初二上学期数学知识点汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上学期数学知识点汇总

学习八年级数学知识成功就是简单的事情不断地重复做。磨练,使人难以忍受,使人步履维艰,但它能使强者站得更挺,走得更稳,产生更强的斗志。下面是为大家精心推荐的初二上学期数学知识点汇总,希望能够对您有所帮助。

初二上学期数学知识点第11-12章第十一章全等三角形

1.全等三角形的性质:全等三角形对应边相等、对应角相等.

2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).

3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

第十二章轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

3.角平分线上的点到角两边距离相等.

4.线段垂直平分线上的任意一点到线段两个端点的距离相等.

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

6.轴对称图形上对应线段相等、对应角相等.

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一 .

10.等腰三角形的判定:等角对等边.

11.等边三角形的三个内角相等,等于60 ,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形.

有一个角是60 的等腰三角形是等边三角形

有两个角是60 的三角形是等边三角形.

13.直角三角形中,30 角所对的直角边等于斜边的一半.

14.直角三角形斜边上的中线等于斜边的一半

初二上学期数学知识点第13-14章第十三章实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a 0时,a才有算术平方根.

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.

※正数的立方根是正数;0的立方根是0;负数的立方根是负数.

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.

3.若两个变量x,y间的关系式可以表示成y=kx+b(k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.

4.正比列函数一般式:y=kx(k 0),其图象是经过原点(0,0)的一条直线.

5.正比列函数y=kx(k 0)的图象是一条经过原点的直线,当k 0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k 0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k 0时,y随x的增大而增大; 当k 0时,y随x的增大而减小.

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

初二上学期数学知识点第15章第十五章整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a

可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

⑤公式还可以逆用:(m、n均为正整数)

2.幂的乘方与积的乘方

※1. 幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同.

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数).

※7.幂的乘方与积乘方法则均可逆向运用.

3. 整式的乘法

相关文档
最新文档