸的吸收水为纯水,吸收产出31%的高纯盐酸。 制取工业盐酸的吸收水为工业水。 合成炉夹套采用三段冷却,其中二段循环水冷却和一段热水(热水用来副产蒸汽)冷却。 当出现各种异常情况时,本装置的连锁装置将把原料切断,确保本装置的安全,避免安全环保事故的发生。 4.2.控制方案(自控系统由业主选择并确认) 石墨合成炉系统副产蒸汽,要求实现DCS集中控制,现场无人值守。主要的控制分为自动监测系统、自控联锁保护系统、氢气氯气自动配比、蒸汽汽包液位及压力自动控制、制酸自动控制。4.2.1自动监测系统 合成炉火焰检测、摄像、自动切断阀、氮气置换等组成。 4.2.2自动联锁保护系统

(工艺技术)氯化氢工段工艺规程

氯化氢工段工艺规程 1、范围 本标准介绍了无色盐酸的物理化学性质和生产原理;规定了无色盐酸生产过程的实际生产条件和安全注意事项。 2、产品说明 2.1、产品名称: 本产品名称为五色盐酸,分子式为HCL,分子量为36.568。 2.2、氯化氢及盐酸的物理性质 2.2.1、氯化氢 a)氯化氢是一种无色有刺激性臭味、易溶于水的气体,在标准状态下重度为1.639㎏/m3;在0.1MPa压力下溶点为-144℃,沸点-85℃; b)氯化氢气体对动、植物有害,对人体也有害,它能刺激并破坏粘膜及呼吸系统,如眼、鼻、咽喉、气管等。 C)氯化氢在水中的溶解度很大,在潮湿的空气中能形成酸雾。在压力为0.1MPa,温度为0℃时,1体积水能溶解507体积氯化氢;在18℃时能溶解402体积氯化氢; d) 氯化氢溶于水,放出大量的热。 2.2.2、无色盐酸 a) 采用石墨设备及工艺管道生产出来的氯化氢水溶液是无色透明的,故称为无色盐酸。而一般工艺盐酸中常含有铁、氯及有机杂质,故多显淡黄色; b)盐酸对人体皮肤有灼伤性; c) 盐酸的沸点随浓度而变化,成品盐酸(31%)在0.1MPa下,沸点为83.1℃,比重为1.157(15℃),随温度升高比重减少,随浓度增加比重增大; d) 盐酸与水组成恒沸混合物,当压力为0.1MPa时,恒沸点为110℃,混合物含氯化氢20.24%(重量); c) 盐酸在加热时,分解逸出氯化氢气体,氯化氢气体与空气中的水分结合成盐酸,浓盐酸在空气中发白烟,故称为发烟验算。 2.3 氯化氢及无色盐酸的化学性质 2.3.1 氯化氢 a) 干燥的氯化氢气体几乎不与金属起作用,而潮湿的氯化氢气体对金属有严重的腐蚀作用; b) 氯化氢与有机化合物的烯、炔类在触煤的存在下起加成反应; CH≡CH+HCl CH 2 =CHCl CH 2=CH 2 +HCl CH 3 -CH 2 Cl

盐酸合成技术方案

江西九二盐业有限公司 盐酸合成技术方案 甲方:江西九二盐业有限公司 乙方:南通星球石墨设备有限公司 一、装置名称及装置规模: 1.1、装置名称:江西九二盐业有限公司氯化氢合成装置(副产≥0.3M P a G蒸汽)。 1.2、装置规模: 选用组合式副产蒸汽二合一石墨氯化氢合成炉,共3台,2开1备。单台炉子生产能力45t/d (对应50000吨/年高纯盐酸);吸收装置采用三级吸收,吸收产出31%的高纯盐酸。 合成炉副产蒸汽;单台合成炉副产≥0.3MPaG的蒸汽约29t/d(0.65t/t氯化氢)。 高纯盐酸吸收装置采用2套,三级吸收(二级降膜+尾气吸收塔),吸收动力来源为水力喷射泵。 控制方案选择多种控制回路和联锁,保证产品质量和装置安全。 操作范围:本系统在正常及开停车减量生产的情况下,在保证操作性能、过程控制指标的条件下,操作弹性范围为30—110%。 二、工艺说明: 干燥的氯气经缓冲罐及稳压阀稳定压力在设定值,干燥的氢气经缓冲罐和稳压阀稳定在设定值,与氯气以设定好的比例值进入合成炉进行燃烧反应,合成氯化氢。氢气与氯气流量分别自动 检测并由比例调节器自动跟踪调节,确保氯氢配比,合成的氯化氢气体经三级吸收。吸收剂为纯水,吸收产出31%的高纯盐酸。 合成炉夹套高温区采用纯水冷却,最大限度吸收氯化氢合成热、副产≥0.3MPaG的蒸汽。 当出现各种异常情况时,本装置的连锁装置将把原料切断或采取别的措施,确保本装置的安全,避免安全环保事故的发生。 三、设计基础和设计分工: 3.1、设计基础: 3.1.1、原料及规格: 3.3.1、原料氯气: 氯气纯度≥96.0%(Vol) 压力 0.25~0.3MPaG

马来酸依那普利合成工艺设计

马来酸依那普利合成设计 1产品简介 1.1中英文名称,分子式,结构式 中文名:马来酸依那普利 别名:苯丁酯脯酸,苯酯丙脯氨酸,苯酯丙脯酸,益压利,悦宁定;MSD,Renitec 化学名:N-[(S)-1-(乙氧羰基)-3-苯丙基]-L-丙氨酰-L-脯氨酸(Z)-2-丁烯二酸盐 英文名:EnalaprilMaleate 结构式: 1.2物化性质 物理性质:白色鳞片状结晶或结晶性粉末;无臭,微有引湿性。在甲醇中易溶,在水中略溶,在乙醇或丙酮中微溶,在氯仿中几乎不溶。比旋度取本品,精密称定,加甲醇制成每1mL中含10mg的溶液,依法测定,比旋度为-40°至-44°。m.p.143~144.5(伴有分解)。pH(1%水)=2.6。pKa1(25℃)=3.0,pKa2(25℃)=5.4。 化学性质:偶见尿素氮、肌酐或谷丙转氨酶、谷草转氨酶轻度上升。若出现白细胞减少或血管神经性水肿(尤其发生于喉部者)需立即停药。与利尿药同用可致严重低血压,用本品前停用利尿药或增加钠摄入可减少低血压可能。本品与利钾利尿药同用可减少钾丢失,但与保钾利尿药同用可使血钾增高。本品与锂同用可致锂中毒,但停药后毒性反应即消失。与其他降压药,尤其是利尿药合用,降压作用增强,故使用本品前应停用利尿药或从小剂量开始。本品能使血钾升高,不宜与保钾利尿 1

药或补钾制剂合用。 1.3用途 本品为血管紧张素转换酶抑制剂,口服后在体内水解成依那普利拉(Enalaprilat)。后者抑制血管紧张素转换酶,降低血管紧张素Ⅱ含量,造成全身血管舒张,引起降压。依那普利是前体药物,其乙酯部分在肝内被迅速水解,转化成它的有效代谢物-依那普利拉发挥降压作用,口服依那普利约68%被吸收,与食物同服,不影响它的生物利用度,服药后一小时,血浆依那普利浓度可达峰值。服药后3.5~4.5小时,依那普利拉血浆浓度可达峰值,半衰期为11小时,肝功能异常者依那普利转变成依那普利拉的速度延缓,依那普利给药20分钟后广泛分布全身、肝、肾、胃和小肠药物浓度最高。大脑浓度最低,日服两次,两天后,依那普利拉与血管紧张素转换酶结合达到稳态,最终半衰期延长为30~35小时,依那普利拉主要由肾脏排泄。严重肾功能不全病人(肌酐清除率低于30ml/min)可出现药物蓄积,本药能用血液透析法除去。 1.4应用前景分析 临床采用依苏与硝苯地平缓释片联合治疗中重度高血压50例,所有患者治疗前停用对血压有影响的药物,用药前连续非同日3次血压和心率的平均值做为治疗前的血压及心率,用药后每日测血压2~3次,取疗程最后3天血压的平均值作为治疗后血压。所有病人依那普利用5mg,2次/日,硝苯地平缓释片10mg,2次/日。2~3周调整药物剂量使血压达到理想水平(150/90mmHg)。4周为1疗程。治疗前后检查血、尿常规,血脂、血糖、心电图、肝功能、肾功能。结果显示,本组50例,显效28例,有效20例,无效2例,总有效率96%。用药过程中其中头痛头晕3例,干咳2例,恶心1例,乏力1例,持续1~2周自行消失。本品用于治疗各期原发性高血压。肾血管性高血压。各级心力衰竭。对于症状性心衰病人,也适用于:提高生存率;延缓心衰的进展;减少因心衰而导致的住院。预防左心室功能不全病人冠状动脉缺血事件,适用于:减少心肌梗塞的发生率;减少不稳定型心绞痛所导致的住院。

以盐酸为原料合成一氯甲烷(150kta)工艺设计

毕业设计(论文)任务书 题目:以盐酸为原料合成一氯甲烷(150kt/a)工艺设计 学生姓名:班级:学号: 题目类型:工程设计指导教师:崔孝玲 一、设计原始资料 1、原料:有机硅副产质量浓度为30%的盐酸甲醇液体,纯度99.9% 含小于0.5%(质量)水蒸汽。 2、重点设计:浓盐酸提馏制氯化氢和一氯甲烷合成系统 3、生产时间:8000小时 4、设计基本数据 氯化氢提馏过程: (1)提馏塔操作压力0.16MPa(绝压,以下同); (2)原料酸常温进料,进料温度20'C; (3)原料酸质量浓度30%,稀盐酸产品质量浓度21%; (4)年操作时间8000小时。 一氯甲烷合成系统给定的工艺数据为: (1)反应器温度1500C,压力0.14MPa(绝压,以下同); (2)一、二级冷凝器压力0.13MPa; (3)甲醇进料温度20℃,压力0.15MPa; (4)氯化氢进料温度20℃,压力。.15MPa; (5)甲醇汽体过热温度120 ℃,压力0.15MPa; (6)返回反应器的循环液压力0.15MPa; (7)离开二级冷凝器的气体温度40 ℃; (8)甲醇的总转化率90%(摩尔); (9)进料甲醇和氯化氢的摩尔比1;1.1; 5、建厂地点:兰州 二、设计工作内容(建议): 第一部分前言 第二部分文献概述 第三部分设计的内容及要求 3.1设计范围及技术方案的确定 3.2设计内容及深度要求 3.2.1浓盐酸提馏制氯化氢系统 3.2.2一氯甲烷合成系统 第四部分氯化氢提馏工艺设计计算 4.1提馏系统工艺设计计算 4.1.1计算模型 4.1.2计算步骤

4.1.3计算结果 4.2提馏系统主要设备设计计算 4.2.1填料提馏塔 4.2.2一级冷凝器 4.2.3二级冷凝器 4.2.4塔底再沸器 4.2.5浓酸预热器 4.3提馏塔内件设计计算 4.3.1.进料液体分布器 第五部分氯甲烷合成系统设计计算 5.1合成系统工艺设计计算 5.2合成系统主要设备设计计算 第六部分主要参考资料 第七部分外文文献翻译(2篇) 三、绘制设计图 1. 机绘带主要控制点的氯化氢提馏工艺流程图一张(A1); 2. 手绘以盐酸为原料合成一氯甲烷的物料平衡图一张(A2); 3. 机绘提馏塔的工艺尺寸图一张(A2)。 四、设计进程 五、主要参考文献 [1] 汤月明.新建甲烷氯化物装置简介.中国氯碱.2001 [2] 方源福.甲醇氢氯化技术.中国氯碱通讯1989 [3] 乐晓兵.Stauffer化学公司甲烷氯化物技术.中国氯碱.1996 [4]俞潭洋.甲醇液氯法联产氯代甲烷的工艺特点及其发展前景.上海化工.1998 [5] 艾米.日本有机硅工业发展动向.化工新型材料.1990 [6]黄立道.我国有机硅单体产业发展形势分析.中国化工信息.2000 [7] 郑建军.我国三大有机硅单体生产装置发展概述.化工新型材料.1999 [8] 幸松民.加速我国的有机硅单体工业.中国化工.1997 [9] 北京石油化工工程公司.氯碱工业理化常数手册[M].化学工业出版社, 1989. [10] Gustin J L. Safety of chlorine production and chlorination processes[J]. Chemical Health and Safety, 2005, 12(1):5-16

氯化氢合成及盐酸合成技术方案范文

氯化氢合成及盐酸合成技术方案

天成化工氯化氢合成技术方案 编号:ntxqlhqhc- -12-30 买方:天成化工 卖方:南通星球石墨设备有限公司日期:二0一二年十二月三十日 一.装置配置描述

1.1.根据用户的要求,为用户选用我公司生产的组合式二合一副产蒸汽石墨合成炉,生产HCl气体高纯盐酸及普通盐酸。 1.2.按SZL-1500型组合式二合一副产蒸汽石墨氯化氢合成炉。配置,数量:4台,开3备1。 1.3.设置配套盐酸吸收系统:5套其中一套是专门用来生产高纯盐酸,4套用来生产工业盐酸。采用二级降膜吸收+尾气塔吸收,满足高纯盐酸和普通盐酸的生产。 1.4操作弹性范围:30%~110%。 1.5年操作时间:按8000小时/年设计。 1.6产能: (1)、高纯盐酸:35000吨/年 (2)、氯化氢:1 0吨/年 二.主产品及副产品技术规格 2、1,31%高纯盐酸规格:

2.2.工业盐酸: 2.3.氯化氢气体: 纯度:≥96%(vol) H2≤3.5%(vol) 水≤0.5% 压力: 0.15-0.2MPa 2.4.副产蒸汽:压力:0.5MPa 三.合成炉及吸收器的能力描述 3.1.HCL合成炉:单台合成炉正常生产氯化氢能力120t/d,对应387td 普通盐酸能力。 3.2.配套吸收系统,普通盐酸共4套,单套吸收装置吸收能力满足387t/d的盐酸产量,高纯盐酸一套,每天吸收能力满足:105t/d,年产高纯盐酸35000吨/年。 3.3.所有尾气达标排放,达到GB16297-1996标准的要求。 四.工艺情况及控制方案建议

4.1工艺简述: 干燥的尾氯(或原氯)经缓冲罐及稳压阀稳定压力在设定值,干燥的氢气经缓冲罐和稳压阀稳定在设定值,氯气、氢气以设定好的比例值进入合成炉进行燃烧反应,合成氯化氢。氢气与氯气流量分别自动检测并由比例调节器自动跟踪调节,确保氯氢配比,合成的氯化氢气体能够去界外也能够去降膜吸收器、尾气吸收塔吸收制普通盐酸,其中一部分氯化氢气体去高纯盐酸吸收系统制取高纯盐酸。当使用尾氯时,尾氯不足的情况下由原氯自动补充。 制取高纯盐酸的吸收水为纯水,吸收产出31%的高纯盐酸。 制取工业盐酸的吸收水为工业水。 合成炉夹套采用三段冷却,其中二段循环水冷却和一段热水(热水用来副产蒸汽)冷却。 当出现各种异常情况时,本装置的连锁装置将把原料切断,确保本装置的安全,避免安全环保事故的发生。 4.2.控制方案(自控系统由业主选择并确认) 石墨合成炉系统副产蒸汽,要求实现DCS集中控制,现场无人值守。主要的控制分为自动监测系统、自控联锁保护系统、氢气氯气自动配比、蒸汽汽包液位及压力自动控制、制酸自动控制。 4.2.1自动监测系统 合成炉火焰检测、摄像、自动切断阀、氮气置换等组成。 4.2.2自动联锁保护系统 该装置应设有:氢气压力低、氯气压力低、冷却水流量低,汽包压力,汽包液位,氢气流量与氯气流量比值联锁,在线火焰联锁保护等

年产12万吨氯乙烯合成工艺设计书

年产12万吨氯乙烯合成工艺设计书 第一章总论 1.1项目建设依据 ①HGT 20688-2000化工工厂初步设计文件内容深度规定; ②国家相关政策、技术及市场相关资料。 1.2项目建设范围 根据课程设计的要求,本项目的设计内容为:初步设计说明书,项目可行性研究,工艺流程设计,设备选型,总厂的平面布局,车间设备的布局,创业规划书,用户手册。 1.3主要设计原则 ①反应热及时移出: 反应是放热反应,局部过热会影响催化剂的寿命(HgCl 升华,使其活性下降)。因此, 2 在反应过程中,必须及时地移出反应热。 ②反应器型式: 工业上经常采用多管式的固定床氯化反应器,管内盛放催化剂。 经过干燥和已经净化的乙炔和氯化氢的混合气体,自上而下地通过催化剂床层,进行反应。 ③管外用加压的循环热水进行冷却。 ④发挥催化剂床层的效率,提高处理量: 反应是放热反应,乙炔的空速大,则有局部过热现象(热点温度),因此,乙炔的空速也受到限制。 如果整个床层温度都接近最佳的允许温度,就可以充分发挥催化剂床层的效率:采取分段进气、分段冷却和适当调整催化剂活性等方法,可以使床层温度分布得到改善,乙炔空速可以提高,因而催化剂的生产能力也可以显著提高。 1.4设计特点 本设计采用乙炔法。在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯:CH≡CH+HCl→CH2=CHCl

1.5设计标准 本设计按照原化工部制定的《化工工厂初步设计文件内容深度规定》及有关国家的专业标准。 第二章项目可行性论证 2.1项目背景 1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。 随着国民经济的高速发展,社会需求的增长,刺激了PVC树脂生产的迅速发展,目前全国有生产企业80余家,但规模较小,年产十万吨以上的厂家仅有上海氯碱化工股份有限公司和齐鲁石化总公司。近年我国PVC树脂产量远远不能满足市场的需求,这与我国大部分生产厂家工艺技术落后,VC原料短缺有直接关系。我国相关技术也基本处于比较落后的水平,且相关资源也不够丰富,致使我国有相当一部分生产氯乙烯厂家还是使用的比较落后的乙炔法,但是此方法对于我国目前国情还是有相当大的适应性,虽然它是最古老但最简单的商业生产路线。乙炔法合成氯乙烯曾为我国聚氯乙烯工业的发展做出巨大贡献,至今仍约占我国氯乙烯总生产能力的2/3、产量的1/2以上。目前我国以电石乙炔为原料的聚氯乙烯生产厂共76家,总生产能力124万吨/年。在能源成本愈来愈高以及国内外竞争日益激烈的今天,建立在高能耗电石基础上的乙炔法聚氯乙烯工业正面临严峻考验。 2.2国内市场现状及预测 目前国内整体化工市场并未出现全面复苏的现象,仍然处于弱势格局,受房地产市场的影响PVC行业难改低迷态势,业内难言乐观,而作为电石的主要下游消耗行业,电石市场难免受此牵连,市场僵持局面难以突破,因此预计后市仍将以平稳运行为主,小幅调整

高纯氯化氢的制备方法及其生产工艺

高纯氯化氢的制备方法及其生产工艺 作者:李建辉, 杜迎春 作者单位:北京服装学院材料科学与工程学院,北京,100029 刊名: 黑龙江科技信息 英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2008(36) 参考文献(7条) 1.孔祥芝工业氯化氢气体的生产[期刊论文]-低温与特气 2002(01) 2.李秀华;宋明霞;代罡氯化氢生产工艺探讨[期刊论文]-中国氯碱 2004(8) 3.王正岩曼海姆法硫酸钾联产氟化氢的精制工艺[期刊论文]-无机盐工业 2003(6) 4.窦明洪高纯氯化氢气体的制备 1990 5.张英民;郎需霞;吴雅娟氯化氢生产中新技术的应用[期刊论文]-聚氯乙烯 2003(02) 6.张凯鹏副酸脱析法生产氯化氢工艺[期刊论文]-中国氯碱 2008(3) 7.张凤林电子级高纯氯化氢的研制 1990 本文读者也读过(10条) 1.侯文杰.HOU Wen-jie实验室氯化氢气体制备工艺探讨[期刊论文]-低温与特气2008,26(2) 2.孔祥芝工业氯化氢气体的生产[期刊论文]-低温与特气2002,20(1) 3.张英民.郎需霞.吴雅娟氯化氢生产中新技术的应用[期刊论文]-聚氯乙烯2003(2) 4.曹璐.CAO Lu提高氯化氢纯度的措施[期刊论文]-氯碱工业2008,44(7) 5.刘启照.张国杰.张文勤.Liu Qizhao.Zhang Guojie.Zhang Wenqin副产氯化氢气体的精制及利用[期刊论文]-氯碱工业2000(4) 6.王中敏.刘月菊.WANG Zhong-min.LIU Yue-ju氯化氢纯度及微量氯在线分析仪的应用与维护[期刊论文]-氯碱工业2008,44(8) 7.在感悟创新中追求精品——建筑设计大师程泰宁访谈[期刊论文]-建筑创作2002(12) 8.王哲清.WANG Zhe-qing无污染制备氯化氢有机溶剂[期刊论文]-中国医药工业杂志2009,40(3) 9.况春江.方玉诚.刘立新.顾临.杨峥.王凡高温气体介质过滤除尘技术和材料的研究[会议论文]-2002 10.蒋其红氯化氢气体实验室制取的改进[期刊论文]-化学工程与装备2011(2) 本文链接:https://www.360docs.net/doc/554023916.html,/Periodical_hljkjxx200836019.aspx

氯化氢合成2009.6.9

氯化氢合成 1、产品概述 高纯盐酸是离子膜制碱工艺不可缺少的化学品之一,它主要用于调整进入离子膜电解槽盐水的酸度及PH值、螯合树脂塔中树脂的再生和脱氯淡盐水的酸化。 1.1高纯盐酸的性质 高纯盐酸顾名思义,就是纯度高的盐酸,它所含的杂质要比普通的工业盐酸少得多,其物理性质与普通工业盐酸基本相同,化学性质具备一切强酸的特性。 1.1.1外观 无色透明的液体,具有刺激的臭味。 1.1.2沸点 盐酸溶液的沸点见表1-1 表1-1在大气压下盐酸溶液的沸点 在101.3kpa压力下,氯化氢和水的共沸点是110℃,其浓度是20.24%。在不同的压力下氯化氢和水共沸混合物的组成见表1-2。 表1-2在不同的压力时HCl+H2O共沸物的组成

1.1.3扩散系数 在0℃及101.3kpa压力下,氯化氢在空气中的扩散系数为0.156cm2/S。氯化氢在水中的扩散系数见表1-3 表1-3氯化氢在水中的扩散系数

1.1.4密度 氯化氢在标准状态下密度为1.639kg/m3 ,相对密度(与空气密度之比)为1.2679,表1-4所列为盐酸的密度。 表1-4盐酸的密度(15℃时)

1.1.5氯化氢在水中的溶解度见表1-5、 表1-5在不同的温度下(101.3kpa)HCI在水中的溶解度 1.1.6 盐酸浓度及吸收温度的关系 盐酸的最大浓度决定于吸收温度和气体中氯化氢的浓度,见表1-6 表1-6盐酸浓度与吸收温度的关系

2.原辅材料规格 2.1 HCI 2.2高纯盐酸的质量规格(HG/T2778-1996)

2.3产品用途 氯化氢及高纯盐酸除了上述用于离子膜制碱工艺外,还可以稍加处理制成试剂级盐酸。由于它的纯度高,在制造高品位的调味粉、酱油等食品工业及电子工业中有着广泛的应用。此外,它可以应用在化学工业中,生产无机氯化物、有机氯化物如聚氯乙烯和氯丁橡胶等。在冶金工业中,如湿法冶金,用于钻采和提取稀有金属;在纺织工业中,作织物漂白液的分解促进剂;在造纸工业、医药工业中应用也很广泛。 3、生产目的及原理 氯化氢及高纯盐酸的生产方法主要一两种,一种是直接合成法,另一种是生产无机或是有机产品时的副产品法。 3.1 氯化氢的合成 3.1.1 反应方程式:H2+CI2→2HCl 3.1.2反应机理 氯气和氢气在低温、常压和没有光照的条件下反应,反应速度是非常缓慢的,当在高温和光照的条件下,反应会迅速进行,甚至会以爆炸的形式急剧进行,氢气在氯气中均衡地燃烧合成氯化氢的过程,实质上是一个链锁

氯化氢的合成

第二章氯化氢合成 一、氯化氢的性质 氯化氢(HCl)分子量36.5,密度1.63g/L,是无色具有刺激性臭味的气体,极易溶于水,在标准条件下1体积水中可溶解500体积的HCl气体。干燥的HCl 腐蚀性较小,而HCl溶液(盐酸)却有强腐蚀性,原因是在水分子的作用下HCl 发生了电离,产生大量的CL+,CL+可与多种物质发生反应,特别是和金属发生化学反应。因此,为了使设备不受盐酸腐蚀,具有更长的使用寿命,生产HCl 时应该用干燥的氢气和氯气进行反应。 二、氯化氢合成对氢气、氯气的要求(依据工艺包的定) 名称品种规格消耗量吨/年备注 氯气1、氯气≥99.8% 2、水和其它含氧杂质(质量)≤ 3、NCL 3 (质量)≤ 4、不挥发的残余物%(质量)≤ 氢气1、H 2 (质量)≥99.9997% 2、O 2 (质量)≤ 3、露点 -60℃ 三、氯化氢合成原理 HCL合成是采用氢气在氯气中不爆炸的条件下进行的方法来制备。 反应式:H 2 + CL 2 --HCL 该反应的发生需要一定的前提条件,即提供一定的能量,在光照或加热的情况下,二者能迅速反应,并释放出大量的热。

四、氯化氢合成工艺流程及设备 1、氯化氢合成工艺流程图 防爆膜排放 去尾气淋洗塔 CDI 回收氢 电解氢 回收自用或处理 去三氯氢硅合成炉 氯气 氢气缓冲罐 HCL 贮罐 水冷器 氯气缓冲罐 HCL 合成炉 阻火器 空冷器 HCL 空冷器 废HCL 缓冲罐 盐酸槽

氯化氢合成是由两套相同的合成炉系统,H2、CL2缓冲罐,事故排放接收设备组成(其中H2、CL2缓冲罐及事故排放装置为两套合成炉系统共用)。 来自氯碱装置的氢气及从三氯氢硅合成工序返回的循环氢气输送入氢气缓冲罐。出氢气缓冲罐的氢气分别去两条生产线的氯化氢合成炉01R0301a。 来自液氯汽化工序的氯气穿过01V0302氯气缓冲罐,分别去两条生产线的氯化氢合成炉01R0301a。 经缓冲罐后的氯气和氢气分别经过氯气阻火器和氢气阻火器,然后按一定的流量比进入氯化氢合成炉01R0301,在炉内进行燃烧,生成氯化氢气体,生成的HCL经管道冷却和水冷却器(01E0301a\b),进入HCL缓冲罐(01V0303a\b),然后送到三氯氢硅合成工序。 2、设备明细表 位号名称数量规格材质 HCL合成炉 1 HCL空气冷却 1 器 换热器 1 阻火器 1 HCL储罐 1 废HCL储罐 1 阻火器 1 HCL储罐 1 CL 缓冲灌 1 2 缓冲灌 1 废CL 2 H 缓冲罐 1 2 五、氯化氢合成的技术条件 1、原料配比 2、原料压力:0.5MPa 3、合成温度:250~450℃ 4、产品质量的控制要素

氯乙烯合成工艺设计

前言 氯乙烯单体(VCM)几乎全部(98%以上)都用来生产聚氯乙烯(PVC)。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。传统工艺的电石法精馏氯乙烯质量已不能满足PVC 树脂的生产要求,受其工艺流程及精馏塔塔型的限制,原氯乙烯精馏装置规模小,产品质量较差,尾气放空量大,造成氯乙烯、乙炔流失量大,导致生产成本较高,环境污染严重。 最初的氯乙烯生产全部以乙炔为原料。60年代后期,随着乙烯装置大型化及乙烯氧氯化技术的成熟,乙烯法在经济和环保等方面占有明显的优势,在世界范围内乙炔法迅速被乙烯法取代。迄今为止,全世界氯乙烯装置93%以上采用乙烯法,在工业发达国家如日本,以全部淘汰了乙炔法,仅在我国及其它发展中国家仍占有相当比重。目前国内比较先进而又经济可行的成熟工艺技术是电石乙炔法 本设计用美国ChemStations公司开发的流程模拟软件ChemCAD软件对电石乙炔法制备VCM进行了工艺模拟设计与计算,计算主要包括物料衡算和热量衡算,用计算所得到的相关数据对此工艺中所涉及到的设备进行选型,主要包括塔的选型、换热器的选型、泵的选型等,然后用PDSOFT三维软件对车间设备进行布置,为工业生产提供参考。 1

1 总论 1.1 概述 1.1.1 意义与作用 氯乙烯(简称VCM),是无色的、易液化的气体。易聚合,也能与丁二烯、乙烯、丙烯、丙烯睛、酷酸乙烯、丙烯酸醋和马来酸醋等共聚。主要用于制备PVC,也用于制备偏二氯乙烯、冷冻剂等。氯乙烯单体几乎全部(98%以上)都用来生产聚氯乙烯。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。通过对二氯乙烷(EDC)裂解后脱除HCL,以及干燥精制可获得制造PVC级的VCM。由于资源结构的特点,世界上只有我国的氯碱行业有电石法生产PVC,其他国家都是通过乙烯法生产PVC,即乙烯直接氯化、氧氯化生产EDC,进而裂解生产VCM制造PVC。其中96%VCM均用于生产PVC。 聚氯乙烯(简称PVC)是五大热塑性合成树脂之一,以其价廉物美的特点,占合成树脂总消费量的29%左右,仅次于聚乙烯居第二位。由于PVC树脂具有优良的耐化学腐蚀性、电绝缘性、阻燃性、质轻、强度高且易加工、成本又低,因而PVC制品广泛用于工业、农业、建筑、电子电器及人们生活中的各个领域。PVC硬质制品可代替金属制成各种工业型材、门窗、管道、阀门、绝缘板及防腐材料等,还可作收音机、电话、蓄电池外壳及家俱、玩具等。PVC软质品可制成薄膜做雨披、台布、包装材料及农用薄膜,还可制成人造革、电线、电缆的绝缘层。另外,PVC树脂作为氯碱工业最大的有机耗氯产品,对氯碱工业的碱、氯平衡和发展起到重要的作用。PVC主要用于建筑业,制造管材、门窗和墙板等。作为第一大用户,建筑业约占聚氯乙烯消费总量的76%。其它方面的用量相对较少。包装薄膜和容器约占消费总量的6%,电气配件、电线电缆包皮约占消费总量的4%,涂料和粘合剂约占消费总量的4%,其他约占消费总量的10%。 1.1.2 氯乙烯生产的国内外现状及发展前景 (1)国外发展概况 氯乙烯(VCM)的合成始于1835年,由法国化学家Regnault用氢氧化钾的乙醇溶液将二氯乙烷脱氯化氢制得,并于1838年观察到了它的聚合体,这次的发现被认为是PVC 的开端。1902年,Biltz将1,2-二氯乙烷进行热分解也制得氯乙烯,但当时由于聚合物的科学和生产技术尚不成熟,他的发现没有导致工业生产的结束。Klatte于1912年通过乙炔与氯化氢的催化加成反应制得了氯乙烯,成为工业上氯乙烯合成的最初工艺,但在沿用将近30多年后,由于乙炔生产的高能耗而逐渐趋于淘汰。从1940年起,氯乙烯的生产原料,乙炔开始被乙烯部分取代,首先将乙烯直接氯化成1,2-二氯乙烷(EDC),再加以热裂解制得氯乙烯,裂解产生的氯化氢仍被用在乙炔-氯化氢法中。混合气体法制备氯乙烯采用石脑油作原料,将石脑油用燃烧气体裂解后,制成含乙炔和乙烯的混合气体,该混合气体先

相关文档
最新文档